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In modeling a biological system for computer simulation one must often 
reduce the complexity of the system in accord with practical considerations 
of computer size and length of computation time. In our model of a living 
cell (Weinberg & Zeigler, 1969) we found the formal concepts of systems 
theory valuable in this regard. In particular, the notion of homomorphism 
is applicable to the problem of assuring that the model preserves interesting 
properties of the system under study while at the same time being simpler 
with respect to computer implementation. 

To develop our model of the cell we simplified the state space and 
transition function by aggregating co-ordinates of the state description 
while at the same time reducing the state sets of the new lumped co- 
ordinates. Certain aspects of the transition function of the model could 
be determined beforehand, but full specification of the transition function 
had to be determined by trial and error. In general, testing the model for 
homomorphism is equivalent to validating the model by comparing its 
behavior with the behavior of its real world counterpart. 

The process of aggregation by which we simplified our model, while 
well-known to economists, has been little appreciated by simulators of 
biological systems. This paper discusses the application of these system 
theory concepts to biological models for computer simulation. 

1. Introduction 

The problem immediately confronting any attempt to model a biological 
system for computer simulation is the enormous complexity inherent in such 
systems. In this paper we present an approach to this problem based upon the 
concepts of homomorphism and aggregation. A mathematical formulation 
is developed to discuss the application of these concepts to a model of a 
living Escherichia coli cell which has been simulated on a digital computer 
and successfully tested against laboratory data (Weinberg, 1968a,b; Weinberg 
& Berkus, 1969a,b; Weinberg & Zeigler. 1970). 
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Klir & Valach (1967) discuss the important connection between simulation 
and model construction and the ma~hcmatical notion of honlomorphisln. One 

may attampt to achieve such homomorphic nlappings by lumping cntitic\ 
together--this constitutes the basic character of our model. The importance 
of this process of aggregation has been known to economists for some time 
(e.g. Green, 1965; Ijiri, 1968). However, the concepts of aggregation and 
homomorphism have not been much appreciated by simulators and modellers. 
especially those of biological systems. [They are not mentioned, for example, 
in the extensive discussion of Fein (1966), nor by Rosen (1968).] In this paper 
we show that at the conceptual level, these concepts help explicate the notions 
of model complexity and adequacy. At the more practical level, they suggest 
and justify techniques for the reduction of complexity and for the testing of 
mode1 adequacy in the context of biological system simulations. 

Simon & Ando (1961) presented a mathematical formulation of aggrega- 
tion of variables for dynamic systems and studied a particular class of systems 
(nearly decomposable systems) whose long term behavior satisfied these 
conditions. An informal discussion of the relationship of these systems to the 
complexity of natural systems was given by Simon (1962). 

Since 1961, there has arisen an extensive study of the structural and be- 
havioral relations tvhich hold between automata (Hartmanis & Stearns. 
1968; Krohn & Rhodes, 1965: Arbib, 1969; Zeigler, 1968) and the relation of 
automata to general systems (Kalman, Falb & Arbib. 1968). With these 
developments it is possible to give a unified mathematical formulation of 
aggregation and its relation to the more basic notion of the homomorphism 
of systems. Based on this formulation and work in system complexity 
(Zeigler, 1968, 1969) one can demonstrate precisely how the complexity (as 
determined by measures relevant to computer implementation) can be 
reduced in going from a system to a homomorphic image. In this paper we 
give only the basics of this formulation necessary to analyze the basic character 
of our living cell model. A more complete formal presentation is planned 
(Zeigler, manuscript in preparation). Hopefully. this analysis will motivate 
and justify the application of these concepts to other biological models and 
simulations. 

2. Model of E. coli Cell 

(A) BASIC MODEL CHARACTERISTICS 

In writing a simulation of the E. coli cell (Weinberg 1968a,b) we recognized 
that in even the simplest of cells there are more than 3000 different kinds of 
molecules in an intricate spatial and functional relationship. These molecules 
co-exist in a complex metabolic network with superposed genetic and enzy- 
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matic control. This complexity had to be reduced drastically to enable ;I 
model to be simulated OII a digital computer. It is important to nc>te thaw 
while electronic computers continue to attain increasingly grater ntcmor~ 
stores and rates ot‘ operaticIn, this c~apacity is icry much limited when one 

considers simulating i/l tlctuil the operation vi‘ a natural sqstcn~. 
To construct our model we created the mclabolic nctworh consisting of a 

small number of chemical pools as shown in Fig. 1. The pools were to 
represent the network behavior in an aggregate manner. As shown in Fig. 3, 
the metabolic and informational transactions established among the pools 
was to reflect in a coarser way the underlying relations among their con- 
stituents. [A detailed description of the basic model is available (Weinberg & 
Berkus, 1969a,b). Some results of simulation arc reported by Weinberg & 
Zeigler (1969).] 

This represents a novel approach to models of the metabolism of the cell 
since most simulation studies (Garfnkel, 1966; Ycislcy & Pollard, 1964: 
Savageau, 1969) are concerned with simulating particular pathways in detail 
rather than attempting to simulate the global cellular operation. Heinmets 
(1966) has written a model system for a generalized cell which attempts a 
global analysis. However, the model was not intended to enable comparison 
of model and real cell behavior. The possibility of such a comparison is an 
essential objective of our simulation. 

