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The unitary spin-tensor operator transforming as the representation [4 2 0] in SU(3)
(the 27-plet) is discussed in detail. Using a recent result for the unique (nonarbitrary)
splitting of the multiplicity, complete algebraic formulas are determined for the complete
27-plet operator. Symmetry properties of the 27-plet operator are given. Applications to
both particle and nuclear physics are discussed.

1. INTRODUCTION

The 27-plet unitary spin operator—the SU(3) tensor operator transforming as
the representation having Young pattern labels [4 2 0]—is of considerable interest
for both physical and mathematical reasons. The 27-plet operator occurs in physical
problems in both (elementary) particle physics and in nuclear structure (shell-model)
physics. In particle physics, the 27-plet operator occurs most prominently in
symmetry-breaking applications: in second-order corrections to the Gell-Mann-
Okubo mass formula, in weak interaction Hamiltonians, and in electromagnetic
interactions. In nuclear structure physics the 27-plet operator is of interest in the
SU(3) (rotator) model of Elliot which singles out a dominant SU(3) multiplet (the
operator then directly splits the degeneracy). In shell model calculations, using a
fractional parentage approach, wherein several SU(3) representations may be
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mixed, the 27-plet operator occurs as one of the most important operators which
leads to such mixings. (We discuss these applications in Section 4 below.)

From the point of view of mathematical physics the <4 2 0>, (27-plet), operator
plays a most interesting role: It is the simplest operator in the simplest unitary
group displaying a nontrivial multiplicity. To be sure, the octet operator {21 0),
does indeed have multiplicity two (the familiar “F” and “D” operators of Gell-
Mann); however, this multiplicity is completely split by an involutory operation—
the “conjugation parity” [1]. In this limited sense, multiplicity two is not general.
By contrast, the 27-plet operator displays a multiplicity three for its diagonal matrix
elements; two of the three systems have the same conjugation parity and in conse-
quence the general multiplicity structure now appears. The principal new result of
the present paper is a complete algebraic determination of the 27-plet unitary spin
operator in a basis that resolves the multiplicity structure in a unique and non-
arbitrary (canonical) way.

For the evaluation of SU(3) operator matrix elements the simplest procedure
makes use of the “canonical scheme,” that is, the subgroup chain SU(3) O SU(2).
This chain induces a complete labeling scheme (/2, I, , and Y in particle physics).
For nuclear physics this is not the physically relevant scheme; rather one is forced
to use the chain SU(3) D R(3), where R(3) is the physical (orbital) angular
momentum of the shell model basis. This latter scheme introduces difficult technical
problems which we do not attempt to discuss here. However, for application to
nuclear physics, our operator evaluation leads naturally to the determination of
several SU(3) recoupling (Racah) coefficients (which are subgroup chain
independent). Since these coefficients are of direct application in nuclear physics we
have included a short tabulation in Appendix I.

In Section 2 we discuss in detail the method of calculation of the 27-plet operator.
In Section 3 we discuss several symmetry properties possessed by the 27-plet
operator matrix elements, including an important new symmetry property based
on asymptotic limits. In Section 4 we discuss applications to particle and nuclear
physics. The tables are given in Section 5, along with several illustrative examples,
so that the tabular results are directly accessible without detailed study of the method
of calculation.

2. CALCULATIONAL PROCEDURES

Before beginning with the details of the methods of calculation, it might be
useful to indicate briefly the underlying reasons why the structural problems
presented by the 27-plet operator are of interest. (A more detailed, and broader,
survey has been given recently by Wigner [2].) Briefly, the problem of multiplicity
in groups larger than SU(2) has been the major stumbling block in the construction
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of the associated Racah-Wigner calculus; the multiplicity appears, at least super-
ficially, to introduce unavoidable arbitrariness in the construction. A canonical
solution—that is, a solution involving no free choices—has, however, recently been
proved to exist for the SU(3) group [3]. In consequence, there exists in fact only
arbitrariness associated with phase conventions in the construction of any, and
hence all, operators in SU(3). A systematic approach to all calculations involving
unitary spin (SU(3)) is now feasible.

The canonical construction given in Ref. [3] is necessarily rather abstract.
Hence the explicit construction of the simplest example of a nontrivial multiplicity
——the 27-plet operator—is of considerable value simply to illustrate the principles
involved in the general construction. There is rather more than just this involved,
for this explicit example also serves to provide a sort of ““testing ground” for various
conjectures of a structural nature. [In Section (3), below, we give illustrations of
such conjectures.]

Finally let us note that this determination of the 27-plet operator is unavoidably
(algebraically) complicated. To obviate the possibility of error, we have actually
carried out two (algebraically) independent evaluations: (a) construction via the
product [200] x [220}] — [420] and (b) construction via the product
[210] x [210] — [420]. Both procedures are equivalent for the canonical
construction (ultimately they each involve six “quark’ operators); but, since they
employ different “paths” (arranging the work very differently) they provided a
valuable—and very stringent—check on the correctness of the results. (Other
checks are discussed in Section 3.)

Not all readers will be interested in the details to follow; for such readers the
examples of the use of the tables (Section 5) and the “translation guide” for relating
various notations (Appendix II), will enable the remainder of this section to be
skipped.

Notational Preliminaries

Let us restrict attention solely to the group U(3).

Wigner operators are defined as unit tensor operators; equally well, one may
define the Wigner operators by their effect on a generic state vector, |(m)), of U(3),
where (m) denotes a Gelfand pattern:

My3 Moy Mgs
(m) == mlo mgg . (21)

My

Here the m;; are nonnegative integers, obeying the betweenness condition
My . == My = My 54 - EVETy such array is associated with a unique state vector
of an irrep of U(3) and conversely. (The restriction to SU(3) is my; = 0.)
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A Wigner operator, denoted by the array

HM11
a2 o2

My M, My, |, (2.2a)
\ M 12 M 22 /
M 1n
carries two sorts of labels: (1) a Gelfand pattern, denoted by
M 13 M 23 M 33
(M) = ( M, My, )» (2.2b)
M, 11

which specifies how the operator transforms under the generators, and (2) an
“operator pattern” denoted by

2551
W = Pz 2271 ’ (2.2¢)
M13 M 23 M 33,
which specifies the shifts, when acting on an initial state vector |(m)nitial}:
mgnal - migltial = Amls = En (2.3a)
miinsl — migitel = Amy, = pyy + pop — P (2.3b)

miipel — misital = Am = M,y + My + My — pyp — gy - (2.30)

Just as the Gelfand pattern distinguishes state vectors of the same weight, so the
operator pattern distinguishes operators inducing the same shifts 4. (This is dis-
cussed in more detail below.)

