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Abstract: The new Elliott-Evans classification scheme by means of a quasiparticle factorization of 
the j-shell of both protons and neutrons is developed further. The needed reduced matrix 
elements follow from the equivalence between quasiparticle isospins and quasiparticle quasi- 
spins. The transformation to states of good particle number n is simplified by imbedding the 
quasiparticle quasispins in the five-dimensional quasispin group R(5). This leads to a factoring 
of the transformation coefficients. One factor is independent of J and other subgroup labels of 
Sp(2j+ 1) and carries the dependence on the subgroup labels of R(5). Simple recursion formulae 
are derived from which this factor can be calculated in complete generality. The second factor 
carries the dependence on the subgroup labels of Sp(2jfl) and must be calculated for each j. 
Since it is independent of n and T it is sufficient to calculate this factor for particular (most 
convenient) values of n and T. A calculation of the coefficients is illustrated with j = 8 for 
which complete tables are given. An extension of the quasiparticle factorization technique to 
the nuclear LST scheme is discussed. 

1. Introduction 

The quasiparticle formalism recently developed by Armstrong and Judd ‘) for 

the atomic I-shell has led to a more complete classification scheme of I” configurations 

of identical electrons. One of the great advantages of this new scheme is that it leads 

to a calculation of many-particle matrix elements without the need for fractional 

parentage coefficients, with the use of only a few reduced matrix elements and 

standard techniques of Racah algebra. A generalization to nuclear j” configurations 

of both protons and neutrons, involving an analogous factorization into quasiparticle 

spaces, has recently been given by Elliott and Evans “). This leads to a complete 

classification scheme for nuclear shells with j 5 2. However, although the total 

angular momentum J and isospin T are good quantum numbers in this new scheme, 

nucleon number is in general not a good quantum number. It is the purpose of this 

contribution to show how, with a slight modification of point of view, expressions for 

the reduced matrix elements needed for the Ellictt-Evans scheme follow at once, and 

the transformation to states of good particle number is simplified by making use of 

the symmetries of the states for the coupled quasiparticle spaces. A further simplifica- 

tion is achieved by imbedding the quasiparticle isospins (quasiparticle quasispins) in 

the five-dimensional quasispin group R(5). This leads to a factoring of the transfor- 

7 On leave from: Theoretical Physics Department, University of M. Curie Sklodowska, Lublin, 
Poland. 
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mation coefficients. One factor is independent of J and other subgroup labels of 

Sp(2j+ 1) and carries the dependence on Tand other subgroup labels of R(5). Simple 

recursion formulae are derived from which this factor can be calculated in complete 

generality. The second factor is independent of T and tz (nucleon number) so that it 

is sufficient to calculate this factor for states of a particular n and T. Knowledge of 

states with n = 2j+ 1 and 2j+ 2 (half-full shell and half-full shell plus one) is therefore 

sufficient for all but a few states of aj-shell. 

A brief review of the Elliott-Evans classification scheme is given in sect. 2. Expres- 

sions for the reduced matrix elements of the quasiparticle operators are given in sect. 3. 

Although these follow at once from the observation (already made by Elliott and 

Evans) that quasiparticle isospin operators are equivalent to quasiparticle quasispin 

operators, a derivation is given in some detail since the phase factors for the reduced 

matrix elements require some care. The transformation coefficients to states of good 

particle number are discussed in sect. 4. A complete calculation of these coefficients 

is illustrated with j = *, and tables for this case are given in an appendix. Tables 

for j = s are somewhat bulky and will be given elsewhere. The technique used can 

be applied to shells with j > 3. Applications to the calculation of matrix elemenls of 

one-and two-body operators are given in sect. 5. Finally, an extension of the quasi- 

particle factorization technique to the nuclear LST scheme is discussed briefly in 

sect. 6. 

2. The Elliott-Evans classification scheme 

Elliott and Evans introduce the quasiparticle operators 

&L, = $ (a;,,+( - l)j-~+“-?.7_,-,J = (- l)j+m+3+mCLm_mf, 

P+ 
1 

mmt = - 
d’ 2 

u~,,-(-l)‘-“+)-“tu_,_,t) = -(-l)j+m+-S+mt/Lm_mt, (I) 

where a:,,,,, ammf are nucleon creation and annihilation operators and where m and 

nz, are magnetic substates in j- and t-space. In order to obtain a set of 4j+ 2 independent 

quasiparticle creation operators and 4j+ 2 independent quasiparticle annihilation 

operators Elliott and Evans restrict the m quantum number to be positive. We find 

it more convenient to restrict the isospin quantum number m, instead, such that m 

can range from -j to +j for both quasiparticles, and define 

4 = _+ (u;l,+~--(-l)~-ma_,_t), 
J2 

m = -j,..., +j. 
1 

PL = ,:z(a~_~-(-l)‘“a_,,t), (2) 

Now n+(n) and P+(U) are Fermion operators mathematically equivalent to identical 
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nucleon creation (annihilation) operators. The 2j+ 1 operators A;, and A, = (Afn)t, 

satisfy the usual anticommutation rules. In addition any A-operator anticommutes 

with any y-operator, that is these are distinguishable quasiparticles. [To avoid con- 

fusion in notation it should be noted that the single index quasiparticle operators of 

eq. (2) are different from the double index quasiparticle operators of eq. (1). In fact, 

the single index operator AL is more closely related to the double index operator 
t . Henceforth only the notation of eq. (2) will be used. See also the remarks 

EiZwing eq. (7).] 

TABLE 1 

Generators, groups, representations 

R(8jf4) 1 Rd4j + 2) 1 CSPd2j + 1) x SUd2)1 
x R,(4j + 2) =) x [Sp,(2j + I) x SU,(2)1 1 

I-space: 

(+ $ )... as> (3 +... -t+> 

similarly for p-space 

(loAOi++-“~)x(TA = +(j+$--u,) 

VA + JA “) 

“) Allowed Jn follow from url by the rules valid for identical particles; see, e.g., table 2 of ref. ‘). 