Certain considerations guided our assignment of molecules into pools: 

Metabolic topology led us to combine into a single entity only those 
molecules which could be drawn adjacent to one another on the metabolic 

I.3 Wail 

FIG. 2. The primary chemical pools used in the model are shown. The arrows indicate 
the direction of the flow of material between pools. The topology of this Row preserves the 
metabolic topology of Fig, I, in a manner explained in the text. 
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map (Figs 1 and 2). For example, in a pathway A+B-+C, chemicals A, B, 
C might be partitioned into the pools A and BC, but not into the pools AC 
and B. 

Functiotzal relationships between groups of molecules were extremely 
important, and the molecules lumped together in any one model entity 
constituted, in some way, a functional unit (Table 1). Thus, all the mole- 
cules produced in the exothermic breakdown of sugar to carbon dioxide 
and water were lumped in this model since they could be considered 
functionally as molecules intermediate in a chemical pathway used to 
produce energy. Later models may employ more refined partitions. for 
example to capture the subtle and important relationships between 
molecules at different points in the glycolytic pathway, citric acid cycle 
and cytochrome system. 

TABL.E I 

Possible state spaces and transition fitnctions ,for models qf the living cell 

State space 

Atomic 

Molecular 

Concentration 

Higher level 
groupings 

Co-ordinates 

Electrons, 
nuclei 

Molecules 

Molecule type 
e.g. ADP, DNA 

Biochemical pools 
e.g. amino acids 

Co-ordinate sets 

Position, 
momentum 

Shape, 
active site, 

energy level 

Number of molecules 
of ADP!cell 

etc. 

number of molecules 
of poolkell 

Transition function 

Schrodinger’s 
equation 

(quantum mechanics) 
e.g. 

Koch (1967) 
probabilistic model 
Mathematical and 
logical equations 

based on chemical 
kinetics e.g. 

Chance et al. (1965) 
Mathematics and 
logical equations 

based on chemical 
kinetics 

and 
Molecular control 

mechanisms 
e.g. repression. 

allosteric inhibition 
(Weinberg, 1969; 
Goodwin, 1969) 

The co-ordinates at one level are aggregations of the co-ordinates at a lower level of 
organization. 



-10 11. I’. LlJIGL.tf< AND K. Wl:INIIlR(, 

Ekperinlental data were often available for large chemical pools, c.g. 
products of glycolysis and the citric acid cycle, making these separate 
entities logical candidates for grouping into single entities in this model of 
the cell. 

It is clear that, as intended, our model is a representation of a real ccl1 
from which much has been omitted. Indeed, any model amenable to human 
and/or computer analysis must neglect many more features than it considers, 
and in such abstractions we run the risk of losing any meaningful relation to 
the “real thing”. 

Our model of the cell differs from others in that the abstraction involved 
is that arising from aggregation of variables rather than selection of sub- 
systems. In order to discuss the general application of such a technique to 
biological systems and its ability to produce valid models we now introduce 
some elementary system theoretic concepts. 

(B) SYSTEM THEORETIC FORMULATION OF MODE1 

In its most basic form, a systenQ is defined as a set of states S, together 
with a transition fhction z : S-tS. z describes the behavior of the system over 
time by indicating which next state is to follow the present state. Thus if the 
state at time t is s(t) then the state at time t 1 1. s(t + I ) = s[s(t)] where 
t = 0, 1, 2,. . . 

The state space S is usually described as a Cartesian product of com- 
ponent state sets i.e. S = x S, where D is a finite set of co-ordinates (01 

entities) and S, is the state set (or attribute set) of co-ordinate c(. In Table I 
we list a number of possible state spaces and indicate the form a transition 
function might take in each. In Table 2 and Fig. 3 we specify in more detail 
the state space and transition function of the present model. Thus. the co- 
ordinates of the model include the chemical pools of Fig. 2 (amino acids. 
protein, glucose, etc.), the enzymes (Eli,. Ek,,. . . Ek,,), and the different 
messenger RNA’s (RNk,, . . . RNk,,). We must also keep track of volume 
of the cell, the number of cells, and information to be used by the replication 
subroutine. Accordingly, these are also represented in our state vector. 

The transition function for our model consists of difference equations and 
Boolean expressions describing: (1) enzyme catalyzed chemical reactions. 
(2) allosteric modification of enzymes, (3) repression of messenger RNA 

.f Our definition of “system” essentially is that routinely employed in ;Iutonydta theoretic 
formulations. (For example, Hartmanis Jt Stearns, 1965.) ‘4 more general detinition 
(incorporating continuous time) is given by Kalman, Falb Sr Arhib (1969. pp. 5 to 12). 
Arbib (1969, pp. 51 to 57) traces the steps involved in restriction to discrete time systems 
and finite state systems. 
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production, (4) self-replication of DNA under genetic controls, and (5) 
permeability of the cell to the chemical pools represented in the simulation 
(Table 2). The transition function captures relationships not apparent in 
the state co-ordinate representation (Fig. 3). 