A Wigner operator in U(3) is, at the same time, a sum of Wigner operators in the
subgroup U(2); expressed symbolically, this statement becomes the subgroup
reduction formula:

H11 Ha1
M2 Moo M2 fra2 M3, \
M13 M23 M33 = 2 M13 M23 M33 M12 M22 .
\ M, My, / Mix M, My, My /
My, My,

24
In this equation, [...] denotes a reduced Wigner operator (in particle physics this is
called an “isoscalar factor” [4]). The U(2) Wigner operators in Eq. (2.4) are
precisely the usual ones, whose matrix elements are the well-known “Clebsch-
Gordan Coefficients.”

(The U(2) Wigner operators and Wigner coefficients are given in the “pattern
notation” in Appendix IL.)

The great advantage of the reduction law is that it permits one to tabulate a
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simpler object, the reduced Wigner operator. Such an operator may be defined by
its action on U(3) state vectors, but in order that it be a proper operator, it must
however act on state vectors maximal in U(2), i.e., m;; = m,, . Thus one has

11
12 o2 ys Mg maa\
My Mgy, M ny, My /
M, My, My
My,
Mg + pyy Mag + (1‘12 + pos—pr) Mgy + (Myg + My 4 My - Mg — ."«22)\
= # My + My Mgy + (Myy + My — Myy) /

my, + My, /
2.5)
Here # denotes an algebraic function, that is, the explicit matrix element of the
reduced Wigner operator, also called “reduced Wigner coefficients,” to distinguish
them from the “Wigner coefficients” which are the matrix elements of the compo-
nents of the full Wigner operators.

From this equation one sees that a reduced Wigner operator causes two shifts:

4y = (dmyy , Amgs , Amyy), in U(3) labels (2.6a)
4y = (Amyy, = My, Amyy, = My, + My, — Myy) in UQ2) labels.  (2.6b)
It is helpful to note that there is an analogy between the shift pattern of an

operator and the weight of a state vector, For the [4 2 0] state vectors we have the
familiar 27-plet weight diagram:

«-—>

Gifieo
—
N

Fic. 1. Weight diagram for the irrep (420] of SU(3).
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We sce that there are 12 weights (the outer points) with multiplicity one; 6 with
multiplicity two (the circled points) and 1 with multiplicity three (the center point).

The multiplicity of the state vectors is resolved by the Weyl branching law; the
resolution is denoted by the Gelfand pattern [1]. The multiplicity of the Wigner
operators is resolved—for U(3) at least—Dby the existence of an operator branching
law; the resolution is denoted by an operator pattern.

The construction of extremal reduced Wigner operators (which have multiplicity
one) has an elegant solution in the “pattern calculus” of Biedenharn and Louck [5].
We can use these techniques to check some of the multiplicity one 27-plet operators
given in the tables of Section 5.

The determination of the multiple operators is the most difficult task. For this
purpose, we use the Factorization Lemma of Ref. [3]. Consider a boson operator in
UQ3) x U(3), that is, a polynomial operator made up of the nine basic boson opera-
tors a;* (with i, j running over 1, 2, 3) transforming as the two U(3) Gelfand patterns
(M) and (M'), where M;; = M, . Briefly put, this lemma asserts that the boson
operator

4
My

By Mz My My @7

may be factorized into the product of two U(3) operators, each acting in a distinct
U(3) space:

My
My, Mg
B M13 M23 M33

M1 H11
/ M2 Moz / 12 (357 \
= Z MUEL My My My V| My My, My A2

Myghgohyy \ M12 M22 / \ M{z Méz
M 1 2 M {1 @

(2.8)

Here .# is an invariant operator of U, * U, which has eigenvalue equal to the
measure 4 (M3M,,M,;) for an arbitrary state vector with U(3) irreducible labels



ON THE 27-PLET UNITARY SYMMETRY OPERATOR 91

(M3My3M,;) and B is the boson operator which brings the vacuum state of
U, x U; to a state with the assigned labels. That is,

My, My,
M, My My M
My M, My | = M2 B | My Mg Mg ) 1O (2.9a)
My, M, / My, Mo,
My My
A (M13 + 2)’ (M23 + 1)' M33‘ — y///’/(M13M23M33).

T My — My - 1) (Myy — My + 2)(Myy — My + 1)
(2.9b)

The indices £ and « designate the fact that the Wigner operators act, respectively,
on the lower and upper Gelfand patterns of an arbitrary state vector of U, x U, :

myy \
My, Moo My May3 Mgs My Moy m33\
My Mg Mgy | = My Myo s My / (2.10)
My Mg / my / ¢ myy [
my

The crux of the multiplicity resolution is this: Upon choosing special U(2) shifts
in one U(3) space, a single operator becomes nonvanishing, and the factorization
lemma thereby determines this particular operator on general state vectors (in the
second U(3) space). Expressed somewhat differently, by choosing special initial
and final state vectors in one U(3)—corresponding to maximal shift in the U(2)
subgroup—the multiplicity splits, that is, the operators branch aff.

The actual methods of calculation are then the following.

First Method: 200> x (2205 — (420>

We evaluate the Wigner operators for the SU(3) representation <4 20> from
those of the representations (2 0 0> and (2 2 0) in a build-up fashion. Since these
latter representations have no multiple weights, their Wigner operators can be
easily obtained following Ref. [5], so we assume that they are known.

