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MR. EDITOa:--Tbe following article is an abstract of a Thesis pre- 
pared by Mr. Robinson, and read before the Faculty just before taking 
the degree of Civil Engineer at the last commencement. It is due to 
him to say, that he had numerous verifications of the principal formu- 
las, and several processes of reduction which I have omitted; but all 
the formulas here given are literally copied from his paper. 

Professor Rankine, in his work on "Applied Mechanics," in speak- 
ing of the linear arch which is every where normally pressed, p. 1907 
says, " The only arch of this kind which has hitherto been considered, 
is the circular arch under uniform pressure." This example is illus- 
trated by a circular ring placed horizontally under a fluid. He then 
gives a second example, p. 190, called the "Hydrostatic Arch," or 
"The Arch of Yvon-Villarceaux," where the arch is in a vertical 
plane and pressed externally by a fluid whose surface is horizontal. 
The investigations by Mr. Robinson, given in the following article~ 
make another, or third example. D. VOLSON WOOD, 

Professor of 6~ivil E~gineering, 
U~'IV~RSITV OF :M~CnIO~. 
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In the ordinary suspension bridge, the tension is greatest at the 
piers and least at the middle. 

My object is to deduce and discuss the equations for a suspension 
bridge when the suspension rods are so inclined as to produce a uni- 
form tension throughout the cable; the bridge being loaded uniform- 
]y over the span. The analysis is founded upon the following theo- 
re ins  : 

THE01tE~t I. In a normally pressed arch the tension or compression is 
uniform throughout. 

For the tension from one point to another cannot differ unless there 
be a tangential component ; but if all the forces are normal they can- 
not have any tangential component at the point where they act. 

THEOREM II .  The pressure at di~erent points varies inversely as the 
radius of  curvature. 

Proof. Let  A 9, fig. 1, be any normally pressed are, d P be any ele- 
ment of the normal force, and which may be consid- 

v, c. ,. cred the resultant of the tensions on each side of it. 

°c ~ ~ D E  s C D=D E ==I d8.  
o D~---p=the radius of curvature at D. 

T=the stress along the arc. 
a = a n  infinitesimal angle c o E. 

A~_ Then, by Mechanics we have 

~eZe d I'~---v'T~ T-~T~ COS. a=2T sin. ½ a, 
~vhieh at the limit equals T a. 

Tds 
: B u t ~ a ~ d ,  . ' .  a l P : - -  (1) 

P 
~-hich proves the theorem. :By integrating (1) the first member be. 
tween o and P; the second between o and 1, we have 

T 
P-- P--~ orT:Pp, (2) 

hence, the tension equals the pressure per unit of length multiplied 
by the radius of curvature at the middle of that unit. 

* I t  will be seen that l%fr. l~obinson has adopted the same method for finding an 
expression for the tension, that many writers use for finding the relation bctwee,r 
%he power and resistance, when a rope is coiled around a cylinder and friction is 
considered. I f  we should apply external normal forces just sufficient to remove the 
pressure on the cylinder, there would be no friction, and hence no loss of tension, 
which corresponds to Theorem I.  

I f  F be the applied force, w the resistance at the other end of a rope coiled around 
a cylinder, a the are at a unit's distance, a n d f  the co-efficient of friction; we have 
(see Bartlett's Analytical ~[echanics, 3d Ed., p. 382) 

F~-wef 
in which i f / ~  o we have F = w, which also corresponds with Theorem L 

In  the case of friction the tension varies, and if the cylinder be circular, the ra. 
dius is constant; but in Theorem II . ,  the tension is constant and the radius of cur, 
vature may or may not be constant. D.V.W. 
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Now let A G, fig. 2, r epresen t  the 
Let ,t B be the axis of  x ; a o o f y ,  

w, the weight per  unit  of  length  
over the span. 

Ao, ~E and ~D radii  of  curva-  
ture. 

By Theorem I ,  the suspension 
rods must coincide in direction with 
the radii of cu rva tu re ;  hence if  Po 
EO~td$; ] : q a n d  D r  m a y b e  con- 
sidered two consecutive suspension 
rods. Through ~,, draw E c t angen t  
to the curve, and through q a line A 
parallel to the tangent .  

are of the cable. 