Noting that S = x S,, T is equivalent to a set of maps jrp(P E 0: where 
aED 

each zfl maps S to S,. The co-ordinate function T,~ tells how the next state of 
co-ordinate /I depends on the present state of the ytem. (Clearly, if we tell 

TABLE; 2 

Co-ordinates and co-ordinate sets for model of liviq cell 

Co-ordinate = Entity Range of value of co-ordinates 
Attribute of entity 

Pools of chemicals, PRDC(l), , PRDC(l0) Concentration of pool 
Enzymes, EK(l), , EK(lO) Concentration of enzyme 
Messenger RNA, RNK(l), ., RNK(I0) Concentration of RNA 
Genetic apparatus Amount of DNA, site of replication, 

number of genes in cell for producing 
sites for replication 

Cell volume Total volume of the cell 
Cell number Number of cells represented in the culture 

The function for calculating the state of system in the nest time step from the present 
state is outlined as follows: 

A. 

B. 

c 
1) 
t’. 

The &‘re?ztiul and Boolean equations relating concentrations of variables at a given 
time to the concentrations of those variables DT seconds later. E.g. for AA, the amino 
acid pool, one needs enzyme EK(2) to catalyze the production of AA from glucose, and 
one uses ATP as an energy source. At the same time, AA is lost as it is used for the 
production of RIB and PRTN. 
1. DAA .y K(2)*GLUC*DT*EK(2)*ATP I .E6/102.*DRIB -(4,E4/102.)*DPRTN 

production of AA from loss of AA to loss of AA to PRTN 
GLUC RIB 

2. RNK(2) produced EK(2) from AA under the direction of DNA, using ATP fol 
energy 

3. DEK(2) = K(7)*AA(RNK(2)/MRNAO)*DT*EK(7)*ATP. 
4. RNK(2) itself was moduced from NUC under the direction of DNA. catalvzed bv 

EKS, using ATP fdr energy. RNK(2) decayed spontaneously at the same time, prd- 
ducing some loss of RNK(2) already present. 

5. DRNK(2) = (K8K(2)*NUC*DNA*EK@)*ATP KDRNK*RNK(2))*DT 
production of RNK(7) decay of RNK(I) 

.4No~frrk, t~~odifcarion of enzymes simulated by Inc,difving the rate constant which 
characterizes all different forms of an> enzyme associated with a particular reaction. 
Re~~rssion of messenger RNA directing the production of a particular enzyme. 
Genefic b~ha~h of DNA in response to the state of the cell. 
Pwmeahilit 1.. 
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how each co-ordinate is to change state we will be specifying how the system 
changes state, and conversely). Indeed, sg may not depend on all the co- 
ordinates in D: let la be the subset of D on which rB depends, then T,, maps 

x S, into SD.? 
n E I#¶ 

Based on the sets la we can draw a &graph (directed graph) which 
represents the coordinate interdependence in the system. The digraph, \vhich 
we also denote by D, has as points the set D and we draw a line from c( to /i 
just in case CI E Zp. 

As an example, consider the schematic view of some of the main metabolic 
pathways in E. coii of Fig. 1. Under conditions where the enzyme con- 
centration remains fixed:: we can obtain the digraph, D" of the system with 
concentration state space S” directly as follows: DE is the set of chemicals 
shown in Fig. 1. For each of the lines shown we must add a line in the oppo- 
site direction; further, when any two points are ad.jacent to a third they must 
be joined by lines in both directions. (These rules are inferred from the 
chemical kinetic equations.) For example, the input set ZGluC, of glucose-l-l’ 
consists of glucose, glucose-l-P and glycogen. This means that ~o,“~ which 
specifies the next concentration of this chemical depends only on the con- 
centrations of the chemicals in ZGluC. 

We mention that the interrelation between properties of the digraph 
(structure) and properties of the transition function (behavior) have been 
fruitfully applied to biochemical systems by Kauffman (1969) and others.9 

t Given any subset TC X S,,, a co-ordinate a &pen& 011 n SCI 1: if (VJs, s’t- T) (t’/?~ I“) 
ZED 

[proj,(s) = proj,(s’) + x0(s) = r&s’)] and no proper subset of I: has this property. This 
definition is that given in Zeigler (1968. 1969) and the well-known partition pair calculus 
of Hartmanis & Stearns (1966). By way of explanation, this criterion selects a minimal 
set I,’ such that a function defined only on X Sa can be found which equals ~~ on T. 

/JEIT 
Assuming a finite number of co-ordinates (though not necessarily a finite state set) will 

guarantee the existence of such sets; more generally a minimum condition is needed. 
We are not guaranteed however that for each c( there is only one set I,‘on which it depends. 

Nevertheless, when T- X S, these sets are unique. This situation is discussed by Zeigler 
OLED 

(1968) and Roosen Runge (1967). 
For each choice of sets {I~IcxE D} we can construct an associated digraph DT. Thus to 

each subset of the state space there corresponds one (or more) well-defined digraphs. In 
particular, there is a unique well-defined digraph associated with the whole space X S,. 

4) 
$ Of course the situation is much more complicated than this and our complete model 

will represent this fact. For example. co-ordinate interdependencies arising from the 
allosteric inhibition and repression components of the transition function are reflected in 
the digraph. 