The first step is to express the boson (polynomial) operators of the representation
[4 2 0] in terms of those of [2 0 0] and [2 2 0]. These relations can be obtained by
coupling together the boson operators of [2 0 0] and [2 2 0] to a resultant [4 2 0],
using the fact that both lower and upper patterns of the boson polynomials are
coupled by means of known Wigner coefficients (the (200> and (220> coeffi-
cients).
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We then have

® 4201 | 52\ [220| [420) ] 52, | (220
B(420)= Y < <2 0 o> >< <2 0 0> >
@/ FEH @ @) 1@V B ®) /1@
(8) (8"
X 3(200)3(220), @11)
(«) (o)

where we use an abbreviated notation: (o) = ("2, ).
As a second step we take Eq. (2.11) between initial and final state vectors of
U(n) * U(n), i.e., between

,
my ' myy
’ ’ _— vyt 4
UOT nyo mys My
HOT Mg M3 and myy Mog Msg ¢,
nye May myy Mgy
mn mll

respectively.

Now apply the factorization lemma, Eq. (2.8) once on the left side of (2.11) and
twice on the right side after expanding the product on a complete set of intermediate
state vectors of U(n) x U(n). In this way, we obtain an equation relating Wigner
operators of {4 2 0} to those of (2 0 0) and <2 2 0>, namely,

) LCT Mag Mg
<4 2 0> My, Mgy >
()

myy
My Myg M3 (») Myg My Mgy
X 77 7798 420 My, mye
my, B
22 0\ <4 20

iy
2 2
420 2.0 2.0 220
=z<a<200> a,, <2oo> >
((gl'))((aé’:')) ( ) (al) ( )/ (B) ()3/) (ﬂ)
iy g 7ﬂ‘aa>

M3 My Mg (‘}’I)
x Y My Mg 200 Wy,
AR ) ()

My

))

()

mMye Mgy

<m13 Myg Mgas
myy

Myg. Mgy, My

AR
127 22 11
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bl - - "
/ mys Mg figg| [(¥")\ | Phas Nas Mgy
X iy, Mg 220 Mys Moy
\ m11 (0‘”) Hlyy
J— — ! ==y
My3 Mgy Pigg ") mys Mag Mg
X Mis Mg 200 iy, Wiz
mj, 8) my,y
s Myq g | [ (Y)\ | Mg Moy msa\
X iy 29 220 mi, Mjs . (2.12)
iy, (8" my /

In view of the shifts 4m,, induced by the Wigner operators (Eqs. 2.3) we have:
(1) The sum in (y) extends to all () such that

Amm('}’) = yi = My — My,

Am23(y) = Y12 + Yar — Y = Mgy — Mgy, (2.13)
Amgy(y) = 6 — yy3 — Yoo = Mgz — Mgy .
(2) The sums in (y') and (y") extend to all () and (") such that
7'111 +ovn = Y110
14 ’ " " i (2.14)
Yzt Yoo T Viz T Voe = Y12 " Voo
(3) The intermediate irreps should satisfy
My = Wy = my; + vy,
Moy = Mgy = Mgy + (Yia+ ¥3 — ¥3) (2.15)

m

33

—

Mgy = Mgy + (4 — ¥, — Vi)

To find the explicit terms in the sum over %y, , 7y, , 7y, ; My, , My, My, and to
evaluate the resulting matrix elements of SU(3) Wigner operators (i.e., SU(3)
Wigner coefficients) it is, of course, advantageous to express these matrix elements
in terms of matrix elements of U(2) Wigner operators (i.e., usual Clebsch-Gordan
coefficients) and the matrix elements of the reduced Wigner operators (i.e., reduced
Wigner coefficient or isoscalar factor).
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This is done by taking matrix elements of the reduction formula (Eq. 2.4), i.e.,

P11
5 * ) (@) (i) (i)
mig " Myg " Mgy HByp Hogg My Myg mss\
(i) (@)
my; m M M. M, m mg,

" 13 23 33
(2)
\\ my \ M, My, myy
M

11

M )
= M M. )
my) 12 22 o
1
M,
¢ i H Hu
() ) @) @ @
m ” m " m Fig Pas Mis Mas Mgy
) (Z) (i)
X m m My M, M,, Mg, My, o Moy
(2
my, M, My, My, /
u
(2.16)

To simplify the writing of equations we will use the functional notation

Pz Mg

m
My My My |(M : 217)

() ()
Mg © mas)

() i
My, My,

to designate the explicit matrix element of the reduced Wigner operators. In this
notation the part [---] designates the function and the (---) designates the variables.
This functional notation is completely explicit since the labels of the final U(3)
state vector in the matrix element are determined once we give those of the initial
state vector, as can be seen in Eq. (2.5). (We have omitted m{) since it must, by
definition, be equal to m{J.

Choosing appropriate values for the labels of the U(3) * U(3) final state vector
in (2.12), using (2.16) and the explicit expressions for the matrix elements of the
reduced Wigner operators of [200] and [220] one gets an equation with the
following structure:

» ! ‘2
Yy [ 42 0] (m13 Mo mas) [4 2 0] (mw ) Mas ) msa)
) L (a) Mz Mg B Yot Msy

=g gB) Y g g/ B)a;, (2.18)



ON THE 27-PLET UNITARY SYMMETRY OPERATOR 95

where the a; depend only on (my3 , M5 , My3); g and g’ are the same functions, the
first having the variables (m,5 , My , M55 , Mys , My,), and the second, the variables
(Mg » Mg > Mgy , Myp » Mys). (The sum in i comes from the fact that in general there
are more than one pair (y')(y") satisfying (2.14).)

For the cases in which (/1,3 — Mgy, filag — Mgy , Mgy — Mgg) is equal to a weight
A of multiplicity one, both summations in Eq. (2.18) have only one term and the
final answer has the factored form

() .
420 (m13 Mg 17133) = g(a, y) gl ) ay(y). (2.19)
() My Mg

For those cases in which (7,5 — Py, , Myg — Mg , Migs — Mgg) IS equal to (2, 2, 2),
that is, the cases with multiplicity three, the right side of (2.18) has 6 terms and the
triple degeneracy in the left side can be split by the arguments that follow.

