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An interpolation method is proposed for predicting and correlating thermal forces 
acting on spherical particles suspended in a rarefied gas. The result obtained is appli- 
cable over the entire Xnudsen number range from free molecule to continuum con- 
ditions, and yields the appropriate limiting expressions in the free molecule and 
continuum regimes. A comparison was made between the result of the present method 
and available experimental data, and good agreement was found over a wide range of 
Knudsen numbers and gas to particle thermal conductivity ratios. 

INTRODUCTION 

In recent years considerable attention has 
been given to the problem of thermal forces 
acting on small particles suspended in a gas. 
Studies of thermal forces have been moti- 
vated by interest in the basic phenomena of 
thermal diffusion in rarefied gases and by in- 
terest in the practical applications of these 
forces to problems related to air pollution, 
cloud physics, and particle fallout. 

The term thermal force is generally de- 
fined as a force, other than that caused by 
convection, which acts on a body suspended 
in a gas not in equilibrium (1). I t  is well 
kIiown that this force depends strongly upon 
the Knudsen number Kn, which is defined as 
the ratio of the mean free path in the gas to 
the characteristic dimension of the body. In 
problems where the thermal force acts on a 
small spherical particle (radius a) suspended 
between two parallel plates a distance H 
apart (a << H, see Fig. 1) there are three 
characteristic Knudsen numbers (2): one 
based on particle radius (Kna -~ X/a), one 
on the distance between the plates (Kns =-- 
X/H), and one on the shortest distance be- 
tween the center of the particle and the 
plates h (Knh =- X/h). When H and h are 
of the same order of magnitude (i.e., the par- 
ticle is not too close to either one of the 

plates) only one of the latter two Knudsen 
numbers needs to be considered. In order to 
simplify our considerations and still bring 
out the essential features of thermal forces in 
a rarefied gas we shall investigate here such 
situations and shall select Kn~ as the Xnud- 
sen number which, in addition to Kn~, char- 
acterizes the system. 

Ideally, theoretical analysis should de- 
scribe the thermal force over the entire range 
of Knudsen numbers, i.e., 0 < Kna < 
and 0 < KnR < ~.  Such analyses would 
have to be based on the Boltzmann equa- 
tion, but owing to the well-known difficulties 
involved in obtaining solutions to the Boltz- 
mann equation all analyses proposed thus 
far are restricted to certain limited ranges of 
the Knudsen number. The approximate 
Xnudsen number ranges in which the avail- 
able analyticM results are applicable are il- 
lustrated in Fig. 2. In this figure the indi- 
cated limits of the various density regimes 
were defined arbitrarily as follows: con- 
tinuum Kn < 0.01, slip 0.01 < Kn < 0.1, 
transition 0.1 < Kn < 10, and free molecule 
Kn > 10. 

As earl be seen from Fig. 2, all existing 
analyses are restricted to the conditions (a) 
where both K n ,  and Kn~ are much greater 
than unity (completely free molecule flow) 
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or (b) where Knn is much smaller than unity 
(Kn~ --+ 0). In analytic studies this latter 
condition is generally established by assum- 
ing that  the gas extends to a large distance 
from the particle (H -~ ~ ). Once Kn~ is 
taken to be very small then one needs to 
consider the particle Knudsen number Kna 
as an independent parameter with the de- 
pendence on Kn~ an implicit one. However, 
even for this ease there is no single analysis 
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F~o. 1. Description of ~he problem. 

that  would cover the entire particle Knudsen 
number range (0 < Kna < ~ ). 

When Kn,r >> 1 (and consequently 
Kn~ >> 1, since a << H) ,  the thermal force 
can be found from simple gas kinetic calcu- 
lations. For small temperature differences 
(1 - Te/T~  < 1) and for complete thermal 
accommodation at the plates Brock (2) 
gives the following expression for the thermal 
force in the Z direction shown in Fig. 1 

2 
~ra T~ -- Te Kn ,  >> 1; [1] 

F = ~ -  po To ' Kn~ >> 1. 