0 Kauffman’s state space is the discrete set of all genome off-on configurations. This is 
an abstraction of the state space of our model. Our discussion of homomorphism can be 
used to relate the two models. 
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FIG. 3. Some of the relationships which are embodied in the equations of the transition 
function of the cell model are shown. These relationships, repression, allosteric modification, 
etc., are shown by a double arrow (=E-) to distinguish them from the flow of materials 
indicated by a single arrow (+). 

3. Homomorphism and Model Simplification 

(A) HOMOMORPHISM OF SYSTEMS 

The notion of homomorphism provides a criterion by which the validity of 
a model may be judged. 

Let S, S’ be state spaces and r, z’ their associated transition functions. We 
seek conditions under which the system (S’. r’) can be reasonably said to be 
a model or simplification of (S, z). 

To do this, we say that a trujector~~ through S beginning at s in S is any 
sequence 

c.5 G), +), * * . > Z”(S)), where ri(s) = TV- ’ [T(S)], t’(s) = r(s). 

The set of such trajectories is the behavior of the system (S, 7). Let h : S-+S’ 
be a map from S onto S’; we want to preserve the behavior of (S, z) in the 
sense that for any trajectory (s, r(s), r*(s),. . . , t”(s)) in the behavior of 
(S, r), (h(s), h[z(s)], h[t*(s)], . . . , h[t”(.s)]) is a trajectory in the behavior of 
(S’. 7’). 
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This is equivalent to the condition that for every J’ E S. ~[T(s)] = s’[h(s)]. 

In practice this condition may be required to hold only approximately and 
then only for that part of the state space which may be explored experi- 
mentally. If 17 satisfies this condition it is said to be a /707770n70rpl7is~77 and 
(S’, r’) is a homomorphic image of (S, T). When h is a one-one homo- 
morphism, it is an isott~orphisttt and (S’, T') is isomorphic to (S, T). We shall 
take as the formal counterpart of the statement that “(S’, 5’) is a model of 
(S, 7)” the statement “(S’, r’) is a homomorphic image of (S, I)” our justiti- 
cation being that the notion of “model” entails the concept of behavior 
preservation we have given. 

(B) APPLICATION TO ALLOSTERIC INHIBITION 

We shall illustrate the homomorphism concept with a technique actually 
employed in our model. Consider a subsystem consisting of substrate A, 
product B, and enzyme E which can exist in three forms: E (pure enzyme). 
EB (one-molecule of B attached) and BEB (two molecules of B attached). 
The chemical kinetics of this system are given by: 

A+E -h+ B+E 

A+EB % B+EB 

A+BEB % B+BEB 

where the p’s and k’s are suitable rate constants. Call this system S. Then S 
has as co-ordinates D = (A, B, E, EB, BEB). with state space S = (A) 
x (B) x (E) x (EB) x (BEB) where for example, A denotes the concentration 
of A and (A) is the range over which A varies. The transition function t is 
specified by the co-ordinate functions IT,,,, TV, TV, rEB ~~~~1. namely, 

T,(A, E, EB, BEB) = A - kEA - k”EB’,4 + k,,BEB. A 

T~(A, B, E, EB, BEB) = B+kEA+k,EB.il+k,,BEB.A 

z,(B, E, EB) = E-p,E.B+p,EB (1) 
T&B, E, EB, BEB) = EB+p,E.B-p,EB-p,EB.B$-p,BEB 

Z&B, EB, BEB) = BEB+p,EB.B-p,BEB. 

(These are discrete versions of the usual kinetic differential equations.) 
We wish to simplify S, i.e. to replace it with a homomorphic image system S’. 

Let S’ have as co-ordinates {A, B, E,} where E, is to represent the aggregate 
of the enzyme in its three forms. Then S’ has as state space S’ = (A) x (B) 
x(E,) and we define a map II : S+S’ given by h(A, B, E, EB, BEB) = 
(A, B, E+EB+BEB). 
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The problem now is to define a transition function 7’ for S’ which will 
make k a homomorphism. To do this we shall consider the kinetics of S’ to be 
given by : 

A-‘, 

A+F -‘(, B+E *1 * 

where K(B) will be a rate “constant” depending on B thus reflecting the 
feedback etfect of allosteric inhibition. The transition equations of system S’ 
then are: 

7’&4, E,) = A--K(B).lZ‘,.A 

z;(A, B, E,) = B+K(B).E;.4 P-1 

7&% = Et. 

The condition under which h is a homomorphism is then that 

h[7(A, B, E, EB, BEB)] = 7’[h(A, B, E, EB, BEB)]. 

By working out the A co-ordinate we obtain the equation: 

A(l-kE-k,EB-k,,BEB) = A[1 -K(E+EB+BEB)]. 

A similar equation results in the B position. An equation involving E, EB. 
BEB appears in the E, position which is trivially satisfied (it is a result of the 
fact that in system S the total enzyme concentration Ex EB- BEB is con- 
stant). Thus h will be a homomorphism just in case there is a function K(B) 
such that 

kE+k,EB+k,,BEB = K(B).(E+EB+BEB) 

for all values of interest of E, EB, BEB. [Clearly unless 

K(B) = k = k, = k,,,, 

(3) 

which is not generally the case, the equation cannot hold for all values of 
E, EB, BEB.] 