When we compute the right side of (2.18) for A(y) = (222) and () = (B) =
(*,9, we find g, = g, = g, = 1 and g4 = g5 = g¢ = 2. With these values the
right side factors completely, and assumes the form

gg(404) [ S 5 z]”z

i=1

X 3[g’(404) [Zﬁ gjaj] 1/25. (2.20)

i=1

In other words the right side has the form of a function in (my,m,,) multiplied by
the same function in (myymy,). Since (my, , Msyy) and (my, , my,) are independent,
and the three operators in the sum on the left side are linearly independent, this
requires that only one of these three operators differ from zero, the others necessarily
vanishing. We may then make the assignment of labels (precisely why is discussed
below):

2
Mg Mas Mgy
[4 4 2 0 O}( My Mgy ) # 0,

2.21
2 (2.21)

2
3,1 s M3 Mag\ 2 mMys Mg Maz\
[4 4 i 0 0}( My, Hgs ) o 4 0 0 ( My Mg ) =0

From this assignment, (2.21), and Eq. (2.18) we get the result

500 (M M  Ma)_eaon|Ygal| . @2
4 s Mgs = 1§ i=1giai . 22)
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Using this value in Eq. (2.18), we get

4.0 13 23 33 &
[4 2 0] (™ ™ ™) = = g % 8084 @)

There are two arbitrary steps in this procedure: (a) the specific assignment of
labels (Eq. 2.21), and (b) the choice of a - sign in extracting the square root
(Eq. 2.22). When we discuss the limit properties (in Section 3), both steps will be
seen as necessary in the light of a larger structure.

This procedure determines completely one of the three operators which induces
a shift 4, = (222). Now we use (2.23) to eliminate one of the three terms on the
left side of Eq. (2.18). This determines a new equation, involving now only two
operators. Putting («) = (8) = (¢, ?) in this new equation, once again we see that
the right side splits into a product of two factors, one in the unprimed, the other
in the primed variables. In other words, our previous argument may be iterated to
determine successively the three operators having 4 = (222).

For the cases in which (i3 — m,g , Mgy — myg , Mgy — My,) is equal to a weight
of multiplicity two, we use again the lower U(2) labels (* , °), and the same argument,
used above, shows that the right side splits.

Second Method: 210> x 210>—><420)

In this method a buildup process is again used to construct Wigner operators
of U(3) irreducible tensor character {42 0>. There are two differences from the
first method. In place of the representations [2 0 0} and [2 2 0], the buildup process
employs the representations [2 10] and [2 10]. In place of Boson (polynomial)
operators, U(3) Wigner operators of character {2 10) are coupled directly to
form an operator of irreducible tensor character {4 2 0):

O\ 1)
<42° | 1°> 2’10 210 (2.24)
(a’ )(a') (@)

where (y'), (v"), and () are fixed. The matrix elements of such an operator between
UQ3) state vectors {(m)| and |(m)> can be expressed as a linear combination of
Wigner operators which induce the shifts dm;; = i3 — myg (( = 1,2, 3) in the
irrep labels of the initial state vector, since Wigner operators form a basis for tensor
operators. The coefficients of such a linear combination must be U(3) invariant, so
they are functions only of the irrep labels 7,5 , m;5 , [4 2 0] and the operator (upper
pattern) labels (y), (), (¥”), (z%,). In fact these coefficients are precisely U(3)
Racah coefficients as can be seen by comparing the linear combination with the



ON THE 27-PLET UNITARY SYMMETRY OPERATOR 97

recoupling transformation involving three U(3) irreducible representations—the
classical way of defining Racah coefficients.

Taking matrix elements of (2.24) between U(3) state vectors {(#)| and i(m))
one thus gets

—_ p— ”y o
Mgy | [(¥")
420 2 1 0 & = Y] 0\
(OL) 12 22 P
(o’ )(1") ( ") ﬁill ((X”)/
g My ﬁ%\
X My May /
myy
fiyy Mg My | [(Y)\ | M3 a3 Mlga)
X My 7ty 210 nigs My
iy, («") my
My Mg Mgy ) my3 a3 M)
=y iy, Mgn 420 Py Pay >
it My OF My i

X U gl[2 101 g2 1 0% [7] viers s 4201 1 35), (225

where the sum in (y) extends to all (y) such that 4(y); = M, — my; and the U-
“coefficients’” are U(3) Racah coeflicients in unitary form. [Our notation for the
Racah coefficients is a generalization of the notation of ordinary angular momen-
tum calculus; the order of the U(3) irrep symbols is that introduced by Racah. The
row and column indices in the Racah coefficients must include the operator
(upper pattern) labels (y'), ("), (y) and (") = (, 2,); but since m;, , ;3 and i,y
are fixed, we see (by Eq. (2.3)) that, in the problem we are dealing with, the labels
vs2 are sufficient to characterize the multiplicities, when present.]

By writing a second equation of the form (2.25) with («)’s replaced by (8)’s,
multiplying the two equations, summing over (') and (y”) (hence also 7 ), and
using the orthonormality relations of the Racah coefficients, an equation of the
form (2.12) is obtained. The present method however, makes use of Eq. (2.25)
directly and therefore leads to a simultaneous calculation of the U(3) Wigner and
Racah coefficients. (Explicit tabulations of the matrix elements of the operators
[2 1 0] needed for the evaluation of (2.25) are given in Refs. [Ic] and [6].)

In cases where the (i7;; — m;3) do not lead to multiplicities, the single U-coefhi-
cient that then appears in Eq. (2.25) serves merely as a normalization constant.
Its magnitude can be evaluated from the orthonormality relations of the U(3)
Wigner operators.

595/60/1-7
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In cases where there are multiplicities, this can be resolved by special choice of
(y") and (y"). This can be seen by using some special features of the U(3) Wigner
operator [210]. The U(3) Wigner operators <2 10> with operator labels
() = (111, a1114p) is identified with the generators of the group [Ic, 6]. As
can be seen from the expressions of its matrix elements [lc, 6], the maximum
change in the isospin ( = 1/2(m,, — my,)) that a SU(3) generator can produce is
| AI'| = 1/2. Therefore the reduced Wigner operators of {y 1114y with | 41| > 1/2
must vanish identically and this in fact happens for [2 1 ; ! 0] and [2 : % 3 0], which
produce 47 = 1 and 41 = —1, respectively.