The group theoretical basis of the quasiparticle classification scheme is shown in 

table 1. The full set of operators ata+, au, utu generate the group R(8j+4). The 

only irreducible representations of this group which are realized are (4 3 + . . . ++) 

for n even (odd), respectively; to be denoted by A + . The set of operators AtAt, AI, 

AtA generate a subgroup R(4j+2); similarly for ptpt, pp, ptp. Unlike the operators 

(A)“’ which are double spherical tensor operators in J- and T-space, the operators 

(~“+A)“~ are constructed by means of a single j-space vector coupling coefficient. Since 

the A and p operators are mathematically equivalent to a set of identical nucleon 

operators, their subgroup chain is the conventional one for identical particles shown 

here in terms of the direct product of the symplectic group in 2j+ 1 dimensions with 

an identical particle quasispin group. The irreducible representations of Spi(2j+ 1) x 

SUA(2) are specified by the quasispin quantum number +( j+ f - un) related to an 

identical particle seniority number uA (not to be confused with any real seniority). 

The quasispin group SUA(2) is generated by the three operators (AtAt)“, (AA)“, 

$[(AtA)” -I- (AA.+)“]. all of rank zero in A-space. These are the I-particle isospin operators 
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7” of Elliott and Evans. More specifically 

T,, = C (-l)j-“AAnt_, = Y,, , T,+ = c (-V-“P-,PL, = q_ , 
m>O m>O 

TA_ = c (-l)‘-“I_,a, = 9,_, T,_ = c (-l)‘-“p~p~, = q+ ) (3) 
m>O m>O 

Ti, = $~(~~k-&,,n~) = YIO, T,, = -~C(P~P,-P(,P~) = -YPO, 
m m 

with 

T,+T, = T, (4) 

where Tis the total isospin operator in conventional form. (In eqs. (3) the quasiparticle 

isospin operators have also been expressed in terms of quasispin operators 9’ in 

standard form.) The symplectic group generators with J,(J,) = 1 are (except for 

normalization factors) the angular momentum operators of k and y-space. More 

specifically 

JA, = C m;lL&,, J,, = C wL pm9 
m m 

Jo+ = C[(j-m)(j+m+l)]il~+I1,, J,+ = C[(j-m)(j+m+1)]3~~+1~,m, m 

J,_ = (JA+)+, J,_ = ;j,+,t, (5) 

with 

Jn+J, = J, (6) 

where J is the total angular momentum operator. 

The spherical tensor character of the operators $(A,), and ,uA(~,J in bothj- and 

f-spaces follows from their commutation relations with the operators T”, JA, and 

T,, J,. In terms of double sFherica1 tensor operators Ai:, and A4; i,, the relations 

are 

2: = A$++, (- 1)‘~“I-, = A;%*) 

,uA = ML+-+, (- l)j-“‘,~~ = ML,++. (7) 

(These double tensor operators are immediately related to those of Elliott and Evans 

by: /Ii;, = /&,,,, ML;, = A;,,,,. It is therefore clear that the final wave functions 

l(JJ,)L (W,,)T) are identical with those of Elliott and Evans, except for a trivial 

interchange of A and ,u.) 

Coupled tensor operators are formed from these in the usual way. 

For example 

[A x MI&T 
=L< 

jmjm’lJMJ)(+m, +rn: 1 TM,)Aiit M$,,,, . (8) 
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The single-nucleon creation and annihilation operators are expressed in terms of the 
tensors A and M by 

t 
am5 f 

( -l)j-“a-mTt = T $ (4L-+-Mi*k,t,t). (9) 

With these relations any physical operator can be expressed in terms of double 
spherical tensors built from A- and M-operators. The matrix element of any physical 
operator is then reduced by standard Racah algebra to a few reduced matrix elements 
of the A- and M-operators. 

For j 5 3 the multiplicity of the set of J-values (Jn or J,,) associated with each 
quasispin quantum number (un or ur) is never greater than 1. The ((JJJJ, (TAT&T) 
basis therefore furnishes a complete classification scheme for these shells. Note 
that the irreducible representations (3 + . . . +$) and (3 $ . . . -S_) of R, (4j+2) or 
R,(4j+ 2) are specified automatically since they contain the integral and 3 - integral 
values of T, or T,, respectively. The irreducible representation label A of R(8j+4) 
will sometimes have to be designated explicitly since it is common to both the A- and 
p-spaces. The irreducible representations A + and A _ of R(8j+ 4), (n = even and odd), 
contain only the states with 2T,+2T,, = even and odd, respectively, so that they are 
designated if both T, and T, are specified. 

3. The reduced matrix elements 

The matrix element of an operator A in the coupled I(J,J,)J, (T,T,)T) basis is 
reduced to a double-barred matrix element (A’JiTi\lAll AJLT,) for the A-space by 
standard formulae of Racah algebra; similarly for M. Note that the R(8j+4) labels 
A must appear in the expression for the reduced matrix element for the separated 
A-space, since A is a quantum number common to both A and p-spaces. [For the 
analogous property for electron states, see Cunningham and Wybourne “).I 

The value of the A-space reduced matrix element follows at once from the relation 
between the I-space isospin and quasispin quantum numbers 

Tn = +(j++-vJ, Mm = 3(n,-j--5), (lOa) 

where nA is the number of Iz quasiparticles, (the eigenvalue of &&,A,). From eq. (7) 
and the standard definition of double-barred spherical tensor matrix elements on the 
one hand, and eq. (lOa) on the other 

<A’JM, TnlM~,ll~lAJ,M,,TnM,,) 

= (J~M~,jmlJ;M;,)<~,M,,~~I~~(M,,+3))<A’J~~~Il~llAJ~~~> 
[(2J;+ 1)(2T,’ +1)-J+ 

= (j”A” A’v; J; M;,IA$ jnrAvn Jn M,,). (11) 
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Using quasispin techniques to factor out the dependence on n, 

(jnA+l A'vi J; M;,&l jnrAv2_ J, M,,) 

= (J1M,,jmlJ;M;,) (T,M,,f:jT,‘f,l-l,,+“,))(j,,+l~rz,l J’Il~t(lj”“Ao 

[2J;+ I]+ <T,--T,331W-T,+9)) 
a I 

J > (12) 

% 1 * 

so that 

Another useful formula is obtained by starting with the operator (- l)j-“L,. 
Again, from eqs. (7) and (IOa), and using hermitean conjugation to convert the matrix 
element of L__, to one for ,I!_,,, one obtains 

Note the reversal of the primed and unprimed quantum numbers (including A) in 
the double-barred matrix element of It. The derivation for the reduced matrix element 
(A~J~~~ll~ll AJ~ Tp) differs in one respect. The relation between YI,, the number of ~1 
quasiparticles, and MrP differs in sign from the corresponding relation for l-space; 
[see eq. (3)]: 

q = Hj+t-VP), MT, = +(j+$-n, ). 