We shall shortly examine the factors determining the extent to which 
equation (3) can be satisfied. 

Now under steady state conditions we assume that the concentrations of 
the enzyme forms E, EB, BEB of system S remain constant. This results in 
the following equations: 

-p,~d+p,% = 0 

where, for example I? is the constant value of concentration E: in a steady- 
state condition. 
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Manipulating the equations for equilibrium conditions. one can obtain the 

following expressions for E, I% and G: 

where 

jj& p,.B’.E 

Pl = PlIP2 

p, = PA/P4 
(To obtain these expressions, note that: 

a@ = (p1jp2)-&E = P,.B”.E 

FE% = (p3/p4)WE = P,~~.E 

E=Elola,-i%-&%=E,,,,,- ” .B.E- ;I .B’.E. 
P2 

Dividing out E from both sides, one obtains 

(5) 

I =-;;A .B’- ;; ~B”2+Efofa,/E. 

Manipulating, and substituting P, = p1/p2 and P, = p3/p4 one obtains 

E = Etotn, . ~~~-- 
1 

~~~ > 1 +P1.B+PJ2. 

Substituting these expressions in the homomorphism equation (3) cancelling 
and collecting terms yields: 

k+(P,*k,)B”+(P,.k,,)B”2 = K(B”)(~+P,++P~*~~). (6) 
We shall now show how a value of K(B”) can be estimated from experimental 

data for a given steady-state concentration value B”. Steady-state concentra- 
tions of the pools are assumed to be known for given nutritional environments. 

Rate constants for flow of materials between pools are calculated for each 
environment from the steady-state concentrations of the pools in that 
environment, the initial volume of the cell at the beginning of a generation, 
and the time necessary for all quantities in the cell to double in that environ- 
ment, i.e. the time for one cell generation. Exponential increase in cell mass 
and in all pool amounts, except for a linear increase in DNA and genetic 
apparatus, is assumed. The calculations will be illustrated for protein pro- 
duction from amino acids given by: 

Protein 5 Amino acid 
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The chemical kinetic equation is: 

d[Protein (t)] 

dt 
- = K[Amino (t)] *Volume (t) 

where 

Protein (t) = number of protein molecules in the cell at time t. = 

Amino (t) = the number of amino acid molecules per cell. 

Volume (t) = volume of cell at time t (set at 1 for cell at beginning of 
generation). 

Integrating over one cell cycle, during which volume doubles 
Protein (1) t=1 

s 
Protein (0) 

d[Protein (t)] = lioKIAmino (r)] Volume (T)dt 

where 

Protein (0) = total number of protein molecules in the cell at time = 0, 
the beginning of a cell cycle. 

Protein (1) = total number of protein molecules in the cell at time = 1, 
the end of a cell cycle. 

The increase in volume in a steady-state growth condition in one environ- 
ment is just sufficient to keep pool concentrations constant, while increase in 
volume occurs exponentially at a rate permitting volume to double over one 
cell generation. The amino acid concentration in the cell, therefore remains 
constant in a given environment. K is also constant in this environment so 
that K and [Amino (t)] can be placed in front of the integration sign to give 

Protein (1) r= I 

s 
Protein (0) 

d[Protein (t)] = K.[Amino (t)].ri,,Volume (t)dt. 

Since volume is assumed to increase exponentially during steady-state growth 
conditions, and Volume (0) = I, one can set up the equation 

Volume (t) = Volume (O).e”’ = 1 se”’ = e”‘. 

Since the volume of a cell doubles in one generation, Volume (1) = 2. Thus 
a = In Volume (1) = In 2. Going back to the integral relating increase in 
number of protein molecules to volume and amino acid concentration, and 
substituting e ‘“(2).r for Volume (t). one obtains 

Prorein (1) t= I 

s 
Protein (0) 

d[Protein (t)] = K.[Amino (t)]*fL,e”“2”‘dt. 

Integrating, one obtains Protein (I)-Protein (0) == K . [Amino (t)]/ln (2). 
All amounts double in one-cell cycle, therefore Protein (1 ) = 2 * Protein (0). 
The concentration of amino acid is equal to total amount of the amino acid 
pool per cell volume, i.e. [Amino (t)] = Amino (t‘)/Volume (t). At t = 0, 
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[Amino (0)] = Amino (O)/Volume (0). Since [Amino (t)] remains constant in 
an environment for steady-state growth, [Amino (f)] = Amino (O)/Volume 
(0). With Volume (0) = I, [Amino (t)] = Amino (0) and one obtains 
Protein (0) = K . Amino (O)/ln (2). Solving for K. one obtains h’ = [Protein 
(O)/Amino (0)] . In (2). 

The amounts of the protein and amino acid pools at the beginning of a 
cell cycle. Protein (0) and Amino (0). can be calculated from the data available 
in the literature on the average amounts of these pools. We will show that 
since the pools size increases exponentially during growth, the pool size at 
the beginning of a generation equals the average pool size times the natural 
logarithm of 2. The equation for calculating the average volume over one 
cell cycle is 

r=1 
j Volume (t). Probability (t)dt = average volume over a cell cycle 

r=0 
where 

1 = time in life cycle, 
t = 0 at beginning of cell cycle, 

t = 1 at end of cell cycle, 

Volume (t) = volume of cell at time t, 

Probability (I) = probability density for the time in the life cycle of a cell 
being considered. 

We shall set Probability (t) = 1 since bacterial growth is ergodic, and 
unsynchronized cultures were used for experimental data from the literature, 
giving the uniform density. Thus 

f=l 

