PRECISION GAMMA RAY ENERGIES IN THE ENERGY INTERVAL BETWEEN 45 AND 1275 keV*

D. E. RAESIDE

Physics Department, The University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

Received 1 June 1970

Curved-crystal spectrometers have been utilized to obtain measurements of more than forty gamma ray energies in the energy interval between 45 and 1275 keV for nuclei with

1. Experimental arrangements

Two curved-crystal spectrometers and three curvedcrystals were utilized in obtaining the gamma ray energy measurements reported in this paper. A description of the design of the spectrometers and the various experimental techniques associated with their use has been given elsewhere 1,2). All three crystals were bent to a 2 m radius and the characterizations of the crystals were as follows: Ge(022), Ge(400) and Q(310). The energy resolutions of the three crystals were about equal for a given source width. For the most frequently used source width the best crystal had an energy resolution given by $\Delta E(\text{fwhm}) = 2.2 \times 10^{-5} (E^2/n)$, where n is the order of reflection and E is the gamma ray energy in keV while the poorest crystal had an energy resolution which was about 20% greater. The Ge(022) and Ge(400) crystals were calibrated using the 411.794 ± 0.008 keV gamma ray occurring in the decay of ¹⁹⁸Au ³⁻⁵), while the Q(310) crystal was calibrated using the 59.31918 ± 0.00035 keV K α , X-rav of tungsten accompanying the decay of 182 Ta $^{4-6}$).

All samples were produced in the University of Michigan Ford nuclear reactor (thermal neutron flux ~ 10^{13} neutrons/sec·cm²). Several of the samples were fabricated using enriched isotopes obtained from Oak Ridge National Laboratory. These enriched isotopes and their enrichments were as follows: 151 Eu(96.8%), 152 Sm(99.2%), 153 Eu(98.8%), 190 Os(95.5%) and 192 Os(98.7%).

Measurements were taken in the highest order permitted by gamma ray intensity and counting time. All final energy values are the average of the values obtained in several runs.

2. Results and discussion

The results of the present investigation are given in table 1. A discussion of these results and the results of previous investigators is given below.

* This work was supported in part by the U.S. Atomic Energy Commission.

 $109 \le A \le 193$. Many of these energy measurements have sufficiently small uncertainties associated with them to make them useful for the calibration of Ge(Li) spectra.

 10^{9} Cd: No measurement of the energy of the 88 keV gamma ray occurring in the decay of 10^{9} Cd utilizing a curved-crystal spectrometer has been reported as yet. The measurement given in table 1 was performed in this laboratory by Diethrich⁷). His value of 88.035 ± 0.006 keV is in agreement with five of the seven recent values given in table 2 and has an uncertainty associated with it which is smaller than any of the uncertainties assigned to these previous measurements.

 $\frac{152}{2}$ Eu: The energies of several of the gamma rays associated with the decay of $\frac{152}{2}$ Eu have been measured previously with curved-crystal spectrometers^{14–18}). These measurements are summarized in table 3. Precision measurements of the energies of the $\frac{152}{2}$ Eu gamma rays have also been made using other spectrometers and table 4 shows a comparison between the values obtained by two groups and those of the present work.

 1^{53} Sm: All of the 1^{53} Sm gamma rays which we investigated have been investigated previously with curvedcrystal spectrometers $1^{8,22-27}$). A summary of the results obtained in previous investigations is given in table 5. In addition, a precision measurement of the energy of the gamma ray de-exciting the 97 keV level of 1^{53} Eu has been made using a Ge(Li) spectrometer by Greenwood et al.⁵). Their result is 97.432 ± 0.005 keV.

 1^{54} Eu: Two of the gamma rays associated with the decay of 1^{54} Eu have been studied previously with curved-crystal spectrometers^{15,18}). Table 6 lists previously obtained results. The most complete sets of precision measurements of 1^{54} Eu gamma ray energies previously reported are given by Aubin et al.¹⁹) and Meyer²⁸). Both of these investigations utilized Ge(Li) spectrometers. In table 7 we show a comparison between the results of these studies and those of the present study. As a part of the present investigation we have made an effort to measure the energies of several weak low energy gamma rays reported by Meyer²⁸).

TABLE 1

Precision gamma ray energies in the energy interval between 45 and 1275 keV for nuclei with $109 \le A \le 193$.

TABLE 2

Recent precision measurements of the energy of the 88 keV gamma ray occurring in the decay of ¹⁰⁹Cd.