As a result the analogues of eqs. (13a) and (14a) become 

(lob) 

Since the operators It (or ~7) are mathematically equivalent to identical nucleon 
creation operators, the double-barred matrix elements of It (or pt) in eqs. (13) and 
(14) are, except for their dependence on A, given by identical particle reduced matrix 
elements. The dependence on A involves only a phase. This phase dependence must be 
different for the /z and ,U quasiparticles. This can be seen by expressing operators such 
as J, (J,) in terms of the coupled tensor operators defined by eq. (8). For example 

while 
(J& = - X_i(j + 1)(2j + l>]*[A x -4,“o”, 
(J,& = ++[j(j+ l)(%+ l)]‘[LW x M]$, (15) 
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with a similar difference in sign for operators (I”),, (Z”),. The A-dependence of the 
phases can be determined by calculating matrix elements of the operators (15), for 
example. Although there is some arbitrariness in the possible choices, results consist- 
ent with the standard phase conventions of spherical tensor calculus, can be stated 
as follows: 

(i) Matrix elements for p-space are independent of A. 

(ii) Matrix elements for l-space are given by (A’ . . . llltII A . . .) = (- l)‘#“‘+’ 

<. * - ll~‘/I * * .>, 
where the A-independent double-barred matrix elements are those for identical 
particles, and where 4(A) = 2T,f2T,, ; that is, 4(A) = even (odd) for iz = even 
(odd); 12 = real nucleon number for the state on the right-hand side of the matrix 
element. Note also that 4(A’) = 2Ti +2TL = 2T, f2T, _+ 1. [Eqs. (13a) require 
4(A); eqs. (14a) require $(A’).] 

The most convenient form for the reduced matrix elements of A then follow from 
eqs. (13a) if Ti = Ti - 3, and eqs. (14a) if Ti = T, + 3; similarly for M. The results are 

Case 1. 

T,’ = Tn-3, u; = v,+l, T, = a(j+$-un): 

(A’J:,T,‘ll~tlldJ~T,) = (-1)2TA+2T~+1[2Tn+l]i(j”“+‘vn+1J;((ll+(~j””v,J,), 

T,’ = T,-3, U; = up-i-l, T, = +(j+$-v,): 

(A’JI,T,‘JJMlJAJ,,T,) = [2T,+l]~<j”p+‘u,flJ~~~~+~JjV”u,J,). 
(16) 

Case 2 4 

T; = Tn++, v; = u,-1: 

O’J:, T;lMlAJn T,) 
= (-1) 2Tn+2T,+1+J’A-J”-j[2T,+2]B(j”~on J,(llfl( j’A_‘u,_lJ;), 

T,’ = T,++, v; = us-l: 

(A’JI T,‘IIMllAJ, Tp> = ( -1)J’“-J~-i[2T,+2]f(j”“v,J,IJ~tlI j”“-‘u,--1JI). 

Double-barred matrix elements of It (or pt) are standard double-barred matrix 
elements for identical nucleon configurations, related to identical nucleon cfp’s in the 
usual way 

(j”+‘v+lJ’IIIZ’(lj”vJ) = (-l)“[(u+1)(2J’+l)]*(j”(vJ); jJ’l}j”+‘v+lJ’). (17) 

Only identical nucleon cfp’s with n = v, n+ 1 = v+ 1 are needed. For the j = 3 
shell therefore only four nontrivial matrix elements are needed for any calculation. 
For j = $ the number of nontrivial (but well-known) such matrix elements is 30. 
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4. States of good particle number 

Although the calculation of matrix elements in the J(JnJP)J, (T,T,)T) basis is 

extremely simple, the particle number is in general not diagonal in this basis. In order 

to realize the full power of the quasiparticle factorization it will therefore be useful to 

make a transformation to states of good particle number. (An alternate approach 

might involve the simultaneous diagonalization of the number operator and the 

Hamiltonian, for example.) The transformation to states of good particle number is 

simplified (i) by making use of the symmetries of the states for the coupled ;Z and y 

spaces, and (ii) by imbedding the 1 and p quasispin groups in the five-dimensional 

quasispin (seniority) group R(5). 

4.1. SYMMETRIES 

It is useful to define coupled state vectors ](J,J,)J, (T,T,)T), either symmetric (s), 

or antisymmetric (a), to an interchange of 1 and p quantum numbers: 

I(ab)J, (cd)T),,, E -L {I(ab)J, (cd)T)-t( - l)J-a-b+T-c-dl(b~)J, (dc)T)}. (18a) 
(a) J2 

Note that L quantum numbers always precede ,u quantum numbers in the order of 

the coupling; thus Jn = a in the first term on the r.h.s. of (18a), while Jn = b in the 

second term. In our notation the magnetic quantum numbers MJ and MT have been 

omitted for brevity but are quietly understood. In the special case when both JA = 
J,(= a), and Tn = T,(= c), th e normalized symmetrized state vector is 

I(aa)J, (cc)T) with J-2a + T-2c = eoydedn for (s) 

(a) 
states. (18b) 

States of a given nucleon number must then be either (s) or (a) states according to the 

rules: 

1. For n = 2j+1*4/i 

n = 2j+4k ’ 
(s) states only. 

2. For n = 2j+3$-4k . 

II = 2j+2+4k * 
(a) states only. (19) 

where k = integer. That is, for both even and odd nucleon numbers, states of a given 

symmetry correspond to II values which differ only by multiples of 4. The correspond- 

ing property for electron states has already been noted by Armstrong and Judd ‘). 