j Volume (O)*e “‘(2”2 .l dt = average volume over a cell cycle. 
t=o 

Carrying out the integration, average volume = Volume (O)/ln (2), and 
Volume (0) = average volume . In (2). 

Similar equations indicate that the average pool size for a cell must be 
multiplied by In (2) to give the pool size at the beginning of a cell cycle. 
The equations for the amino acid pool are developed as an illustration. 

1=1 

JoA 
mino (~).Probability (1) dt = average amino acid pool size 

In a steady-state environment Amino (t) = [Amino (0)] . Volume (1). 
Volume (f) = e’““” and Probability (1) =z 1. Substituting for Amino (t) 
and Probability (I). one obtains 

1’1 
j Amino (O).e”““” dt = average amino acid pool size 

ILO 
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Integrating, one obtains average amino acid pool size = Amino (0) . In (2). 
From the assumed metabolic pathway : 

+- Amino acid 21 Glucose 

one can set up the equation 

d[Amino (t)] k,,d[Ribosome (tl] 
~~ = K’ *[Glucose] - -dt 

k,,d[Protein (t)] 
- - - 

ht dt 

where k,, is the number of amino acid molecules used to form one ribosome 
molecule (k,, is similarly defined). 

One can solve for K’ using the same procedure as before thus obtaining 

Amino (0) = K’.Glucose (O)/ln 2-li,,‘Ribosome (0)-/~,~,.Protein (0). 

In this way rate constants can be calculated for different chemical pools in 
different environments. 

Assume that for system (S, z) values of K(B) and fi have been computed 
for two different environments and that in similar fashion the constants k, 
k,, kgB have also been estimated from the literature. This results in two 
simultaneous linear equations which can be solved for P, and P,. Let the 
values so obtained by P, and B, and consider the form of K(B) derived from 
equation (6) : 

(7) 

Using this function for K(B) we see that equation (3) will hold and /I will 
be a homomorphism to the extent that: 

(1) The steady-state conditions assumed in equation (4) are satisfied, and 
(2) The values obtained for P, and P3 in two environments hold for other 

environments of interest. 

The steady-state conditions will hold to the extent that, as is usually assumed, 
the adjustment in enzyme form concentrations is rapid with respect to the 
formation of product from substrate. Also, if the values obtained for P, and 
P, do not hold for other environments one can complicate system S by 
assuming more forms for the enzyme-product complex, thus introducing 
higher order terms in equations (6) and (7). 

We see that in order to fully discuss the notion of homomorphism in 
practical applications we need to determine how close an arbitrary map comes 
to being a homomorphism. Ulam (1966) has suggested the introduction of a 
numerical error function which in this context takes the form E[T'/I(s)], 

‘T.B. 1 
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/~[r(s)]. Then the extent to which 11 is a homomorphism is measured by the 
least upper bound on c over the region of the state space of interest. 

Let us put this example in a more general perspective. We have a system S 
in which allosteric inhibition is modelled by the presence and effects of a 
number of different enzyme-product complexes. This system is not used in 
our living cell model but is replaced by a simpler system S’. In S’. allosteric 
inhibition is effected by a feedback path from the product to the rate “con- 
stant” governing its rate of formation. The reader may wish to check that as 
far as the substrate and product arc concerned the behavior of the two 
systems is the same (given that equation (3) is valid). III ,fuc,t. this iii/d CI/ 
behar>ior presewation i.~,just that entailed by requiring that 5” be a homonlorphir 
image of’S. We see here how the homomorphism concept elucidates a tech- 
nique actually used to implement and simplify the allosteric inhibition 
component of our model. 

4. Complexity Reduction of Aggregation 

(A) COMPUTER SIMULATION COMPLEXITY MEASURLS 

Investigation of computational complexity is actively being pursued by 
computer scientists (e.g. ACM Symposium on Theory of Computing, 
1969) but little attention has been devoted to measures of complexity relevant 
to simulation of a model system on a c(-jmputer. We shall introduce two very 
basic measures here which are directly related to the representing digraph of a 
system. One is related to the memory capacity required to store the current 
state of the system-we require at least log2 IS/ bits of storage if there are IS/ 
states. Thus our first measure is nlemor~~ (S) = log,lSl. Since S = x S, we 

a F 1) 

have nzemor~~ (S) = IDI .( ,bi Us,) log iSEI) which indicates the proportionality 

of the memory capacity fo the number of co-ordinates IDI if all states sets 
are the same size. 

We can also measure the complexity associated with coding the transition 
function as a computer program. Assume (not unrealistically) that the number 
of instructions necessary to encode Z, is proportional to the number of co- 
ordinates in its domain, i.e. to Iz,~. Then the length of the program for 5 is 
proportional to the sum C 11,1. Th us our second measure is lengtlr (D) 

a t I) 

= xi aI, . I \chlch is, in fact, just the number of lines in the digraph. Also. 

the time to run the program (for one state transition) is “somewhat” pro- 
portional to its length. The existence of iterations complicates this relation- 
ship. 
