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In [10} and [7], Serre and Oort have shown that the category of commutative
group schemes of finite type over an algebraically closed field has homological
dimension one if the field has characteristic zero and two otherwise. We extend
their result by relating the homological dimension of this category of group
schemes over any perfect field to the cohomological dimension of the Galois
group of the field. In particular, if 4 and B are abelian varieties over a finite
field then our result implies that Ext’(4, B) = Ofori > 2, and this completes
the computation of these groups (see [4]).

Also, Oort and Oda [8] have shown that Ext}(4, B) = 0 if A and B are
abelian varieties over an algebraically closed field. We give a short proof of
this.

Notation. k is a perfect field and I' the Galois group (over &) of the
algebraic closure % of k. All group schemes will be commutative. & (resp. %)
is the category of group schemes of finite type (resp. finite) over %, and ¢
(resp. ) the corresponding categories over k. .# (resp. .47) is the category
of discrete /~modules (resp. discrete finite I-modules) and .&/¢ the category
of abelian groups. If ¥ is an abelian category, #¢ and % denote the
associated pro and ind categories. £ A" will be identified with the category of
discrete torsion I-modules. The Cartier duality functor & — F# extends to
give an anti-equivalence between the categories Z.% and S % . If G is in ¥,
then G = G ®;, k. If Z is a commutative group (scheme) and £ a fixed prime,
then Z, and Z™ are the kernel and cokernel respectively of multiplication by
£*on Z, and Z(£) = lim, Zx is the /-primary component of Z.

1. HoMoLoGIcAL DrMENSION

We refer the reader to [5] and [6] for the basic definitions and results on
extensions in an abelian category and its associated ind and pro categories.
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PropositTioN. For any G and H in 9, there is a spectral sequence

H(T, Ext}(G, H)) = Extiji(G, H)

Proof. Fixan H in 4 and consider the functors

«: PG —> M, oG) = Homyuyy(G, H),
B: —stf,  B(L) = LT = HompZ, L)
v : PG —~olf,  y(G) = Hompy,(G, H).

Bx = y, and the base change functor G — G is exact, and so the required
spectral sequence will be the spectral sequence of a composite functer,
(RB)(Rix) = Ry, provided we prove (i) the functor (G — G) : PY — PZ
preserves projectives (and therefore Ri(G) = Extjz(G, H)), and (ii) « takes
projectives to S-acyclics.

(i) Let P be projective in #%. If k' is a finite extension of &, then
P = P R, % is projective in ¥’ (%' = category of group schemes of finite
type over k") because the base change functor % — 29" has an exact right
adjoint, viz the Weil restriction of scalars functor. Now, if p : G— & is an
epimorphism in 2%, and ¢ : P~> G’ is any morphism, then G, G, ¢, and ¢
are all defined over some finite extension of &, and hence ¢ lifts to a morphism
' : P— G such that g’ = ¢.

(i) We have to show that H(I", Homgpgz(P, H)) = 0 for £ > 0 and any
projective P in 2% It follows from the structure theorem for group schemes
over perfect fields ([9], ([1] 10.6, 15.5)) that it suffices to take P to be the
projective envelope of a group scheme G which is (a) finite, (b} an abelian
variety, (c) a torus, or (d) the additive group G, (c.f. the arguments of

([10] 3.2)).

(a) We shall use the fact that % is a product of categories
F = F, X F,, X F,, where F, consists of finite étale group schemes, #,,

of connected group schemes whose duals are connected, and #,, of connected
group schemes whose dual is étale.

Lesna.  If Pis projective in PF, then it is also projeclive in Y.

Proof. Let P = lim (P, %2> P,), P;e#. It suffices to prove that if
0—>G — G5 P, —~0is an exact sequence in &, then there is 2 j and a
morphism ¢’ : P, — G such that ¢’ = ¢ ([10] 3.1, Prop 2). If P;e #,,
then the reduced subgroup scheme of G maps onto P; , and so we may assume
G reduced to begin with.. Then there is a finite subgroup scheme Fy of G
mapping onto P; ([10] 4.3), and the union of F; with all its conjugates
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generates 2 finite subgroup scheme of G which is of the form F, where F is
a subgroup scheme of G mapping onto P;. Thus, there is a morphism
¢ : P;—>FCG with @¢p’ = ¢; . If P;e #, X %, then the argument in
([71, pIl. 7-4) shows that there is again a finite subgroup scheme F of G
mapping onto P; .

Note now that

Homgg(P, H) = lim Homg(P;, H) = lim lim Homz(P, , H))
i i 7

where the H; run over the finite subgroup schemes of H. Since cohomology
commutes with direct limits, case (a) of the proposition reduces
to the statement: if P is projective in #%, and H is in &, then
HYT, Homyzz(P, H)) = 0 for all i > 0. We prefer to prove the dual
statement: if [isinjectivein £, and Hisin %, then H{(I", Hom z(H, I)) = 0
forallz > 0.

Assume first that H and [ are in £ %, (which may be identified with £A4").
From the above results we get that I is a divisible torsion group. If
0-— P, — Py—> H— 0 is a resolution of H in .# by modules which are free
and finitely generated as abelian groups, then

0 — Hom,(H, I)— Hom_, (P, , I)— Hom ,(P, , 1) >0

is an injective resolution of Hom(H,I) in FA". It follows that
(RB")Y(Hom ,,(H, I)) = 0 for { > 0, where B’ is the functor 8 restricted
to £A". However, the right-derived functors of 8 and B’ agree because each
can be computed using resolutions by induced modules. Hence
H{T, Homggz(H, I)) = 0fori > 0.