The derivation of the symmetry rules (19) follows directly from the explicit construc- 

tion of state vectors to be given below. Since states with /z = 2j+ 1 are of central 

importance, an additional symmetry property valid for these states is very useful. 

For II = 2j-t- 1 the quantum numbers (TAT,) are either both integral or both half-inte- 

gral, a property related to conjugation symmety as applied to the half-full shell. 
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4.2. FIVE-DIMENSIONAL QUASISPIN GROUP 

Since operators changing only nucleon number (without change in J, T, or seniority 

quantum numbers) can easily be constructed in terms of generators of the five- 

dimensional quasispin group, it is useful to imbed the A and /L quasispin groups in the 

seniority group R(5): R(5) 1 [SU,(2) x SU,(2)]. The ten generators of R(5) are 

composed of the operators TA, T,, [A x Al]: LF’ together with the number operator 

No,. = (2j + 1) + [2(2j + l)]*[A x M]zZ. (20) 

Irreducible representations of R(5) are specified by the real nucleon seniority v and 

reduced isospin t, and are given by the two labels, (highest weights), (wlwZ) where 

o1 = j+*-$v, 02 = t. (21) 

The group chain R(5) 1 SU(2) x SU(2): (alternately Sp(4) 13 SU(2) x SU(2)), has 

been studied in detail. The possible (TAT,) values imbedded in a given irreducible 

representation (olwZ) are given by the rules [see ref. 4), e.g.]: 

With 
(highest weight values) (224 

the possible (TAT,) values are given by 

G = (T,),,,-tk--3m, 0 5 k s 20,, 

T, = (Q,,,,++k-+m, 0 5 m 5 (~~-0~). (22b) 

The set of possible (TAT,) values is thus severely restricted. For states of high u in 

particular (the richest from the point of view of total number of states), the possible 

(TAT,) values are restricted to a few or even a single pair of small values. 

4.3. CALCULATION OF TRANSFORMATION COEFFICIENTS 

The imbedding in R(5) leads to a factoring of the transformation coefficients, where 

one factor depending only on the R(5) quantum numbers, including II and T, can 

easily be calculated in general by simple recursion formulae which follow from the 

known matrix elements of the generators of R(5). The second factor carries the 

dependence on the subgroup labels of Sp(2j+ 1). The transformation coefficients to 

states of good particle number are defined in terms of matrices c and d by 

where n/3T are R(5) subgroup labels; p is the R(5) quantum number needed when 

states of a given nT occur in (w,?) with a multiplicity greater than one, and will be 

defined according to ref. “). Similarly ctJ are Sp(2j+ 1) subgroup labels; CI is the 

multiplicity label needed for states of a fixed J and v, t. The state vectors I(J,J,)J, 

(TAT,)T&, with symmetry subscript (CJ) are normalized state vectors defined accord- 
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ing to eqs. (18) where (0) = ( ) s or a or xe n according to the rules (19). The ( ) f fi d 

c-coefficients are independent of the quantum numbers crJ JnJp of the sympleticgroup. 

They form orthogonal matrices, whose rows are labelled by n and p (or in place of n, 

the more natural R(5) quantum number H, = $z--j-j), while columns are labeled 

by TAT,. In addition the c-coefficients are functions of (wit) and total isospin T. 

The d coefficients on the other hand are independent of the R(5) quantum numbers 

n/IT. They form orthogonal matrices whose rows are labelled by (o~~)cI, while columns 

are labelled by JiJ,, , for each possible value of J and TAT,. 

Since the c-coefficients follow from properties of R(5) they can be calculated most 

easily. It is useful to define the R(5) generators in terms of the total isospin operators 

T, and No,,. , and the pair creation and annihilation operators: 

A+(&) = + c (4 m, +niI lM,)( - l)j-mu,Slm,at-,,P,, 

A(M,) = (/gifT))t. (24) 

These can be expressed in terms of the A, CL-space operators T,, T,, A, A4 by 

At(~) = 1(-(T,),+(T,),)+3[2j+I]‘[nxMl~:, 
J2 

(--1)‘4-d = ~(-(4),+(T,),)-f[zi+l]~[Ax~]~~, (25) 

(where isospin operators Tq are standard spherical tensors, e.g. Tkl = TJ+(T,). 

These lead to the useful relations 

A’(l)-A(-1) = (T’)+-(T,),, (264 
-At(-l)+A(I) = (T,)_ -(T,)_ . (26b) 

Operators which leave the quantum numbers a, J, v, t, Tinvariant but change nucleon 

number (by +2 units) can easily be constructed in terms of the R(5) generators 5,6). 

E.g. 

O&+2 = A- J2 c (-l)“At(#-,, 
4 

O,,= -2 = -!- c A(&. 
42 4 

(27) 

Expressed in terms of T,, T,, A and M, these operators are 

O/t”=+2 = -:T~++TPz+[~(2j+1)]* C (-l)“[A x M]z,1T_,, 

0dnzm2 = -fT,$+~T~-[+(2j+l)]t~(-l)g[.4xM]~~T_,, 
4 (28) 
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giving the simple step-operator relation 

0dn=+2+Odn=_2 = -(T,f-T;). (29) 

Since the operators of eqs. (26) and (29) are made up only of A- and p-space isospin 

operators which do not change the quantum numbers T, and T,, , they lead to recursion 

formulae involving only the coefficients c$f&., with fixed TAT,. The technique 

is illustrated with the operator (26a) acting on a state with M, = T: 

[A+(l)-A(-l)]l(w,t)/?H, = *n--j-*, TM, = T; dM,) 

= ;I(w,r)P’H,+lT+lT+l; ctJA4,) 

x ((01 t)B’II, + lT+ lT+ lIA+(l)l(wl t)PH, TT) 

- FI(OIf)B’H,-lT+lT+l;aJM,) 

x((w&YH,-lT+lT+lIA(-l)l(o&H,TT) (30) 

By expanding the state vectors 

J(o,t)H,$lP’T+lT+l) 