For the multiplicity three cases (y) = (3 ?,), and therefore (y") and (y*) can
independently be (; 1) or (1 ;). With the choice (y') = (y") = (; ! ) the operator
(2.24) has the property that its reduced Wigner operators with Gelfand labels
(lower pattern) (&) = (*4°), (*¢%, (*5°), (*1°) and similarly () = (*4 1), (*17);
(%39, (3,9 are all equal to zero. [The first of these has the components 2, —2, 1,
~—1 of an I-spin tensor of rank 2 while the second has the components of two
I-spin tensors of rank 3/2.] This property allows us to identify the operator (2.24)
resultant from this choice as the operator {, 23z ,> of the first method. Then the
sum over (y) in the right side of (2.25) collapses to a single term, and the calculation
proceeds as for a matrix element without multiplicities. With the choice
() = '), (") = (1) it would appear from similar arguments that the matrix
elements of Eq. (2.25) would involve a combination of matrix elements of Wigner
operators {, 331,> and {, 2 5 2 o>. In this case, however, the symmetry under conju-
gation parity (Symmetry 1 of Section 3) rules out {, 252 o> and the calculation of
the matrix elements of the operator {,331,> proceeds as for a matrix element
without multiplicities. With the choice (') = (y") = (3 ), the matrix elements of
Eq. (2.25) involve a combination of matrix elements of Wigner operators {, 450 o>
and {, 222 ,), both with the same conjugation parity. Since we already know one
of them, the other ({; 4 2 0 ¢>) can be calculated using the orthonormality relations
for Wigner operators.

To resolve the cases of multiplicity two we observe in Fig. 1 that the positions
of the double degenerate weights coincide with the positions of the single weights
of the analogous figure for the representation [2 1 0]. This tells us that for the multi-
plicity two cases () and (y") should be chosen such that one of them is equal to
(4}, or (;1,) and the other is equal to any (y) different from (;*y) and (3 1)
(the ones leading to single weights in the weight diagram of [2 1 0]). The rest
proceeds in the same way as the multiplicity three cases.

Since this method essentially calculates only products of Wigner and Racah
coefficients, these are again determined only to within an overall 4- sign which is
fixed by the limit properties to be discussed in the next section.
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3. SoME GENERAL PROPERTIES OF THE MATRIX ELEMENTS

The matrix elements of the reduced Wigner operators all have the general form

@) LCT m Mg3s f(), A(y))
e B AL

The function f'is a square root of a product of linear factors. Up to a numerical
factor, it can be obtained directly from the “pattern calculus” [5]. Note that f
depends on (y) only through the weight (i.e., shift) of the upper (operator) pattern.
[That is, operators with different () but the same 4(y) = (yy1, y12 + V22 — Y11 »
6 — 12 — ya0) have for the same () the same factor .}

The function 4" is a normalization factor, and depends only on the U(3) irrep
labels (5 , 1155 , M,3). The function 4" may (and indeed must) vanish for certain
(lexical) choices of the variables {m;}. For such a case the numerator of Eq. (3.1)
also vanishes, but we nonetheless must, for consistency, define the operator to
vanish when operating on state vectors having these labels.

[This vanishing of the normalization function .4” reflects an important structural
property of the canonical splitting of the multiplicity. It is a necessary property
that when <4 2 0> acts on certain irreps the actual multiplicity is less than the maxi-
mum. (This is not unfamiliar; for example, all operators acting on |[m;5 0 0]>
state vectors necessarily have multiplicity one.) In every case where the actual multi-
plicity is not maximal, one or more of the normalization functions will necessarily
vanish. We may express this by saying that the vanishing of .4" determines the ru//
space belonging to the associated operator [7].]

The function F is a polynomial in the five SU(3) labels, my; , mgq , 145 1 11145, Hlsg .

The methods of Section 2 determine the reduced Wigner operators up to an
overall phase; in addition, there is a choice in assigning upper (operator) labels to
the operators with multiplicity. To solve these problems we make use of an impor-
tant asymptotic limit requirement on the matrix elements of reduced Wigner
operators [7], namely,

(
lim lim 4 ;)0 (m13 Mgy m33)
Mgy 00 Migg—>—a0 o g

(@)
azz] (m13 - mza)_ (32)

Yiz Yoo Y11
T
This formula, due to the presence of the delta function factors, tells us that in the

=8 3
%11
limit of (negatively) large m,, and m,; the matrix element of the reduced Wigner

O1p  Oog
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operators must vanish unless the U(2) irrep labels of the operator pattern (yys , ¥22)
coincide with those of the lower pattern (o, , as,). This property, for the case of
multiple operators, determines uniquely which upper labels must be assigned to
the operators.

When the labels match properly, the right side of (3.2) gives us an SU(2) Wigner
(Clebsch-Gordan) coefficient in the variables (mys, my, my,). [For U(2) the
reduced Wigner operator (denoted by square brackets) coincides with the Wigner
operator itself (angular brackets). We chose to use square brackets in Eq. 3.2 to
indicate that this is a special case of a more general property.]

By comparing with the asymptotic limit of the operator on the left side, we also
determine the correct overall phase of the operator.

The matrix elements of the reduced Wigner operators have the following symme-
tries:

(1) The Symmetry Related to Conjugation

4(;/)0 (mla — Mgz My3 — Myy 0)
(@) Mg — Mye NMyg — My
»)
o eamangtel | 4 2 0 (m Mgy Mgz
= (= 4— oy 4—ap ( UGT) Mgy ) 33)
4 4 ayy — g — Uy

Here (—)°* is an overall sign for all the components of an operator with upper
labels (y). (It is just the parity of the operator under conjugation.) For the multi-
plicity three cases it coincides with (—)zz.