Now suppose H and [ are in £, . Then a, is the only simple object
in #,, and so we may take I to be the injective envelope of a,. I is the
injective envelope of &, ([3], I4), and Hom, z(H, I) is the Dieudonné module
of H. This last is obtained from the Dieudonné module of H (over k) by
tensoring with the Witt ring over & (loe. cit.) and so is acyclic for §.

Finally, assume H and [ are in %, . This case is a consequence of the
first case, because Z,, is dual to the subcategory of &, ~ 4" of objects killed
by a power of p (p = char k). But this last category is self-dual.

(b) Let P be the projective envelope of an abelian variety A over k.
We claim that P is uniquely divisible, i.e. for any positive integer n, the
map 7z : P— P is an isomorphism. Indeed, z: P — P must be injective
because this is so for any projective object in ¢ (c.f. [10]). 4 is divisible,
and so under P — 4, nP maps onto 4. From the definition of the projective
envelope this implies that P = P.
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It follows that Homgg(P, H) is uniquely divisible and hence B-acyclic.
(c¢) The same argument applies.

(d) If char(k) = 0, then again the same proof works, and so we may
assume that char(k) = p % 0.

A refinement of the proof of ([10] Sec. 4, Prop 3) shows that if Pis projective
in %(p) (9(p) = subcategory of ¥ of objects which are killed by a power
of p) then it is projective in %. Thus, the projective envelope P of G, is in
P%(p), and we have to show that if H is in %(p), then Homug(P, H) is
B-acyclic. There is an exact sequence 0— Py— P — wo(P)— 0 with P,
connected and reduced, and = (P) is again projective because the functor
7wyt PY — PF preserves projectives (it has an exact right adjoint, the
inclusion functor ZF — #%). We know, by case (a), that Homgz(m(P), A)
is B-acyclic, and so it remains to show that Homyg(P, , H) is B-acyclic, but
this is a simple consequence of the fact that Ext5,z(G, , G,) is f-acyclic, ail i
{c.f. [7]111.14-2).

CoroLLary. Ext 4G, H) is torsion for all i > 1,

Proof. Extz/(G,H) is torsion for all j>1 ({7], pIl. 14-2) and
H{(TI', Extz(G, H)) is torsion for all 7 > 0.

For a fixed prime ¢, we define the /~homological dimension of %, hd (%)
to be the greatest integer m such that Ext,™(G, H)(/) = 0 for some Gand H
in #. Clearly, the homological dimension of ¥, hd(¥) > max, hd(¥), and
after the above corollary, hd(¥) <{ max{max(l, hd/(%¥))). However, this
implies that there is equality, hd{(%) = max, hd,¥), because the exact
sequence O — Z/(Z — Z{(*Z — Z[{Z — 0 does not split over any field.

We write cd(I") for the /-cohomological dimension of I" [11].

TuroreMm 1. With the above notations,
hd(¥%) =1 +cd(I"), ¢ F char(k),
=2, ¢ = char(k).

Proof. It follows easily from the proposition and ([7], pIl. 14-2) that
hd,(¥) is not greater than the right side.

Conversely, if £ = p = char(k), then Extj*a,,a,) =k %0 and so
bdy(G) = 2.

If 7/ # char(k), then from the proposition, there is an injection
HY{I', Homzg{(Z, , M)) — ExtipeZ, , M) for any M in &. There is an 3 in
&, killed by ¢, such that HY(I", Hompg(Z, , M)) 5% 0 for i = cd{I"). Then
Extlg(Z,, M) 5= 0, and there is an injection,

Exti, (Z, , M)~ Exti (Z/¢Z, M).

481/16/3~9
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Remark. 1If £ = p = char(k), and k is not p-algebraically closed, 1.e. if &
has an algebraic extension whose degree is divisible by p, then cd (I") == 1
([11] pI-21] and so in this case also, hd(G) = cd(I") 4 1.

2. ABELIAN VARIETIES
In this section, & = k% is algebraically closed.

TueoreM 2. If A and B are abelian varieties over k, then Extz*(4, B) =

Proof. Let #, be the subcategory of & group schemes killed by £,
Then lim,,, Ext} fm(A'" , Bm) ~ Extg'(4, B)(¢). Indeed, by passing to the direct
limit with the sequence

0 — Ext ! (4, B)™ — Extg (4,, , B) — Ext,*(4, B), —0

m?
and using that Extg'(A4, B) is torsion, we get an isomorphism

lim Ext,} (4, B) ~ Ext,?(4, B)¢).

m?

There are homomorphisms

Extg(A,, , B,) —=— Extg(A4,, , B)

A

Exty (A, , Bn)

where 7 is the surjection induced by the inclusion B,, — B, ¢ is the obvious
injection, and s applied to a short exact sequence replaces any group scheme £
in the sequence by E,, . It is easy to see that s(7z) = 1, and (wi)s = 1, and so s
is an isomorphism.

Since Exty (4., , B,,) is obviously zero for £ 7 char(k), we may assume
that / = p ==mchar(k). We claim (1) the map

Extpg(T,A, T,B) — Exts (4, , B,)

which replaces each pro-group scheme E in a short exact sequence by E*™, is
surjective (T, has the same meaning as in ([4] p 64)), and (ii) Ext} (7,4, T,B)
is a torsion group. These statements imply the theorem because (i) gives a
surjection

Extzs(T,4, T,B) @z, QufZy — lim Ext, (4, , By)

and (ii) implies that the first group is zero.
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Both (i) and (ii) may be proved by using Dieudonné modules. (i} follows
easily from the description of Ext}: (4,, , B,,) in terms of pairs of semi-linear
maps on the Dieudonné modules gqi‘ven in ([4] p 71, (Py)). For (ii), it suffices
to show that Extpz(T,4, T,B) ®, Q, is zero, and this follows from the
classification theorem ([3] p. 35). ’
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