=c C~~:st::,r,[J~~d~~~~~~J~ i(JnJ,)JMJ,(T,T,)T+lT+l),,,l, 
TAT, 

the above leads via the orthonormality of 

[ &d;::&J, I&J,)JMJ, V'AT,W~T~~,I 

to a recursion formula for the c$$)~,~, in terms of the matrix elements of the opera- 

tors A’, A. These are known 5 - ‘) for all irreducible representations (o,t) needed 

forj 2 8. They can be expressed in terms of the R(5) Casimir invariant and reduced 

R(5) Wigner coefficients which are tabulated in refs. 5-7) as general functions of 

HI and T. The final form of the recursion formula is then 

Recursion formula I: 

F 
C?X~;~T,T,C ( o1 w,+3)+t(t+l)]~<(o,t)BH, T;(ll)+llII(wIt)/?‘H~+lT+l), 

+ c CSY,‘I)$;rTnT r[w,(o,+3)+t(tfl)]~((w,t)~H,T;(11)-ll~~(olt)~’H1-1T+1), 
If’ 

= -&;'a'&, 2(T,+T,+T+2)(T,+Tp-T)(T,-T,+T+l)(T,-T,+T+l) + 

(T+1)(2T+3) I. 
(32) 
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Similarly, eq. (29) leads to 
Recursion formula II: 

x ((w, t)BH, T; (I+IIll(o, t)P’H,-IT), 
E-- v 2 c~~~~~.=~~~~(T~+ l)- T@(T,i- l)]. (33) 

In the recursion formulae the double-barred coefficients are reduced R(5) Wigner 
coefficients of the type tabulated in refs. ‘-‘). Sums over /? are rarely needed, so that 
the two recursion formulae are simple three-term recursion formulae in almost all 
cases of interest. 

For example, for irreducible representations (o,t) = (w,O), recursion formula I 
becomes 

(wlO)T+ 1 
CH~ + i; TnT’,[(WI -H, - T)(o, + 3 +H1+ T)]+ 

((DIO)T+ 1 
+CH,-1;Tnr,C(0,~HI-T)(wr+3-HI+T)lt 

= -~c~~~~~~~(T~+T~+T+~)(T~+~~-T)]~. (34) 

As a second example, for irreducible representations (o,t) = (tt), recursion formula 
II becomes 

= -2Cjj:)T,,~,[T~(~~i- I)- Tp(Tp+ I)]. (35) 

Since only the c-coefficients carry an explicit n-dependence, the symmetry properties 
embodied in the rules of eq. (19) can be seen explicitly from these recursion formulae. 
From recursion formula II, applied to an unsymmetrized state, for example, it can be 
seen that the c-coefficients c~~~~~~.~~=~~ and c$$~TRTpz64 will have the opposite 
sign, if the c-coefficients c~$?~~,=~,, and cg$TTWGb, have the same sign, and 
vice versa. Recursion formula I indicates that a change of both An = +2 and 
AT = f 1 leads to no change in the relative phase of the coefficients with TAT, = ab 
and ba, respectively. However, now the phase factor (- l)T-“-b which is part of the 
definition of the symmetrized states (19) will change as T is replaced by Ti- 1, SO 

that it is again seen that a step An = k2 induces an overall change in symmetry. 
States with n = 2j+l, T = j++ have TA = Tp = $(j+$); JA = J, = J = 0; hence 
they are (s) states, eq. (18b). States with n = 2j-k 2; T = j can be seen to be (a) states 
by explicit construction, (based on the phase conventions of sect. 3). 

In principle, the d-factors of the transformation coefficients can be calculated by 
similar techniques. If the J = 0, T = 1 pair creation and annihilation operators of 
eq. (24) are reE;laced by pair creation and annihilation operators coupled to J = 1, 
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T = 0, equations analogous to eqs. (26) to (29) can be derived in which T,, T,, T 

are replaced by JA, J@, J, leading to recursion formulae in the d-coefficients in place 

of the c-coefficients. In practice these are not very useful since matrix elements of 

operators [a+ x a+lJ= ’ T=” are not known to any degree of generality and are 

complicated functions ofj and the symplectic subgroup labels, in particular for states 

of high seniority where the multiplicities designated by CI may be very large. 

An alternate procedure has therefore been used to calculate the d coefficients. 

Certain special states are automatically states of good particle number in the 

I(J,J,,)J, @“,T,)T) b asis. The most trivial example is the state with n = 2j+ 1, J = 0, 

T = Tm. = j++; Jn = Jp = 0, TA = Tp = +(j+-5_). Starting with this state it is 

possible to construct all states with IZ = 2jf2, II = 2j+ 1 and lower T by successive 

application of the single nucleon creation and annihilation operators LZ+ and a. In 

this process u+(u) are expressed in terms of A, M by eqs. (9), and matrix elements of 

n and M in the I(J,J,)J, (T,T,)T) b asis are reduced by standard Racah algebra to 

the double-barred matrix elements of sect. 3. In general, the ut (or u) operator, when 

acting on an initial state of fixed seniority u and reduced isospin t, will yield states 

with v’ = v + 1, t’ = t-i=+. It is however, possible to choose II and T to obtain a final 

state with unique v’, t’, or at most a combination of states VI, t’ of which only a single 

set of values is as yet unknown. If states of a relatively large value of Tare known, 

it is also possible to act with the operators of eqs. (25) to construct states with 

isospin T-l and obtain coefficients d with TA -I- Tp = T-l from the known d-coefficients 

with TA+T, 2 T. Additional simplification comes from the orthonormality of the 

coefficients d[~l~&$nJ,. As a relatively complicated example consider the d-matrices 

for the j = 1 shell with (TAT,) = (I+). For J = 3, e.g., this d-matrix is a 10 x 10 

matrix with (JA, J,) values of (2,3), (2, t), (2, 4), (4,3), (4, s), (4,5), (4, q), (6,4), 
(6, y), and (6, >$). The (wl, t; cx) values are: ($3; a = 1 and 2); (a,$ CI = 1); 

I’, 3; a = 1 and 2); (colt; cx) = (3, f; a = 1,. . . 5). However if the five states with 

01, t) = (3,3), (3, S), and (S, 3) are known, the remaining five rows of the d-matrix 

corresponding to the (wi, t) value (4, 4) follow from orthonormality alone. Since 

there is complete arbitrariness in the labeling CI = 1, . . ., 5 of these states, (due to 

the incompleteness of the classification scheme Sp(2j+ 1) 1 R(3)), any arbitrary 

orthogonalization process will serve with equal generality to fix the remaining five 

states of this example. 