0 
r 1 6 ,  2.  

C ~' r'-- 

147 

× 
13 

Then  let  1) c x : i o A : flo 
q r = m  R a d i u s F E = p  
q u ~ - n  

Then w m is the weight act ing ver t ica l ly  on q r, and which resolved 
normally, is the normal  pressure  on v. D, and equals 

w m see. i =* d P. (3) 
At a,  m = d s and i =  o ; hence the normal  pressure  a t  tha t  point  is 

w d s. . . (4) 
Hence, from (1), (3), and (4), we have 

p m sec. i = p o d  8 • (5) 

ds P s e e . /  (6) 
D o  * , 

By similar i ty  of  t r iangles  
p:  d s ; : p + y s e ¢ ,  i : n  or m cos. i 

• ds fl cos. i 
" "  p + y see .  i " " (7) 

From (6) and (7) we find 
f l o = ( p +  ysec . i )  s e c ) i  . . (8) 

which is the equation of the curve in te rms of  the variables  p, y, and i. 
To find tile equat ion when refer red  to rec tangular  co-ordinates,  we 

substitute. 

d , 2  

d"y for fl and~l + d~-dY' = , / 1  + tang.*/ for  see. i and 

dx* 
(8) becomes 

d-~ ] + Y ,  -d~* / -~" P°-d~ " . (9) 

ely ~ __ any d z 
Make  ~ - -  2 z "'" ~ = dy 
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and (9) becomes 
y d z  dz 

dy+ l÷2z =P°(l÷2z~) "s' 
TMs is of the following well known form, usually called a linear 

equation. 
d y + x  ydx  = x, dx, 

of which the integral is 

y = e - - f x  d X f  e f x  dx xl dx . (10) 

1 Observing that X = l ~  andx t =  Do 5 and using dz for dx in 

(10), because the expression is a function of z, not of x, and substitut- 
ing in (10) and reducing gives 

: B u t y = 0 a n d 2 z = 0 f o r x = 0  . ' .  c----½po, 

(1+2,)~ G+2,)~ ) 
or (1+2 z)g =zP°* . (II) 

Y 
convenience, make 2 z = u ~ = ~ : t a n ~ i  . . (12) For 

o U 2^ 
. . .  (l+u=).~= _,(?- . . (18) 

zy 

With (9), (12), and (13) eliminate y, d.v, and d"y, and we have 

(l÷u=) ~ t, oU ~ du du  
q- 2 ~ = / ' ° 3 x  

• dx + u:du du 
. .  p~ 2 ( l + u , ) ~  --  ( l + u ~ )  ~ . (14) 

which by integration becomes 
x +  1 ~ - -  1 
po 2(1 + u - 2 )  ~ ( 1 + u - 2 )  t 

or :r ( l + u : ) ~ +  u s 
Po ~2-=u  (1 + u =) (15) 

Substitute (1 + u ~) from (13) and reducing will give 

U 2 _  U'_~_~=__2 
Y 

. d y ~  and reduce, we will obtain a differential " I f  in (11) we substitute z ~ ~ d-~ 

equation between x and y, of the form of a complete cubic equation, which form is 
inconvenient  even if  it has a possible solution. Hence he obtains another equation 
between x and u and then eliminates u:  ~).v.w. 
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• ". u , ~  2 y ~  • • 

which in (13) gives 

~ 8 F._xx + |~-~ i~._.2-], ' ° ° -  (17) 

which is the equat ion required,  but  i t  is too complex to be, of  practi- 
cal use. ]By using the variabl~ i, we obtain more convenient  forms. 
Thus from {12) and (13) we obtain 

Y = ½ Po s in2/cos ,  i , . , (18) 

Similarly from (12) and (15) 

x = Po (sin. i ~  ½ sin21) . . (19) 

= ~ Po ( l + e o s 2 i )  sin./ 

:From (8) and (18) 

t ° = Po (1 - -  ~ sin.~O , , (20) 

From (18) and (19) we obtain the following table of  0o-ordinates 
for Po = 100. 