Here TH and Tc are the temperatures of the 
hot and cold plates, and p0 and To are the 
mean gas pressure and temperature, re- 
spectively. Analytical results are not avail- 
able for problems where Knr~ is of the order 
of unity (Kn~ ~-~ 1 ). Analytical results have 
been developed, however, for the case 
KnH << 1, and in the following we shall be 

.,I o 
n 
g 

(D 

,< 
E 
h i  
/ 
(.~ 

E 

id 

10 2 

id 

~IPLATES --PLATES IN CONTINUUM ~ SLIP 

WALDMANN'S ANALYSIS 

c wooo,s 
<~ ANALYSIS 

i ~  SLIP "ANA£YSES (EINSTEIN, 
| EPSTEIN, BROCK, DWYER, DERJAGUIN:Yl 

I N  PLATES IN 
TRANSITION 

FREE MOL 
BOTH 

PARTICLE 
AND 

PLATES 
I (BROCK) 

/ - 7 " / 7 - / 7 " / / 7 T / 7 " 7 7 / 7 7 " / ~ / ' / / / / / / / "  

TRANSITION .~ 
BOTH PARTICLE 
AND PLATES 

I 9 
. . . .  

I 
t 
I , I , , 

10- 5 i(~ 4 10 -3  10-2 t0-1 10 0 101 X 
KNUDSEN NUMBER BASED ON PLATE SEPARATION Kn H = ~ - -  

FIG. 2. Knudsen number ranges of the available analytical  results and experimental data. 
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concerned only with problems where this 
condition is satisfied. When K n ,  << 1 and 
when the particle is in free molecule flow 
(Kn~ >> 1), the thermal force can be calcu- 
lated in a straightforward manner. For a 
stationary particle Waldmann (3, 4) ob- 
tained the following expression for the ther- 
mal force: 

FFM= 8a2 (2~r~ 1/2 k~VT~, 

[2] 
Kn~ >> 1; 
K n ,  << 1. 

Here k~ is the translational gas thermal con- 
ductivity, R is the gas constant, T is the 
mean temperature of the gas at the position 
of the particle, and VT~ is the uniform tem- 
perature gradient in the gas at a large dis- 
tance from the particle (i.e., at H --~ ~ ). 
If we allow K n ,  --~ 0 by letting k --* 0 while 
keepingH finite, then VT~ = ( T ,  - Tc ) /H .  
Whereas data have not been obtained yet at 
Knudsen numbers sufficiently high for a 
comprehensive evaluation of Waldmann's 
result (see Fig. 2), Eq. [2] is expected to be 
accurate at high Knudsen numbers. 

The analyses are considerably more com- 
plex at the other end of the rarefaction scale, 
where the mean free path is small compared 
to the particle radius (slip regime, Kn~ < 0.1, 
say). Approximate analyses for this regime 
have been presented by Einstein (5), Ep- 
stein (6), Brock (7, 8), Dwyer (9), and 
Derjaguin and Ms eoworkers (10-12). Al- 
though many experiments have been per- 
formed to test these theories (e.g., 1, 8, 13- 
17) there is still a lack of firm agreement on 
the relative accuracies of these theoretical 
results under various experimental condi- 
tions. I t  has been observed, however, that aI1 
these results become increasingly inaccurate 
as Kna increases. 

Less information is available in the transi- 
tion regime. Here the only analytical results 
are due to Cawood (18) and Brock (19). 
Cawood's results fail to describe the thermal 
force accurately. Broek's approximate analy- 

sis is expected to be reasonably accurate at 
near free molecule conditions only (Kn~ > 1 ). 
In the transition regime (0.2 < Kn~ < ~ ), 
Schmitt (14) found that the data can be 
correlated by the simple empirical formula 
F = F~M6 -'dKna where r is constant, inde- 
pendent of Kno,  but dependent upon the 
gas and the particle. This formula was also 
derived analytically by Brock (19) for the 
case Kn~ > 2. The constant r must be de- 
termined from experimental data or can be 
calculated from an expression derived by 
Brock (19, 20). 

I t  is evident that no simple analytical re- 
sult is available that would correlate the 
data or predict the thermal force a priori 
over the range 0 < Kna < m. In this in- 
vestigation a formula is proposed that cor- 
relates well the existing data and which can 
be used to evaluate the thermal forces on 
particles over the entire particle Knudsen 
number range from free molecule (Kn~ ~ ~ ) 
to continuum (Kna --* 0) conditions, when 
the Knudsen number based on plate separa- 
tion is small compared to unity (Kn~ << 1 ). 

ANALYSIS 

The problem to be considered is the follow- 
ing: a spherical particle of radius a is sus- 
pended in a gas contained between two 
infinite parallel plates. The temperatures of 
the plates are T~ and To,  respectively 
(Fig. 1). The density (or pressure) of the 
gas is specified and is at such a level that the 
mean free path in the gas k is very small 
compared to both distances H and h (k /H << 
1, and X/h << 1). The ratio kin, however, 
may have any value from zero to infinity. 
I t  is desired to find an expression for the net 
thermal force acting on the particle. 