The full set of c- and d-coefficients needed for j j 3 are tabulated in an appendix. 

For j = 5 the tables of d-coefficients require considerable space and will be published 

elsewhere. 

5. Matrix elements of one-and two-body operators 

The application of the quasiparticle technique to the calculation of matrix elements 

of physical operators is very straightforward. As a first step, operators ut and a are 

expressed in terms of the double spherical tensors A, M by means of eqs. (9). Secondly, 

an operator built from A-tensors coupled to one built from M-tensors is reduced via 
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standard formulae of Racah algebra to double-barred matrix elements in the separate 

1 and ,D spaces. These can be expressed in terms of the relatively small number of 

reduced matrix elements of type (d’J;TJlnlldJ,T,). 

Any one-body operator can be expanded in terms of 

[ut x a JgMT = C (jmj - m’JJMJ)(+n, 3 - rn: 1 TM,)uL,, am,m,t( - l)i-m’+f-m’t. (36) 
mm 

These can be expressed as combinations of A- and M-tensors by 

[u’xu]$,, = -$[l-(-l)J+~][nxn]~J,T,,,+:[l-(-l)J+T][MXM]&T 

+~[1+(-1)J+T][nxM]~=~T+~JO~T0[~(2j+1)]~. (37) 

The technique of calculating matrix elements will be illustrated in some detail 

for the most general rotationally invariant, charge-independent two-body interaction 

acting within a singlej-shell. In terms of the two-particle matrix elements 

and coupled tensors, defined according to eq. (8), this can be put in the form 

H2-bo,iy = 
1 

c(2J+1)(2T+1)1/,T 
JT 

+ c [[A x n-JJoTo x [M x M]JoTo]gO; 
JoTo 

’ 26JJ,&,+4[(2J+1)(2J,+1)(2T+ 1)(2T,+1)]* 

-“,c, vJT[(2J+1)(2T+1)]’ 

x [[A xA]JTx [A xn]J’]g+[[M xM]JTx [MxM-JJT]~; 

N 9 (38) 

with Jo+ To = odd and J+T = odd. Except for a trivial constant term and pure 

A- and M-terms, whose matrix elements are evaluated like those for configurations 

of identical nucleons (e.g. neutrons only), there is only a single term coupling the two 

spaces. This coupling terms involves only /i-pairs and M-pairs. Its matrix elements 

are evaluated by standard Racard techniques 

x (AJ;, T,‘JI[A xA]~~~~(~AJ~ T,)(dJ; T,‘II[MxM]~“~‘~~~J~T~), (39) 
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where 

J”nT”a 

x[(2Jo+1)(2T,+1)]~(-1)J”+J’“+T”+T’”+Jo+To 3’ 
i 

;; ;;)(i” “T; 2’)) (40) 

with A’ = A; while A” = A_ for A = A,, and vice versa. Consequently 

(Ac~~~[MxM]~~~~~~Au~) = -(Acd~@i~A]~~~“~~Aab). (41) 

In conclusion, we will finally examine the question: does this new method of calculat- 

ing matrix elements for the nuclear j-shell of both protons and neutrons have real 

advantages over the conventional techniques involving c.f.p. expansions. In some 

ways the new A, p-quasiparticle classification of the nuclearj-shell bears a resemblance 

to the old classification scheme in terms of separate neutron and proton configurations. 

Both lead to the same set of reduced matrix elements, (quite small in number). In the 

latter scheme J and nucleon number are automatically good quantum numbers while 

T is not. In the new scheme J and T are automatically good quantum numbers, but 

nucleon number is not. However, the new classification scheme differs in one vital 

respect. By furnishing a complete classification, the new scheme leads to a calculation 

of matrix elements by straightforward Racah algebra without additional normalization 

or projection factors, once the transformation to a basis of good nucleon number has 

been effected. In particular, the calculation of matrix elements of two-body operators 

is essentially no more complicated than that for one-body operators. On the other 

hand, the number of transformation coefficients needed to construct states of good 

particle number may become quite large. For the j = 3 shell, e.g., the number of d 

coefficients, in particular, is somewhat large. By contrast, the total number of cfp’s 

needed to calculate matrix elements of two-body operators for the fullj = 3 shell 

is overwhelming. Even though the five-dimensional quasispin group can be used with 

both techniques to factor out the n, T dependence of the coefficients, (the c.f.p.‘s on 

the one hand, the transformation coefficients to states of good particle number on 

the other), this factoring of then, Tdependence of the coefficients is again considerably 

simpler with the new technique. In summary therefore the new technique does 

seem to lead to a real simplification in the calculation of matrix elements for the 

nuclear j-shell. 

6. The LST scheme 

Exactly as for thej-shell, the space of real particles of the nuclear I-shell can be 

divided into two subspaces of anticommuting quasiparticles: 

4uns = ~2(u~~~+~-(-1)‘--+~-~s~_,_..,); A,,= = (A;,S)+, 

t 

pmms J2 
= 2- (~~,~-f-(-ll)‘-m+~-m”a_m_m,+t); pmm, = (/_&J+, (42) 

m = -l,..., +l; m, = -+, +$, 
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where ak,,smr 2 (ammsmt) are real nucleon creation, (annihilation) operators, and m, 
m,, m, are the third components of the orbital angular momentum, spin, and isospin 
vectors, respectively. 