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Both nzenzory (S) and length (D) cannot exceed the bounds set by the 
computational capacity of real computers. It is this fact, among others, \~hich 
would thwart attempts to use the state spaces at the atomic, molecules and 
concentration levels of Table 1. In other words, were we to try describing 
the state of a biological cell by listing the states of each of the elementary 
particles of which the cell is composed (the atomic mode1 ), we would hard11 
ha.ve enough data storage capacity to keep track of such a long list. Moreover, 
we would not have enough program storage capacity to specify how each 
atomic state changes as a function of the prior states of the atoms which 
influence it. (In addition, the time required to run such a program would 
exceed a scientist’s patience if not his lifetime). In our new terminology. then, 
we seek model systems whose memory and length complexities are small 
enough to enable an actual simulation on a real computer. 

(B) COMPLEXITY REDUCTION BY AGGREGATION 

We shall now give a fairly general mathematical formulation for the 
process of aggregation or lumping by which relatively simple systems are 
derived from more complex ones. This kind of process was illustrated in 
the preceding example and is basic to the model of the E. coli cell from which 
it was taken. [Recall the manner in which the chemicals in the cell were 
combined into pools (Figs 1 and 2).] We shall relate the aggregation process 
to the more basic notion of homomorphism, deriving thereby necessary and 
sufficient local conditions which guarantee that such a process will yield a 
valid homomorphic image system. At the same time we shall see how the 
complexity measures introduced before may be simultaneously reduced bv 
aggregation. 

Suppose then we are given a system (S, T.) with co-ordinates D. state 
space S = x S, and transition function given by js,Ix E Dj where 

UED 

T w  : x S,+S,. We wish to construct a homomorphic image ofS by aggregat- 
IJ E I, 

ing co-ordinates. This process can be decomposed into a composition of two 
sub-processes. In process 1 the co-ordinates are lumped together but the state 
space is not reduced. In process 2 the co-ordinates of the system are retained 
but the state space is reduced. Figure 4 illustrates the application of these 
processes. 

For process 1, partition the co-ordinate set D into blocks B,. B2,. . (whcrc 
the blocks are mutually disjoint subsets of D uhich together exhaust it 1. 
The new system (S’, 7’) will have as co-ordinates D' = {B;), the state set ot 
co-ordinate Bi will be SBi = x S, and the state space is then S’ = x S,,,. 

~1 E Bi IJi r I)’ 

Note that S’ = S so that the state space has not really been altered in this 
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(a) Digroph of system S 

(bl Digraph of system S’ 

k.) Dlgroph of system S” 

Size of each Program 

System No. of co-ordinate Size of Storage capacity length 
co-ordinates state set state space (IDI log, IW (No. lines in 

digraph) 

s jD j = 12 1s / z 812 memory (S) = 36 length (D) = 19 
s ]D’j = 3 IS’1 zz 812 menlory (S’) := 36 length (D’) = 7 
s” ID”/ = 3 WI = 8:’ men7ory (s”) _ 9 length (D”) = 3 

FIG. 4. Illustrating the aggregation process. A system S with 12 co-ordinates each 
having a state of size 8 is simplified to a system S” having 3 co-ordinates each having the 
original state set size (8). The intermediate system S’ is obtained by partitioning the 12 
co-ordinates of S into 3 blocks of 4 co-ordinates each (1’ = (1, 2, 3, 41, 2’ = {S, 6, 7, 8 }, 
3’ = {P, 10, 11, 12)) with state set size S4. Finally S” is obtained from s’ by reducing the 
state set size of each co-ordinate to 8. S” is less complex than S with respect to the memory 
and length complexity measure. 

process. Define the transition function for any co-ordinate Bi as 

G,(s) = (G,(S), &(S)t . . ., L,(S)> 
for each s E S’ (= S) where Bi = {ccl, al,. . . q,}. One can verify that the 
subset of D’ on which & actually depends is I;, = (B,/B, n J,,# 4) where 
Jsi = n I,. This is because J,! is the set of co-ordinates on which the 

CZEB, 
functions {r,lsr E Bi) depend and I& is the set of blocks which contain 
co-ordinates in JBi. 
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It is readily verified that the system (S’, 2’) so defined is isomorphic to the 
system (S, r). [Under the identity map i : S-+S’, i(s) = s]. 

Constructing the digraph D’ from the sets I& we find that there is a line 
from Bi to Bj in D’ just in case there are points c( in Bi and /3 in Bj and there 
is a line from c1 to /3 in the digraph D. [This is called the condensation of D 
with respect to the partition D’ (Harary, Norman & Cartwright, 1965)]. 
This means that while the number of points in the digraph may be made to 
decrease in goingfrom D to D’, the total number of lines in the digraph cannot 
increase (though it may not decrease). 

In process 2 starting with a system (S, z) with co-ordinates D and state 
space S = x S, we construct a system (S’, T’) also having co-ordinates D 

aED 

but with (possibly smaller) state space S’ = x SL. We assume that for each c[ 
LXED 

there exists an onto map h o1 : S,-+Si and define the map h : S-+S’ given by 
h(s,, So, s,, . ) = [h&J, h&s,), h,(s,), . . .] for each (s,, sP, s,, . . . ) E S. We 
seek a condition which makes h a homomorphism. The condition, which is 