For  = 0 

Z = 10 ° 
i = 20 ° 
, ~ 800 
, = 40 ° 
z = 50 ° 
, ~- 54 ° 
, = 60 ° 
~-----70 ° 

i =  80 ° 
z = 85 ° 

=. 90 

44 '  7" 

~/----- 0" ~ = 0 '  
y =  1.485 x = 17.096 
y =  5.495 x = 32.200 
y = 10 '825 x ~- 43.850 
y = 15.825 z = 50.998 
y = 18,860 ~ = 54.132 
y = 19,446 x = 54.430 
y = 18.750 x = 54.210 
y = 15.100 ~ ----- 52.480 
y ~ 8.421 x = 50.625 
y---- 4.480 x = 50.200 
y =  0"000 x = 50.000 

-X 

with these, fig. 3 is constructed,  

1)iseussion of the Curve. 
1. From (18) and (19) we see tha t  for  the same values of  i, x and 

Y vary directly a s p o  ; hence if  a table be made as above, for Po -~ 1, 
they may be f o u n d f o r  any  other  value o f  po, by  simply mul t ip lying 
the values in the table b y  tha t  value. 

$ 
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2. To find the maximum values of x and y, differentiate (18) and (19), 
and pla~e equal zero. From either we get 

sin. i = ~ / ~  cos. i = ~ / ~  . (22) 

o r / = 5 4  ° 44' 7"; hence both are maximum at the same point. 
3. From (20) p is positive, for sin. ~ i less than ~ and negative for 

sin.~i greater than ~, and zero for sin.: i equal ~-. For i=90 ;  P=~Po" 
4. From the preceding results we infer that there may be a cusp. 

Applying the test we first find from (18), (19), and (22) that 

d y _  o for i---- 54 ° 44' 7 'I 
dx o 

Substitute (22) in (18) and (19) and we have 
(28) Y-- ~ PoV% 

x 
. ' .  -2y-----~/2 which in (17) gives an identical expression; 

also in (16) gives u = + , ¢ ' 2 .  
Hence the first conditions are fulfilled. ~ow give increments to 

these values of x and y in (16) and it becomes imaginary; and by sub- 
tracting decrements, it remains real; hence there is a cusp at the 
point whose co-ordinates are given in Equation (23). 

. , 

5. From (23) we h a v e - = 2 ~ / 2 ,  which being constant shows that the 
Y 

ratio of x and y for the maximum is independent of the loading or Po. 
6. Because there are two angles corresponding to every sin. and 

cosin.; therefore from (18) and (19) it appears that the curve is sym- 
metrical in respect to both x and y. tlence there are four cusps, as 
shown in fig. 3. 

7. To find where the curve cuts the axis of x, make y = 0  in (18), 
which gives cos. i----0 or sin. ~ i----O. For tile latter i ~ 0 ,  which is at 
the origin; for the former i=90°;  which in (19) gives 

x=_+ po (28a) 
I t  may be asked why x and y are not continually increasing func- 

tions of each other, as in the parabola or catenary. The original pre- 
mises will throw some light upon this point. 

I t  will be remembered that the portion of w x between two radii of 
curvature produced, resolved normally, is the pressure. ~ow the fur- 
ther the curve be prolonged, tile nearer horizontal is the radius of 
curvature, and if it could be prolonged so as to be horizontal, it would 
touch x at an infinite distance, making the load and hence the pres- 
sure infinite, also the tension infinite, which would not be consistent 
with Equation (2), unless the radius of curvature at the middle be in- 
finite, which can be the case only when the curve becomes a straight 
line. From this popular reasoning we would conclude that the curve 
must return upon itself. 

8. Equation (2) shows that when p is negative, the tension is nega- 
tive, or otherwise it is compressive. This will enable us to explain the 
facts v~hich pertain to the arc 1) ]3. After passing the cusp the arc is 
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concave to the force, (see fig. 4) ; hence it is compressive, but uniform 
.rod equal to the tension on the preceding part. By the curve return- 
ing as it does, the radius of curvature may become horizontal without 
intercepting an infinite amount of x. The exact value is hereafter 
shown to be Po, see Equation (26a), hence the weight on this portion 
is w Po, an amount equal the tension of the cable. See Equation (2).* 

9. I t  will thus be seen, that if we have a chord .~ D, fig¢ 4, to resist 
tension, and a rod 1) B, to resist compression, bent into the proper curve, 
and forces T applied as in the figure, a 
and a series of chords arranged nor- f la .  ,,. //,,,,, 
really, attached to a system of weights 
uniformly distributed over x, and a r_- ~ , , e 
sufficient horizontal force applied at A ~8 
C to keep the chords normal; then r 
will the combination remain in equilibrium. 