The group theoretical basis of this quasiparticle factorization is shown in table 2. 
The full set of operators [atat]LST, [aalLST, [atalLST are known to be generators 
of a group R( 16Zf 8). As for the nuclearj-shell, we have chosen to restrict the isospin 
quantum number m, to select a set of independent I and p quasiparticle operators. 
As a result the quasiparticle operators &J&J, similarly PA, (p,,,,,), are mathemati- 
cally equivalent to real atomic electron creation and annihflation operators. The 
group R(161+ 8) thus factors into two commuting subgroups, each R(81+4), one 
created by the operators (IltAt)LnS1, (LI)LASn, (jltI)LISr, and the other by the analo- 
gous y-operators. Further subgroups are provided “) by the extraction of the operators 
(IZtd)LnS* with LA + SA = odd, which generate a group Sp(41+ 2), and which commute 
with the operators (ltlt)“, (nn)““, 3(ntn)“” + (n+n)““). These in turn constitute 
the three components of a quasispin operator in the I-space and are to be denoted by 
TA in a notation appropriate to the quasi-particle factorization technique. The 
further subgroup chains in the I- and p-spaces are mathematically equivalent to 
the conventional classification scheme of atomic electrons. The operators 
(A+l)La=odd,Sa=O generate a seniority group R,(21+ 1). They contain the angular 
momentum operators (n+n)l O and commute with the quasiparticle spin operators 
(n+n)“r, and are to be denoted by L, and S,, respectively. With appropriate normali- 
zation and phase factors these quasiparticle angular momentum operators for the 
I.- and p-spaces satisfy the relations 

L,+L, = L, 

s1+s, = s, 

T,+T, = T, (43) 

where L, S, T, are the usual total orbital angular momentum, spin and isospin opera- 
tors for real nucleons. 

Making further use of the mathematical equivalence between the 1 operators and 
real atomic electron operators, it can be seen that (i) the quasispin group generated by 
TA has irreducible representations characterized by a seniority quantum number vL 
where 

TA = 3(21+1-u,), (44) 

(ii) the irreducible representations of the group R,(21+ 1) are labeled by (2”“lb”Oc”) 
with a,+-b,+cA = 1, 
(iii) the possible values of u1 and S, consistent with a specific irreducible representa- 
tion of R,(21+ 1) are given by the usual rules of atomic spectroscopy and can also be 
derived by quasispin techniques. The result can be stated by the theorem: 

To every irreducible representation (2”“l”“O’“) of R,(21+ 1) there corresponds a 
pair of irreducible representations of the direct product group [SUs, (2) x SUr, (2)] 
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with 

= (+(2E+l)-a,+,, @A). (45) 

Analogous results hold for the p-space. This result is equivalent to a relation by 

Racah, eq. (20) of ref. ‘). 

The quasiparticle factorization again leads to a more complete classification scheme 

in terms of the above quantum numbers. In particular, the state vectors 

are the basis for a complete classification scheme for nuclear shells with I s 2. In this 

basis total L, S, T are good quantum numbers; but neither the particle number II 

nor quantum numbers such as the Wigner supermultiplet quantum numbers are 

preserved in this new scheme. Although states of good particle number could in 

principle be constructed using the techniques employed for thej-shell as a guide, none 

of the details have been worked out since the nuclear LST scheme is useful mainly 

in those nuclei in which the Wigner supermultiplet quantum numbers are approxi- 

mately good. No attempts have been made to regain both Wigner supermultiplet 

numbers and good particle number since this appears to be a difficult task. As a 

result the A, p-quasiparticle factorization technique may be of little practical value in 

the nuclear I” configuration. 

One of us (S.S.) would like to acknowledge the support cf the Institute of Science 

and Technology of The University of Michigan. 

Appendix 

TABLES OF TRANSFORMATION COEFFICIENTS 

The transformation to states of good particle number is made through the trans- 

formation coefficients c$$/;~~, and dc~$~JnJ, defined by eq. (23). The c-coeffi- 

cients are functions of the R(5) quantum numbers (o,t), H1 = *n-j-+, and /3 

(when needed), and are thus valid for all j. The c-coefficients for representations 

(cult) needed forj s 4 are listed in tables 3. Forj 5 3 no d-coefficients are needed; 

that is all the d, can be chosen as + 1, subject to the usual arbitrariness in overall 

phases. The d-coefficients for j = * are listed in tables 4. Whenever a d-matrix for a 

particular set of values TAT,, Jis 1 x 1 and can be chosen as + 1, it is not listed specifi- 

cally in the tables. Some d-matrices are unit matrices of dimension greater than one. 

These are tabulated explicitly when they are needed for identification of the label CL 

4s an example, the matrix dl**” ’ is a 2 x 2 unit matrix since the states with (wl t) = 

(3, t), i.e., z: = 3, t = +; J = 3, T = $; are automatically states of good IZ. Specifically, 

the two states 

I(JJ& (CT,)0 cu) = 1% 2)& (1, +)3&, and I(%, 4% (1, 5)$& 
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TABLE 3 

Tables of the transformation coefficients c$‘~~~~~, 

Possible TA,~-J~,~ values for j = 8 

467 

Tables of c-coefficients 

(w, 0 = (00) 

T 0 T 3 

HI (00) HI (04) 
0 +l +f +l 

(w, t) = (10) (0. t) = (11) 

T 0 1 

CT, T,) 

+1 - Elf - w 

0 +1 

-1 + l31" - w 

6% t) = WA 

T 3 3 --~ 
(T, T,) 

HI w 03) (1-i) 
+3 - [Sl" - D13 

T 0 1 

CT, T,) 

HI (33) (10) (M) 

- cs1* + w 
0 +l +l 0 

T * 4 

(Tn T,) 

HI (19 (0% (19 
+4 +4 + c21+ 

++ - w +w +1 +t +1 +[%I3 -t 

-3 + [*If -w -1 

-3 + w + Lx+ 

-3 -1 +[*I+ -4 

-4 +3 + El3 
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(0, d = (20) 

T 0 1 2 

(TJ T,> 

HI (00) w (11) (W (11) (11) 

+2 + E71+ + [Q + ciw 
+1 - [PI3 - rt1+ - 
0 -Cal+ 0 + cs1+ +l 

-1 + [31* - w 
-2 + C&J” - w +ci%s 
(0, t) = (21) 

T 0 1 2 

CT, T,> 

C-5 3) (11) (5 3) (3 +I (10) (11) (t3) (11) 

+tw +tw +[a+ +lw 
$1 +c31+ +C-tl” 0 -c31* -cP 0 _ [$]4 - [Q 

p1 0 -cs1+ +w 0 0 +l 0 
Pz 0 0 +$ -t-31+ 

-1 - rt1+ + C&l3 0 -[*I+ +w 0 - CP + c+1+ 
-2 +C# +[+I4 -[$I3 -t-+1+ 
(w, 4 = &I) - 
T 3 3 3 