It is quite difficult to give an explicit formula relating (y") to (y). From (y) one
knows directly the shifts it induces on the initial irrep labels. That is, (y) — 4(y).
Similarly, we know that A(y’) is known from 4(y); this is just the operation of
conjugation applied to the shift labels: 4(y") = A(y). Explicitly,

Ay s = A¥)s — AP)as + x»

A(Y)es = A(yhs — A(¥)es + X (3.4
A(Y)ss = x-
[Here y = 4 — v,; is a “translation factor” to make 4(y) an allowed weight of

420)] ‘
If one could obtain (y’) from 4(y’), we could then find the induced transforma-
tion:

@) ~ &)

' A
Ay) — 4.
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However, only in the absence of multiplicity is this association (a priori) unique.
The canonical splitting of the multiplicity makes the association always unique.

Using the canonical labelling, we first partition the 27-plet operators into three
classes:

Class I contains the 19 operators with operator labels:

2

) = (442)4’ (432)’ (422‘)’ (44])’ (411)’ (440)’ (400)’ (330)’ (300)’ (220)’ (210)’ (200)’
(431)’ (421)’ (430)’ (s0) (320)’ (310)’
(o)

Class II contains the 7 operators with operator labels:
3 2y 3y 1 2 1
= (3 z)’(3 2)’(.3 1) 5 1)’ (2 1)’(2 1)’
2
(51)

Class III contains only the operator with operator labels: (y) = (% ,).

The canonical splitting requires that this symmetry operation not mix classes.
This symmetry is an extension to the reduced matrix elements of the conjugation
operation applied to the (complete) Wigner coefficient, i.e.,

{(m)y (m)y | (M)y> — (—)° () ()g | (#0)3).

For the U(2) Wigner coefficients this symmetry is precisely the symmetry under
change of sign of the magnetic quantum numbers.

(2) Reflection in the Hypercharge Axis

&) m m; m
[4(300]( 13 s — 1 23 — 33)

(y)
4 2 0 (m13 My m33)
nys Myy

, (3.5

K12 Hag
oy Aay — oy
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where ¢ is a plus or minus sign. For the multiplicity three cases we have
€ = (—)ustomtounlya-1_ (For the other cases the phase e is very complicated and
will be omitted.)

(3) Symmetry Under Permutation of the U(3) Partial Hooks

) (3
P [4(2)0] ‘(m13 My, e My m%)} — @) [4(34)0] (m13 My . Mgy mas) (36)

where P;; is the permutation p;; <> p;; in the matrix element. (The partial hooks
are defined by: p;; = m;; +j — i)

The relation between (y) and (y’) is analogous to the one in the conjugation
symmetry, the only difference being that now the shifts 4(y), and 4(y’), are related
by a permutation in the 4;;. That is, 4(y");; = A(y)js, A(y");3 = A(y)ss, the
other remains unaltered.

For the multiplicity three cases we have (y") = (y) and (v, y, ¢") = 1. This
means that the matrix elements of these reduced Wigner operators are invariant
under all permutations of the { p;}. Then, by the fundamental theorem on invari-
ants [8] they can be expressed in terms of the symmetric variables: the two Casimir
SU(3) invariants and the U(2) variables I(isospin) and Y (hypercharge). (These are
the four (Elliott) variables g, I, €, /l—see the notation guide in Appendix I1.)

For the other cases the values of € (o, y, ") are given in Table XI for the entries
(@), ), &), i, J.

This symmetry was recently studied by Alisauskas and Jucys [9].

(4) Symmetry Under Permutation of the Representations Involved

The SU(3) Wigner coefficients have also definite symmetries under permutations
of the representations involved [6]. We present here only that permutation which
takes the <4 2 0> operator into itself. For this we find

»
<(m)fina1 l [4 2 ()] l(m)initia,l>
()

L ( \urraoy [l ) (P — pog)initialyl/2
-O [dim([m,-3]initial)(pm - Pzz)ﬁna}]

4 — Y
4 — yu 4 — 1y
% <(m)initis,1 [ |4 2 0] | (m)tivaly, (3.7
4 — oy, 4 — oy,
4 — qy
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where

dim([m]) = 1/2(my; — myg + 1)(myy — mgy + 2)(myy — mgg + 1)
= 1/2(p1s — P2s)( P13 — P33)(Pas — P33)
= 1200+ D + DA + @+ 2). (3.8)

4. APPLICATIONS

A. Particle Physics

The present situation in particle physics has reached something of a consensus:
unitary symmetry is to be confined almost exclusively to singlets and octets for
mesons; and unitary singlets, octets and decimets for baryons. The justification for
this restriction is entirely empirical; it has, however, been raised to the status of an
axiom (“the absence of exotic resonances™) in the so-called duality diagrams. For
the present work this has a clear implication: the 27-plet is essentially of no interest
as a possible particle multiplet—although, to be sure, there are early papers to the
contrary.

Unitary symmetry is, however, strongly broken and implies that the particle
wave functions must contain components from other multiplets, preserving,
however, I and Y. It is usually not possible to estimate this mixing, since a dyna-
mical basis for particle physics is lacking. Admixture of 27-plet components into
the baryon decimet was proposed by Cutkosky [10] to explain the reduction of the
relative width I'(2(1385) — 2 + =)/ T'(2(1385) — A + =) from 0.16 (SU(3) value)
to the experimental value ~0.04. Cutkosky estimated the mixing to be expected on
a self-consistent (bootstrap) model of the baryon states. Wali and Warnock [11]}
and Golowich [12] show that 27-plet mixing is less important than might
be expected [10b].

As a unitary operator, however, the 27-plet system is of considerable current
interest. Applications of the 27-plet operator occur in several basic ways:

(a) Second order terms in the Gell-Mann-Okubo mass formula [13].
(b) Electromagnetic mass shifts [10b).
(¢) Two photon operators {10b].
(d) Weak interactions (41 = 3/2, 27-plet piece of the weak Hamiltonian) [14].
(¢) Chiral (SU(3) x SU(3)) symmetry breaking [15].
As an illustration of the applicability of the present results, let us consider in
more detail item (a). In terms of unitary operators, the celebrated Gell-Mann-—

Okubo mass formula can be considered as the statement that the medium strong
interactions which break unitary symmetry transform as the / = ¥ = 0 component
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of the two octet operators {3131 ¢) and <, 2 0 ,»—the F and D operators respec-
tively. To first order, then, the mass operator has the form

11 2 Lo
Myp=a-14+b-(2,1,0) +c: 2 1 o> @.1)
1 ok

from which we obtain the general algebraic form of the Gell-Mann-Okubo
relation

12y c Y\2 3r
+—— I+ 1)—|—) - L—=3Y 4.2

i Tve @+ (5) - & T ), @2
with B = (41,2 + L2 — 36L%)/1, .
[Here I, and I, are the second and third order Casimir invariants given in Appen-
dix IL.]