10. Zength of Arc. :By calculus 

ds= . dy " 
sin. 

Differentiate (18), substitute and reduce, gives 

But  

ds =-P4 ° ( l + S c o s . 2 ~ )  di  

• ". sffi~po ( i+~  sin. 2 ~)+c 

s = O  for i = 0  .'. c = O  

hence for both branches we have 

2 s---- ½ Po (i + ~ sin. 2 i) (24) 

in which i is a linear quantity. I f  it be given in degrees, we use 
z i  

"180 

• . 2s ----- ½ po [1~1~-0-4- sin. 2 (25) $ 

The limits for AD are 0 ° and 54 ° 44' 7"; for ])• the limits are 
5~ ° 44' 7" and 90 °. 

For i ~ 4 5  °, we have 
2s-----po X 1"14+ 

From (25) we see that a table whose argument is i, might be made, 
and calling po =-1, we could find s for any other value of po by sim- 
ply multiplying by the assumed value. 

• As the tension at x and e are horizontal, equal, and opposite, and the load acts 
vertically downward,  and the tension at B vertically upward ; we would infer from 
the principle of parallel forces that T = w A C, or from eq. (26a) T ~ w Po as above. 

We see from (28a) and (26a) that  B is midway between x and e; hence the 
whole system will balance upon B as a fulcrum, the same as if the roadway were 
perfectly rigid. D.v.w. 
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10. 

A G 0 

~=Po sin.i  
At  the cusp sin. i ~--- ~/~ 

For i = 90 ° 

To get an expression for a e, or one-half the span of a bridge. 

See fig. 5. 
Let ao ~--- B 

.'. ]3 = x + g tang. i, 
or combining with (18)and (19), we 
obtain after reduction, 

• ( e e )  

.'. B~---po vZ~ 
B m_ Po . (26a) 

I f  it be desired to attach the ties at equidistant points on the road- 
way, make B = b', 2b', 8b ~, &e. in (26), and substitute the value of i 
thus formed in (25), and the points of attachment on the cable will 
thus become known. 

11. .Length of the Ties. Let l =  B c, = the length of any one. Then, 
Fig. 5, and Eq. (18) give l ~ y see. i -~- ½1% sin.S i (27) 

B 2 
which with (26) becomes ---~ 2PPo for the last tie. 

] 2. The JEvolute of the Curve, fig. 6. 
Let xt, and YL, be the co-odinates of any point of the evolute, then 

we readily have; z t =  x - - p  sin. i 
y ~ :  y + p cos. i 

r r G .  8,  

These with (8), (19), and (20) 
give by eliminating x,y, p. sin./ 
and cos. i ; 

which is the equation of a hy- 
poeycloid, when the radius of 
the generating circle is one- 
fourth that of the directing 
one*. I t  is represented in fig. 6. 

The curve is symmetrical with 
x and Y, and with axes in- 
clined 45 ° to X and lr. 

13. Tension of the ties. Sup- 
pose the ties are so distributed 
that the tension on each shall 

be equal, then it is required to find the points of attachment. 
This equation is deduced from a var ie ty  of  problems, see Mathemat ical  Month-  

ly, eel.  1, p. 133. 
Equation (17), or (18) and (19), are the equations of the involute of  the hypocy- 

cloid, but  the involute touches the evolute at the p o i n t  given by eq. (23). The 
radius of  the  di rect ing circle in this case would be Po ; of the  genera t ing circle ¼ Po. 

W e  here have an easy mode of de te rmin ing  the length of  the evolute Fc, fig. fi. 
For  FD evident ly  equals l~X --~-Po and ]oc ---mR C ~.-~-½ po(see 23a); hence the total length 
is ~ Po, which agrees wi th  other  modes of  solution. 