(TIT,) 

Hl (13) 03) (13) (W (1% 
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(w, 0 = (30) 

T 0 1 2 3 

(T, T,) 

Hl (00) (4 5) (11) (4% (38 (11) (33) (11) (33) (4% 

+3 -[-I+ -[&I* -[&-p -4 

+2 

-2 

(01 t> 

(10) 

(30) 

TABLE 4 

Tables of the transformation coefficients $:I& i,J for j = 5 
P 

J = 0 (TAT,) = (00) J = 0 (T, T,) = (++) 

(JL JP) (JA Jp) 

(SS> @9) (WI t> (22) (44) -___-- 

- lx + El+ (10) -[Al* + El’ - ~- 
+ lw + w (30) + C&If + Gdp 

J = 1 (TAT,) = (00) J = 1 (TAT,) = (+f) 

(JA J,) (51 JP) 

(01 t) (2 3) (34) (WI t) (22) (44) 

(00) + [$$]’ - cm (11) - w + [3-J” 

(20) + L-&l+ +rw (20) + [$I” + [$I+ 
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J = 2 (T, T,) = (00) J = 2 (TAT,) = (10) 

(JA Jill (JA J,> 

(01 t>m (33 ces> (WI t> (33) (5%) 

P>l fl 0 (11) - El+ - cv ._ 
(1% 0 +l (21) - M” + El3 

J = 2 (TAT,) = (43) 

(24) 

J = 3 (TAT,) = (10) 

J = 3 (TA T,) = (00) 

(JA JJ 

(9 t>. (34) (84) (34) -- 

(00) 1 +y[&Jf t-q-1" -$yJ+ 

(OO), + [$gJ” -q&1+ 0 

(20) -gK]” _p$t _ $[L]” 
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J = 3 (T, T,) = ($3) 
__. 

(JI Jp) 

i@l ?)a (22) (44) (24) - 

(11)1 + _lE[L]* + +[-‘-i-‘-]” + $[$I4 

(20) - i%C31” -+p]3 + :w 

J = 4 (T, T,) = (00) J = 4 (TAT,) = (10) 

(JA Jp) (Jk JP) 

(01 t)a (3%) 6%) (01 t> (%> (59 --. 
(lo)1 +I 0 (11) + El3 + L&It ._ 
(1% 0 +1 (21) + C&If -cw 

J = 4 ( TA T,) = (3 4) 

(JA JP> __- 
(01 t)a (22) (44 (24) 

(10) 1 

11.13 _t 
-&[~I -q-y _ +[y_]” 

(lo)2 + +[_l+]+ + +[+q+ _ +[+]t 
-__ --__ 

(21) ++g[15-y -A[33 * 13-j” +&[55]+ 

J = 5 (Tn T,) = (00) J = 5 (T, T,) = (it) 

(JA JP) (JA Jp) 

(01 t> (W (39) - (WI t> (44) (24) 

(00) + CAli + Eli (11) -[lx]+ + [+$]” 

(20) + [g]” - L&Y 
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J = 6 (T'T,) = (00) J = 6 (TAT,) = (t3) - 

(JA J,) (JA J,> 

(01 t>ol (se) (49) (01 t)a (44) (24) 

(lo), +1 0 (1O)I - Wf - [+a+ ._ ________ 
(1% 0 +l GO)2 + IsI* _ [p]+ 

J = 3 (7” T,) = (03) 

J = 3 (T, Q = (03) J = 3 (TAT,) = (18 

(JA J/I> (JA J,) 

(01 t> (32) Pi 4) (01 t) (22) (34) 

(33) + [gJ-13 - r?w WI + L-3+ + w 

(33) + CW + cw (4 3) - El* + El+ 

J = 3 0-i Q = (0 3) 

(JA J,) 

(% t>a WV (44) (42) (94) 

+3[-&]" 

(33) + g--J+ - X31f 

wd - Wf +: 
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J = 3 (TJ,) = (I!) 

(JA J,> 

(01 t> (42) (734) 

J = + (T, T,) = (0 +) 

(J, J,) 

(3 312 +a+ilf - 

(3% -wd3 _ q--1” + $[y]* + p&q+ 

(4% + +[A+_]+ + +[g]+ _ -?7-“-[2J + p$q+ 

J = ; (T, T,) = (l+) 

(JA J& 

(WI tl? (32) (54) 

(33)I +l 0 

(3 3>2 +l 

J = 3 (Ti T,) = (W) J = 4 VA Tc) = (1 t) 

(J, Jp) (JA J,) 

(01 t), (3 4) (4 21 (34) (WI t> (32) (34) 

c-t 311 + [-g -j-$$ -[&$ (3$) - w3 -cat 
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J = -y- (T, T,) = (04) 

(Jn Jlc) 

(Wl t)z (34) (9) (4 4) 

J = y (TAT,) = (03) 

(JA J,> 

(01 t> (92) (e 4) 

are automatically states with n = 7, and in this case no further d-transformation 

is needed. However, the state with (Jn, J,) = (+2,2) serves to define the label CL = 1, 

while the state with (J,, JP) = ($, 4) serves to define the label CI = 2. The matrix 

d”‘9i must be labelled according to this same prescription since it is needed along with 

dlfPi in the construction of states with (art) = (3, S); and J = 3, but T = 5. All 

but a few of the 1 x 1 d-matrices for j = + can be chosen as -t 1; where it is understood 

that the order of the quantum numbers (TAT,) for the symmetrized states, with 

subscript (a), is that listed in the tables of c-coefficients, with the further prescription 

that the order (JnJp) is chosen as (24) and (3,s) for (TAT,,) = (j+) and (00), respec- 

tively, the only two cases where the order of TAT, does not automatically specify the 

order of JAJ,, . The only negative coefficients are: 

Forj = 3 the tables of d-coefficients require considerable space and will be published 

elsewhere, along with the few additional tables of c-coefficients needed for irreducible 

representations (w,t) which occur for j = 3 but not for j < 3. 
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