If we specialize to the octet case, our general result for the Gell-Mann-Okubo
formula takes the form

a+b-

—a+b- L + S (ra+ 1)~ (TY)Z —1). (4.3)

Vs
This result—and hence our general result—differs from the usuval version of the
Gell-Mann-Okubo formula in two ways: (a) The operators have been properly
normalized (this is the origin of the complicated normalization factor, B, above);
(b) the operators have been given precise (covariant) meaning [16] (note the extra
1" in the last term compared to the usual form of the Gell-Mann—-Okubo result).

Both changes are essential in the Gell-Mann-Okubo formula, if we are going to
compare the symmetry breaking terms between various unitary multiplets, and if
we are to compare the actual size of the various terms arising in different orders.

Let us now extend these results to the next order. Estimates of the size of the
second order effect of the symmetry breaking in the Gell-Mann-Okubo mass
formula—specialized to the octet—were first carried out by Okubo [13] and by
Dalitz [17]. Since the separation of properly covariant tensor operators has not
been taken explicitly into account in this, or subsequent work, it is of interest to
indicate these changes here.

To second order in the medium strong interaction (and using normalized cova-
riant operators), one finds for the mass formula the form

1
>+ <221°0>
111

Myy=a-1+4+b- i
22, 31y 420

4 2 0 +e 4 2 0 +/{4,2,0). (4.4)
2 2 2
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The general matrix elements of this operator can be written down from the tables
of Section 5, but we shall specialize at once to octets and decimets. For both of
these cases only one 27-plet operator is nonvanishing and we get, for the octet, the
mass formula

Y | ¢ Yy
M=a'1+b"2_+§/‘§'[1(1+1)—{7} —1]
1 4
tdopragaen -l 43

(It is interesting to note that just these four operators form orthonormal vectors
(with respect to the trace) over the four 7, Y multiplets of the octet.)
Applying this to the baryon octet we find

as = (1150.18 < 0.12) MeV,
by = (379.07 - 0.36) MeV,
s = (89.01 - 0.12) MeV,
dy = (—11.87 + 0.20) MeV.

(4.6)

These terms show the expected variation in order of magnitude, in particular the
second-order effect, d; , is very small. Electromagnetic splittings are of the order of
d; so we must correct d; for such effects. We can do this most expediently by the
very nice technique (of Dalitz [17]) which uses as the (/, Y) multiplet average masses
the values

MU =1/2,Y = 1) = /oM, + M),
MI=1,Y=0 =M, +M,_—M,,
MI =0,Y=0)= M,,

MI=1/2,Y = —1) = 1/2M + M_).

4.7

For this choice all electromagnetic effects cancel out in determining d,. The
corrected value of dg is found to be dy = —12.34 - 0.40 MeV. This is only slightly
changed from the previous value and shows that the 27-plet contribution is probably
genuine (but small) and nonelectromagnetic in origin.

Specializing next the general mass formula to the decimet, the D operator,
{32104, vanishes, along with two of the 27-plet operators, and we find

Y 1
M=a+5b 2\/§+d RV,

= (5Y* 4 3Y —5). (4.8)
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Applying this to the 3" decimet one finds

alo = 1383.6 MeV,
by, = —415.3 MeV, 4.9)
dyy — —6.43 MeV.

The second-order term, d,, , is quite small and of the order of the electromagnetic
splittings. We can correct for these effects by including Dy and (27), terms, along
the Q-direction; that is,

Y 5Y24+3Y—5 0 502 4+3Q—5
M=a+b —+d = = . .
thAT 5vi T ¢avi T o 410
Again applying this to the #" decimet we find
ay, = 1381.4 MeV,
by = —416.5 MeV,
dypy = —17.1 MeV, 4.1
ep = —14.1 MeV,
Jio = 15.9 MeV,

We note that a,, and by, are essentially unaffected, in contrast to the term d, .
We conclude that the second-order effects are probably not significantly determined
by data of the present accuracy.

It would be reasonable now to apply the second-order formula to the pseudo-
scalar and the vector meson octets. The situation, however, is not very clear: If one
uses the Gell-Mann-Okubo approach (extended to the 27-plet), singlet-octet
mixing is not included; if one uses the quark model approach (with the lambda
quark heavier) singlet-octet mixing occurs very naturally, but then the model fails
to give the (baryon) Gell-Mann-Okubo formula and excludes 27-plet corrections.
A purely phenomenological approach is under-determined. We will not pursue
this further except to say that the vector meson octet, with singlet-octet mixing,
shows a very small 27-plet contribution (less than 19, of the central (mass)? term).

It should be remarked that the tables of SU(3) recoupling coefficients are directly
of interest in particle physics as crossing matrices. The results presented in Appen-
dix I are a considerable extension of previously given tables.

B. Nuclear Shell Theory

In shell model calculations of light nuclei, in particular in the 2s — 1d and 1p
shell, a classification of many-nucleon states according to representations of SU(3)
leads to a physically meaningful truncation of the shell model space. Unfortunately
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the relevant classification scheme leads to the group chain SU(3) O R(3) where R(3)
refers to the orbital angular momentum (L) of the shell model basis. The Wigner
coefficients for the canonical group chain SU(3) O SU(2) therefore have few direct,
immediate applications in nuclear structure problems. The calculation of nuclear
matrix elements by fractional parentage techniques can, however, be simplified by
performing sums over the SU(3) subgroup labels. The resultant expressions involve
SU3) Racah coefficients. Since these are independent of the subgroup chain and
are a natural byproduct of the calculation of SU(3) Wigner coefficients, the results
of the present work can be used in applications to shell model calculations.