The expression for the thermal force here 
derived is based on a method proposed by 
Sherman (21) for correlating results for heat 
transfer and shear in rarefied gases and for 
estimating results when there is insufficient 
experimental or analytical information to 
establish a correlation. Sherman's method 
has been found to be in excellent agreement 
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with heat transfer data (22). Therefore, ap- 
plication of this method may be also fruitful 
in the evaluation of thermal forces in rarefied 
gases. 

In Sherman's method the dependent vari- 
able is chosen in such a way that it becomes 
independent of the Knudsen number as Kn 
becomes large. The independent variable is a 
quantity proportional to the Knudsen 
number. For instance, for the normalized 
thermal force Sherman's interpolation for- 
mula can be expressed as follows 

F/FI~M = [1 ~- (FFM/Fc)] -1, [3] 

where FFM is the thermal force in the free 
molecule limit (Kn ~ ~ ) and Fc is the 
thermal force at small Knudsen numbers 
(Kn << 1 ). Although it is possible to estab- 

lish formulas which are more accurate than 
Eq. [3] (23), the slight increase in accuracy 
offered by these formulas is offset by the 
considerable increase in their complexity. 

Equation [3] can be applied as long as 
F/FF~ is a monotonic function of the Knud- 
sen number Kn~, as is the case when Kn~r is 
much smaller than unity) Thus, once FF~ 
and Fc are known, the thermal force F can 
be calculated from Eq. [3] at all particle 
Knudsen numbers (0 < Kna < ~), pro- 
vided that Kn~ << 1. It  c~n also be used both 
with monatomic and diatomic gases. Un- 
fortunately, all the available expressions for 
FFM and Fc are restricted to monatomic 
gases, and for this reason the analysis that 
follows will be also limited by this assump- 
tion. It  is noted here that if the appropriate 
expressions are selected for FFM and Fc then 
Eq. [3] is applicable both to stationary and 
to moving particles. In the following we shall 
be concerned only with stationary particles. 
However, the method of solution is sutti- 

Note  t h a t  as long as KnH << 1 the thermal  
force varies inversely wi th  pressure.  This may  not 
be the case, however,  when this condit ion is not  
satisfied. For  example at  Knn >> 1 and Kn~ >> 1 
the thermal  force is di rect ly  proport ional  to 
pressure  (see Eq.  [1]). 

Journal of Colloid and Interface Science, VoL 34, No. 2, October 

eiently general that it could be extended 
readily to moving particles. 

For F F .  one may use Waldmann's result 
given by Eq. [2]. For Fc one may select any 
one of the expressions presented in references 
5-12. We arbitrarily select for Fc the follow- 
ing expression derived by Jacobsen and 

1970 

Brock (8): 

Fc = 9~r#2a 
pT 

~(k,/k~) + C~(Va) 

l -~ (4b/3)Cm(~/a)[(kg/k~) 1 • zc Ct(h/a) - 1] 
1 + 2(k~/k~) + (X/a)[2C~ , [4] 

+ 3Cm + 6e~(k~/k~)] 
+ 6CmC~(X/a)2 

Kna < 1; 
Kn~r << 1. 

In Eq. [4] g is the viscosity, p the density, T 
the temperature of the gas, kp is the thermal 
conductivity of the particle, b is a constant, 
and Cm and C~ are constants associated with 
the slip and temperature jump coefficients, 
respectively. For monatomic gases Ct and 
Cm are related to the thermal accomodation 
coefficient a and the tangential momentum 
accommodation coefficient ¢ by (7, 24) 

1 5 2 - a  2-0-  
Ct -~ and C~ ~ - - -  [5] 

8 c~ 0- 

By setting b = 2.4, as suggested by Jacobsen 
and Brock (8), and by using the relation- 
ships ~ = 0.5(8RT/~)I/2(Xp) and ks = 
(15/4)Rp, Eqs. [4] and [5] can be rearranged 
to yield 

F _ l l_ .k  2X 
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2]% X I +- 

+ 3c~ (1 + ~ + 

]% X C~ 

+ 3.2c,,,x + c ,  x - 

-~ [6] calculated from Eq. [6] over the Knudsea 
number range 0 < Kn~ < ~.  In order to 
check the accuracy of this equation, thermal 
forces calculated from Eq. [6] were compared 
to thermal forces measured by Jacobsen and 
Brock (8), by Sehadt and Cadle (16), and 
by Waldmann (3, 4). It  is noted here that 
the data reported by Waldmann are the 

O<=Kn~<= ~; 
KnH ~ 1. 