both necessary and sufficient, is that for each x E D. 

~LT[~&,’ . * ., $,)I = ~X~~&jf,)~ . . &&,Jl 
I‘or all (sai, . . . S&E x S,. We call this the condition of presercation oJ 

0 E I, 
co-ordinate functionality since it translates the global requirements for S’ 
to be a homomorphic image of S into local requirements involving the transi- 
tion functions z, and T; at each co-ordinate CL In particular if for any c( a 
function zi can be made to satisfy the condition then it depends at most 011 
the co-ordinates I,. In fact if any simplification is achieved ZL will be a proper 
subset of 1,. This means that D’ is a subdigruph of D, i.e. if a line from c( to 1) 
appears in D’ it must also appear in D. Thus in this case, in going from S to 
S’ the total number of lines may be made to decrease (it cannot increase). 

To establish the condition, we use the maps, proj, : S-+S, where proj,(s) 
is the projection of s on the a co-ordinate. Thus proj,[h(s)] = h,(s) and 
proj,[z(s)] = r.,(s) for each M E D. Then T’[h(s)] = @t(s)] if, and only if, 
proj,[z’(h(s))] = proj,[h(z(s))] for each c1 E D. Now proj,[z’(h(s)] = ~L(h(s)) 
and proj,[h(r(s)] = h,(z,(s)) so that h is a homomorphism if, and only if 
z;(h(s)) = h,(z,(s)). Now h,(z,( . )) 1s a function of at most the co-ordinates 
in 1, and for the equality to hold for all s E Sit can be readily seen that zk(h( .)) 
is necessarily a function of these same co-ordinates. This establishes the 
necessity of the condition as given before. Its sufficiency is easily verified. 
[If we demand that the homomorphism hold for only a subset of S, a similar 
result follows but it must be more carefully phrased.] 

Suppose that starting with a system (S, 5) we apply process 1 to arrive 
at system (S’, z’) with fewer co-ordinates and then apply process 2 to (S’. 7’) 
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to arrive at a system (S”, z”) with a smaller state space and whose digraph 
D" has fewer lines than D. Because of its smaller state space IIMWIO~J~ (S”) 
< mwzory (S) and because it has fewer lines length (D”) < /engt/~ (U ). 
The net result is that (S”, 7”) is a homomorphic image of (A’, z) whose 
complexity, as determined by the memory and length complexity measures, 
is decreased. 

Note that the digraph D" is a subdigraph of a condensation of the digraph 
D. This means that not only has the state behavior been preserved in going 
from (S, z) to (S”, 7”) but also the local structrrre, i.e. the manner in which the 
co-ordinates are interdependent. This preservation of local structure is not 
a necessary consequence of the preservation of state behavior. In general, a 
system (S’, z’) may be a homomorphic image of a system (S, T) while D' is 
not a subdigraph of a condensation of D. The preservation of local structure 
is, however, a consequence of the aggregation process and the requirements 
for homomorphism. 

5. Discussion 

In this paper, we have utilized system theory concepts to describe and 
analyze the basic character of our simulation of a living cell. In contrast to 
other simulation of cell metabolism, we simplified our model by lumping the 
various molecular species into pools and then attempted to simulate the 
behavior of these pools over time. This aggregation technique greatly 
reduced the complexity of our simulation but raised the issue of the validity 
of our model. In this regard, we gave necessary and sufficient conditions which 
must obtain if an aggregated system is to model (in the sense of being an 
exact homomorphic image) the original system. These conditions were used 
to show that the memory and length measures of complexity can be simul- 
taneously reduced in a valid aggregated model. 

In contrast to models in general, aggregated models preserve the local 
structure of the co-ordinate dependency digraph. This is important since the 
greater is this preservation of structure the more readily can components of 
the model be identified with corresponding components of the real world 
biological system and their behavior compared. [The identification of 
components, i.e. systems formed by subsets the co-ordinate set, can be 
accomplished easily when the co-ordinates of the system and a model are 
related by a (univalent) mapping as for aggregated models but is much more 
difficult in the more general case where the relation between co-ordinates may 
be many to many.] As we have indicated, the possibility of checking the 
behavior of components of our model of the cell against that of corresponding 
real world components played a significant role in determining the assignment 
of molecules to pools. 
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6. Conclusions 

System theory concepts help to better understand and formulate problems 
encountered by biologists and other scientists in modeling and simulation. 
4t the conceptual level, these concepts help explicate the notions of model 
complexity and adequacy. At the more practical level they may suggest and 
justify techniques for the reduction of complexity, and for the testing of 
model adequacy. 

In particular the aggregation of entities as a modeling technique has been 
given a system theoretic formulation. This technique is fundamental to our 
model of the living cell and may provide a powerful tool for other simulation 
studies. 
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