By means of eqs. (18) and (19), we find the area ~.])BA to b~ 



.8 3Few System of  Suspension Bridges. 153 

Le t  d P ~ t h e  amount of normal pressure ou an element ds. 
Then from (3) we have, considering ~ as variable, and using d B for 

m d P ~ w d B s e e ,  i. 
But from (26) dB ----too cos. idi 

.'. d P ~ Wpo di or P ~ w pol (28) 
for the total normal pressure on one side. We see P varies as i. 

~Tow assume the number  of  ties on hal f  of one cable;  say N; the 

tension on each will be P -+- N ; so for the first tie we have P - - i ,  
NWpo 

and this value of  i in (24) will give s. 
Substitute 2i, 3i, 4i, &c. in (24), and we may find s for the 2d, 3d, 

4th, &c., ties. The same in (26) gives the points of  a t tachment  to 
the roadway. 

From the origin to the cusp, P = W p o  x 0"955+  
" " " intersection with x, e ~ - ~ W p o  

tIence the total normal  pressure to the cusp is near ly  equal the 
tension of the cable ;  and to the intersection with x, it is more than 
1½ times the tension. 

14. Horizontal Stress along tl~e Roadway. 
A n  element of the horizontal  force is d H=wd B tang.  i. 

Find tang.  i from (26) and substitute gives 
w ~ d ~  

dH- -  
X/poS-BS 

• " " =  w(,°o-- ' / i ,  o - -  ~)  (29) 

For the area to a vertical ordinate through D, the limits are i=0 and s in . /= ~*~ 
• .. the area ~ PosX 0.03047-{- 

:For the total area A])B, the limits are i=0 and i=90 
1 

For the a r e a  DAFD-~DBCD, we may use the polar equation of the area ; 

f½pSdi  (20) gives which with 

½Po'f(~\ 1- -3  sin- ' /+9sin. 4 i 4  )di 

½Po s ~2i-~t-i" ~ sin.2i+ 128sin.41 

11  2 which between the limits i ~ 0  and i~-½ r~ gives area DAFDBCD~I~Ir Po 

Hence, the total area AFCX is 

1 ~ + ~ - 8  'tOo s - -  "8~0o * 

a result which also agrees with the direct solution. D.v.w. 
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Observing that n = 0  for 9----0 . •. c,-wpo 
Between the origin and cusp It,~wyo x 0"4234-. 
This force is resisted either by compression in a rigid roadway, or 

by tension by fastenings i~t the e~Ms. :In the former the stress is great- 
est at the middle; in the latter, at the ends. 

15. To find Po wlten tl~e span and deflection are given. 
Let ~---r, c zhe igh t  of the pier~ fig. 7. 

FIS. 7. /c B~AB; ~----DF; X~AF. 

o/ /  ~4E We have 

~ C  i ~ - - x = y t a n g .  i. 
A × F ~ which with (26) gives 

r,y 
b - - x - - - - -  - = ~ 

J[Jo  -l~ 
:From the fig. (B--X): ~= y (A--y); eliminating B~x andredueing, 

gives po~B~__C °2y 
A 

B~ :From (18) and (26) Y--~'C%fP°=-B= 
By eliminating y, and reducing, we have 

B 

16. Tension of t/re Cable. 
 :rom (1) aria Coo) 

W B  
m = Wpo = - ~ (  ~/'B'+ 4A' 

which is identical with the expression for the tension at the pier heads 
of the ordinary suspension bridge, when the cable is the are of a para- 
bola. In the expression ~=Wpo. ,  m is independent of the span; 
hence the tension is the same for all spans, if po and the load per unit 
of length remain the same. 

17. Total length of t/~e cable between tim pier )~eads. 
In fig. 7, cD= (u~x)  sec.i 

B x 
From (19) and (26) x = ,  . . . . .  

o 

B a 
.'. 2 c D = ~ s e c .  i. 

~hieh with (24) gives 

i + ~ s i n . , i  ) / + -- ,see.  i . (81) 2at---- L=½po ( 3 0 Bs 
\ Po 

which, with (26) and (30), will give I~ in terms of .( and r.  
The balance of the paper consists of remarks upon the relative 

merits of the system. 