Where FVM is given by Eq. [2]. Note that 
Eq. [6] gives both the correct free molecule 
(F/FF~ ----> 1) and continuum (F/FvM ~ O) 

limits for the thermal force. Also, for large 
Knudsen numbers (Kn > 1), Eq. [6] re- 
duces to the exponential formula given by 
Sehmitt (14) and by Brock (19). 

D I S C U S S I O N S  

Given the properties of the gas and the 
particle, the parameters C~ and Ct, and the 
imposed temperature field VT~, the thermal 
force acting on a particle of radius a can be 

same as given by Schmitt (14). These experi- 
mental data were obtained for a wide range 
of gas to particle thermal conductivity ratios 
(kg/kp = 0.0022-0.133) and for a wide range 
of Knudsen aumbers (Kn~ = 0.05-4.0). 

In order to make the comparison shown 
in Fig. 3, one must select values for C~ and 
Ct. For most engineering surfaces the ther- 
mal accommodation coefficient z is between 
0.7 and 1.0 (26, 27). For their data Jacobsen 
and Brock suggest the value of 0.72 for a. 
Very little information exists on the tan- 
gential accommodation coefficient ~, but the 
available data indicate that ¢ is very close 
to unity (26). Therefore, here the values 
a = 0.72 and ¢ = 1.0 were selected, giving 
Ct = 3.32 and C~ = 1.0 (see Eq. [5]). 

I ,g,,kp 
F. 0 SH/con /n Argon ~ 0.133 (Waldmonn) 

FF M E~ TCP in Air ~ 0,133 

• Sodium Chloride in Air ~ 0,0041 ~ (Schodt-Caddle) 

I.O[L- A Mercury lh A/r ~ 00023 

ium Chloride/n Argon ~ 0.0028 (Jacobsen-Brock) 

0.8-- 

0.6 -- L~ U~O C m -- l O 
" %  

- • ~o~ c t =332 

A • 0.4 - -  ~ • "x,~ 

^ F _ / 
0.2 -- ~ ,~,,,/'FFM - /'~A 

0.I  1.0 I0 I00  

A= 2 a l+2(kg /kp)  ÷(Xlo)(2Ct+3Crn[l+2(kglkp)'l'2Ct(Xla)]) 
9 X (kg lkp) , 'C t (x /a ) ,5 .2  Cm(kla)[(kQikp)÷Ct(kla)_l] 

FIG. 3. Comparison between the experimental  data  and the formula proposed in this invest igat ion 
(EQ. [6]). 
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The comparison given in Fig. 3 shows good 
agreement between the results of the formula 
here proposed (Eq. [6]) and the data over 
the entire range of the parameters tested. 
Interestingly, Eq. [6] agrees with the data 
well even for those experiments where a di- 
atomic gas (air) was used. I t  appears, there- 
fore, tha t  Eq. [6] can be used to calculate the 
thermal force with reasonable accuracy, and 
lacking more accurate information on the 
parameters C~ and Ct,  the values C~ = 1.0 
and Ct = 3.32 are reasonable for use in the 
calculations. The only exception to this ap- 
pear to be the data  for mercury, which fall 
somewhat below the theoretical curve. A 
higher a value (and consequently a higher 
Ct value) would give bet ter  agreement be- 
tween the theoretical results and the mercury 
data, suggesting that  for the mercury-air 
combination a was close to unity. 

Finally, it is pointed out that  although 
Eq. [6] is restricted to problems where KnB 

<< 1, it can be used to correlate all the ex- 
perimental data reported in the literature. 
This is demonstrated in Fig. 2, where the 
Knudsen number ranges covered by the exist- 
ing data are shown. From this figxlre it can 
be seen readily tha t  although experiments 
have been performed at particle Knudsen 
numbers corresponding to the slip and transi- 
tion regimes (0.01 < Kna < 10), the meas- 
urements extend only to K n ~  ~-~ 5 X 10 -3. 
The wide Knudsen number ranges where 
data  are still lacking and where further 
measurements would be desirable are evident 
from Fig. 2. 
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