Parent nucleus	Gamma ray energy (keV)	Reference	Gamma raj	y energy (keV)
¹⁰⁹ Cd	88.035 +0.006	5	88.03	6+0.008
eu	001000 101000	8	88.04	1 ± 0.087
1590		9	88.05	±0.05
¹⁰² Eu	121.780 ± 0.004	10	88.03	± 0.05
	244.693 ± 0.010	10	00.03	5 ± 0.042
	295.934 ± 0.038	11	00.09	± 0.03
	344.267 ± 0.010	12	00.00	0 ± 0.042
	411.071 ± 0.032	13	00.21	± 0.03
	443.924 ±0.085			
1520	54 1000 + 0 0000	 The value quoted can 	be found in footnote	14 of ref. 12.
135Sm	54.1988±0.0022			
	69.6715 ± 0.0020			
	75.4212 ± 0.0023		TABLE 3	
	83.3666 ± 0.0024			
	89.4853 ± 0.0033	Previous measurements	of the energies of ga	mma rays occurring
	97.4292 ± 0.0033	in the decay of ^{132}E	u using curved-cry	stal spectrometers.
	103.179 ±0.004			
1540.	123.070 + 0.004	Reference	Gamma ray	y energy (keV)
Eu	123.070 ± 0.004			
	131.570 ± 0.035			
	140.035 ± 0.025	14	121.77	9 ± 0.006
	130.31 ± 0.10		344.24	±0.05
	100.240 ± 0.013			
	247.939 ± 0.008	15	121.79	± 0.03
	444.443 ± 0.073		244.84	±0.20
	501.914 ± 0.018		344.37	± 0.60
	591.814 ± 0.038			
	092.48 ± 0.13	16	121.78	± 0.05
	723.430 ± 0.073			
	872 236 ± 0.002	18	122.31	$\pm 0.04*$
	$8/3.230 \pm 0.078$		244.64	+ ±0.08
	996.00 ± 0.22		344.34	± 0.23
	1004.57 ± 0.18 1274.69 ± 0.06			
	1214.09	* A revised value for th	e 122 keV gamma ra	iv is given in ref. 15:
155 -	45 2972 +0 0013	it is quoted as 121.87	± 0.06 keV.	, <u>B.</u> , ,
Ľu	57 9805 + 0 0020			
	60.0100 ± 0.0018			
	86 0621 ⊢0 0051		TABLE 4	
	86.5452 ± 0.0033			1505
	$105,308 \pm 0.0033$	A comparison of measu	rements of the energ	gies of ¹⁵² Eu gamma
	105.508 ±0.005	r	ays (units: keV).	
156Eu	88.9637+0.0024			
	199.214 ±0.012	This work	Ref. 19	Ref. 20
¹⁷⁰ Tm	84.2572±0.0026		121 78 ± 0.03	121.77 ± 0.01
		121.760 ± 0.004 244 693 ± 0.010	244.66 ± 0.03	244.68 ± 0.02
191Os	82.4272 ± 0.0099	295 934 ±0 038	295.97 ± 0.07	295.95 ± 0.14
03	129.431 + 0.005	233.334 ± 0.038 344 267 ± 0.010	344.31 ± 0.03	344.27 ± 0.03
	· · · · · · · · · · · · · · · · · · ·	411.071 ± 0.032	411.13 ± 0.05	411.12 ± 0.06
1930-	120 047 10 000	411.071 ± 0.052 443 974 ± 0.085	443.98 ± 0.05	443.96+0.10
+**US	130.94/ 土0.000		110100 0100	

We were able to make energy measurements on three of these gamma rays and were able to detect the presence of a forth one, but we were not able to find any evidence for three of these weak gamma rays (table 8).

crystal spectrometers^{15,29}). A summary of the results obtained in these previous investigations is given in table 9. The two measurements reported by Alexander²⁹) were reported without any estimation of the uncertainties associated with them.

¹⁵⁵Eu: All of the ¹⁵⁵Eu gamma rays which we have

TABLE 5

Previous measurements of the energies of gamma rays occurring in the decay of 153 Sm using curved-crystal and beta spectrometers.

Reference	Gamma ray energy (keV)
18	103.27 +0.02
21	69.672 ± 0.006
22	69.66 ± 0.02
	103.18 ± 0.04
23	69.66 ±0.02
	97.42 ±0.04
	103.17 ± 0.04
24	103.175±0.004
25	69.675 ± 0.002
	103.181 ± 0.003
26	69.676±0.007
	103.180 ± 0.010
27	54.19 ±0.02
	69.68 ± 0.01
	75.43 ± 0.01
	83.37 ± 0.02
	89.49 ±0.02
	97.45 ±0.02
	103.19 ±0.02

TABLE 6

Previous measurements of the energies of gamma rays occurring in the decay of ¹⁵⁴Eu using curved-crystal and beta spectrometers.

Gamma ray energy (keV)
$123.07 {\pm} 0.04 \\248.08 {\pm} 0.15$
123.06±0.03
123.54±0.09*

* A revised value is given in ref. 15; it is quoted as 123.21 \pm ± 0.04 keV.

TABLE 7A comparison of measurements of the energies of ¹⁵⁴Eu gammarays (units: keV).

studied have been studied previously with curved-

This work	Ref. 19	Ref. 28
123.070±0.004	123.10±0.03	123.14±0.04
247.939 ± 0.008	247.92 ± 0.03	248.04 ± 0.04
444.443 ± 0.073	444.34 ± 0.07	444.40 ± 0.05
591.814±0.038	591.71±0.04	591.74 ± 0.05
692.48 ±0.15	692.42 ± 0.06	692.41 ± 0.05
723.430±0.075	723.27 ± 0.04	723.30 ± 0.04
756.919 ± 0.062	756.82 ± 0.05	756.87 ± 0.05
873.236 ± 0.076	873.21 ± 0.05	873.19+0.05
996.00 ±0.22	996.30+0.05	996.32 ± 0.04
1004.57 ±0.18	1004.78 ± 0.05	1004.76 ± 0.04
1274.69 + 0.06	1274.42 ± 0.05	1274.45 ± 0.09

TABLE 8

Results of investigation of some weak low energy ¹⁵⁴Eu gamma rays reported by Meyer²⁸).

Energy (relative intensity)	Energy
Ref. 28	This work
125.39 keV (70)	not observed
128.4 keV (≤ 100)	not observed
129.5 keV (140)	not observed
131.58 keV (110)	131.570±0.035 keV
134.84 keV (72)	observed; too weak to measure
146.05 keV (260)	146.035+0.025 keV
156.19 keV (100)	156.31 ± 0.10 keV

TABLE 9

Previous measurements of the energies of gamma rays occurring in the decay of 155 Eu using a curved-crystal spectrometer.

15	45.29±0.01	
	60.00 ± 0.02	
	86.54 ± 0.01	
	105.32 ± 0.03	
20		
29	58.00	
	86.05	

TABLE 10

Previous measurements of the energies of gamma rays occurring in the decay of 156 Eu using curved-crystal spectrometers.

Reference	Gamma ray energy (keV)
15	88.97 ±0.01 199.19 ±0.06
25	$\frac{88.967 \pm 0.002}{199.216 + 0.005}$
30	$\begin{array}{r} 88.974 \pm 0.011 \\ 199.24 \ \pm 0.05 \end{array}$

TABLE 11

Previously reported measurements of the energy of the 139 keV gamma ray occurring in the decay of ¹⁹³Os.

Reference	Gamma ray energy (keV)
32	138.96 ±0.02
33	138.887 ± 0.007
34	138.95 ±0.05
35	138.92 ± 0.05

¹⁵⁶Eu: Both of the ¹⁵⁶Eu gamma rays which we have studied have been previously studied with curved-crystal spectrometers and the previous results are presented in table $10^{15,25,30}$).

¹⁷⁰Tm: Measurements of the energy of the 84 keV gamma ray occurring in the decay of ¹⁷⁰Tm using curved-crystal spectrometers have been made by other groups. Day³¹) reported a value of 84.229 ± 0.041 keV. Hatch and Boehm¹⁵) obtained a value of $84.26 \pm \pm 0.01$ keV, and Marklund and Lindström¹⁴) give a value of 84.262 ± 0.004 keV.

¹⁹¹Os: There have been no reported curved-crystal spectrometer studies of the gamma rays accompanying the decay of ¹⁹¹Os. Mazets and Sergeenkov³²) have measured the energies of the same two gamma rays that we have studied. They utilized a prism-type beta spectrometer and obtained the following results: 82.52 ± 0.03 keV and 129.41 ± 0.01 keV.

¹⁹³Os: No curved-crystal spectrometer measurement of the energy of the 139 keV gamma ray occurring in the

decay of ¹⁹³Os has been reported previously. Several energy measurements using beta spectrometers have been obtained, however, and these results are given in table 11 $^{32-33}$).

The author would like to take this opportunity to thank Professors J. J. Reidy and M. L. Wiedenbeck for their interest in this work, and P. L. Gardulski for his assistance with data collection for one of the samples.

Note added in proof

A study of the gamma rays associated with the decay of ¹⁶⁵Dy has recently been undertaken in this laboratory by Ludington³⁶). His curved-crystal spectrometer measurements for five of the strong transitions are as follows: $94.692 \pm 0.003 \text{ keV}$, $279.759 \pm 0.015 \text{ keV}$, $361.670 \pm 0.018 \text{ keV}$, $633.432 \pm 0.060 \text{ keV}$ and $715.345 \pm 0.076 \text{ keV}$.

References

- E. J. Seppi, H. Henrikson, F. Boehm and J. W. M. DuMond, Nucl. Instr. and Meth. 16 (1962) 17.
- ²) J. J. Reidy and M. L. Wiedenbeck, Nucl. Instr. and Meth.**33** (1965) 213.
- ³) G. Murray, R. L. Graham and J. S. Geiger, Nucl. Phys. 63 (1965) 353.
- ⁴) B. N. Taylor, W. H. Parker and D. N. Langenberg, Rev. Mod. Phys. **41** (1969) 375.
- ⁵) R. C. Greenwood, R. G. Helmer and R. J. Gehrke, Nucl. Instr. and Meth. **77** (1970) 141.
- ⁶) J. A. Bearden, Rev. Mod. Phys. 39 (1967) 78.
- ⁷) C. G. Diethrich, Ph. D. Dissertation (University of Michigan, 1967).
- ⁸) F. J. Schima and J. M. R. Hutchinson, Nucl. Phys. A102 (1967) 667.
- ⁹) J. Libert, Nucl. Phys. A102 (1967) 477.
- ¹⁰) W. R. Pierson and R. H. Marsh, Nucl. Phys. A104 (1967) 511.
- ¹¹) C. Foin, A. Gizon and J. Oms, Nucl. Phys. A113 (1968) 241.
- ¹²) M. S. Freedman, F. T. Porter and F. Wagner, Phys. Rev. 151 (1966) 886.
- ¹³) T. Furuta and J. R. Rhodes, Intern. J. Appl. Rad. Isotopes 19 (1968) 483.
- ¹⁴) I. Marklund and B. Lindström, Nucl. Phys. 40 (1963) 329.
- ¹⁵) E. N. Hatch and F. Boehm, Z. Physik 155 (1959) 609.
- ¹⁶) I. Marklund, Nucl. Phys. 9 (1958/59) 83.
- ¹⁷) V. A. Romanov, Izvest. Akad. Nauk SSSR Ser. Fiz. 22 (1958) 191.
- 18) B. Andersson, Proc. Phys. Soc. A69 (1956) 415.
- ¹⁹) G. Aubin, J. Barrette, M. Barrette and S. Monaro, Nucl. Instr. and Meth. **76** (1969) 93.
- ²⁰) G. Malmsten, O. Nilson and I. Andersson, Arkiv Fysik 33 (1966) 361.
- ²¹) T. Suter, P. Reyes-Suter, S. Gustafsson and I. Marklund, Nucl. Phys. 29 (1962) 33.
- ²²) O. Beckman, Nucl. Instr. 3 (1958) 27.
- ²³) T. J. Walters, J. H. Webber, N. C. Rasmussen and H. Mark, Nucl. Phys. **15** (1960) 653.

- ²⁴) P. Bergvall, Arkiv Fysik 17 (1960) 125.
- ²⁵) O. W. B. Schult, Z. Naturforsch. 16a (1961) 927.
- ²⁶) R. Hardell and S. Nilsson, Nucl. Phys. 39 (1962) 286.
- ²⁷) P. Alexander, Phys. Rev. 134 (1964) B499.
- ²⁸) R. A. Meyer, Phys. Rev. 170 (1968) 1089.
- ²⁹) P. Alexander, Nucl. Phys. A108 (1968) 145.
- ³⁰) J. T. Wasson, Z. Naturforsch. 15a (1960) 276.
- ³¹) P. P. Day, Phys. Rev. 102 (1956) 1572.
- ³²) E. P. Mazets and Y. V. Sergeenkov, Izvest. Akad. Nauk Ser.

Fiz. 30 (1966) 1193.

- ³³) R. H. Price, M. W. Johns, N. M. Ahmed and E. E. Habid, Can. J. Phys. 47 (1969) 727.
- ³⁴) Z. Plajner, V. Brabec, L. Maly and M. Vejs, Nucl. Phys. A121 (1968) 367.
- ³⁵) C. R. Cothern, H. J. Hennecke, J. C. Manthuruthil and R. C. Lange, Phys. Rev. **182** (1969) 1286.
- ³⁶) M. A. Ludington, private communication.