A totally antisymmetric n-nucleon wave function can be expanded in totally
antisymmetric functions for (n — 1) particles coupled to an »-th one by an expan-
sion in terms of coefficients of fractional parentage (c¢fp). The cfp can be factored
into a space and a supermultiplet (SU(4)), -spin (S)-isospin (7)) part

At 1 \
Full ofp = [32=H] (Upad s Ly s 114 U L

X <[fn—1] Bn—lsn—lTn~1 ; .]z }i | :[fn] 5nSnTn>, (412)

where 4" is the dimension of the irreducible representation of the permutation
group on n objects described by the Young pattern labels [£,]. The contragredient
representation describing the symmetry of the n-particle spin-isospin function is
denoted by [f,]. The labels « are short hand notation for all space quantum
numbers other than L; 8 describes the supermultiplet quantum numbers other than
S, T, when needed. For 1p shell calculations the space part of the cfp is a reduced
SU(3) Wigner coefficient (in the SU(3) D R(3) scheme). For 2s-1d (and higher)
shells, the space part of the cfp can be factored into two parts; one involving the
higher symmetries, and a second which is again a reduced SU(3) Wigner coefficient
(matrix element of a reduced Wigner operator).
Space part of cfp =

<[fn—1] an—l(An~1:u'n-l); [1]()\11*"1) H [fn] an(An/‘Ln)><(An—1Hn—1) anlL'rwl 5
(AllLl) prll ()‘n#n) K,Ly». (4.13)

The SU(3) irrep labels have been written in the Elliott notation (Aw) = (my; — my,
Mgy — migz). In the 25-1d shell the Young pattern labels [ f ] characterize irreducible
representations of SU(6). Additional labels, a, are needed to fully characterize the
SU(6) D SU(3) part of the group chain in this case. The reduced SU(3) D R(3)
Wigner coefficients are characterized by (Aw); the orbital angular momentum L:
and an additional label K. (The difficult technical problems associated with this
additional label have been discussed by several authors; see, e.g., J. D. Vergados

[18])
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The 27-plet operator arises as one of the most important U(3) tensor operators
making up the residual two-body interaction in the Ip and 2s-14 shells. It is also
one of the irreducible tensor pieces making up the most general one-body operator
in the 2s-1d shell. The calculation of nuclear matrix elements will be illustrated for
a one body operator in the 2s-1d shell. Let @ be a one-body operator

0=Y0 4.14)

of definite irreducible tensor character characterized by (Apo), Lo, My, s [ fol, So
Ms,, Ty, Mz,. The one-particle matrix elements can be factored through a
generalized Wigner-Eckart theorem
(an) Emfmsmy | O |(Apy) fmgmgmyy
= Q) 0 [Aape)><apsa) 75 Papro) Lo i(Aapan) £D<[11 185 [fo] SoTo 11 38>
X fmeLoMy, | ¢'my Y dmSoMs | dmy > 3m,ToM, | my’), 4.15)

with (A,) = (20) in the 2s-1d shell. The matrix element of an operator 0 between
n-nucleon states can be expressed by the cfp expansion

(f1aWp) K'L'M,; BS Mg T My | O |[f] a(Aw) KLM; BSMsTMy)

‘/Vif 'n-1]

TV F (space) Z (spin-isospin), 4.16)
1]

[fne

where

F (space)
= Y faadana(Anoapang); (20) 1| [F] a(A)><(20) [ 0 1i(20),

Qyy{hn_1biny)

X (-1l Gng Pnet pona); 20) | [f '] @' (Xp))
Y {Qucspin-g) KnosLny; 20) 7 [[(A) KLH(20) £; (Agpio) Lo [I(20) £

KyotLnyft’
X <(An—1l"'n——1) Ky 1L,y ; (20) z l(X'") KL

QL+ D@L +1) 112 1 \Lo+La_y—t'—L L L
x [(ZLn—1 + 1L, + 1)] (=1 X U(LLL'C"; Ly1Le)

X (LM LM, | L'M>. @.17)

X
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The corresponding spin-isospin part has been discussed in detail in Ref. [19]. By
identifying the spin-isospin part of the cfp as a reduced supermultiplet SU(4)
Wigner coefficient it was possible to carry out the spin-isospin ¢fp sums and express
F (spin-isospin) in terms of SU(4) Racah coefficients and reduced SU(4) matrix
elements involving only final and initial state quantum numbers. In exact analogy
with the techniques outlined in Ref. 19 it is possible to sum the SU(3) part of #
(space), enclosed in curly brackets in the cfp expansion (4.17). The result gives

# (space) = Y Ul GaQumapin-n); 20) | [f] ()

[ O YT

X ual @naQaapra—y); 20) 1 [f7] a'(Np')><(20)]1 011(20))

« ’Y U((Am)(O02)(X'p)(20); An-sttn 1) = =5 (Aotto) — Ya0)
e UO(02)Me)20); Argptn1) — =2 (00) - -)

oo $Ow) KL; Qopso) Lolyaa) I(Xp) K'L'>)
" B  Dlo + DO + o - DFT

(LM LM, LM,
(4.18)

Le., sums over the SU(3) subgroup-labels have been performed. [To simplify the
notation we used the symbol “—" to indicate that the value of the correspondent
v is not relevant since there is no multiplicity involved. The label y,, accounts for
the multiplicity of (Aouy) which can be (22), (11) or (0, 0), i.e., the irreducible
components of (02) & (20).] The reduced SU(3) O R(3) Wigner coefficients
appearing in the final result involve only initial and final state quantum numbers,
but the resultant expression also involves U(3) Racah or U-coefficients which de-
scribe the recoupling process for (Au) X (02) < (20) — (X'n’). The U-coefficient in
the denominator, involving the identity representation (00) is a seemingly
complicated way of writing trivial SU(3) dimensional and phase factors which
arise from the symmetry relations needed to permute certain of the SU(3) represen-
tations. By writing the result as a ratio of U-coefficients, however, the result is
independent of the particular phase conventions chosen for the Wigner coefficients
of the SU(3) O R(3) scheme.
The Racah coefficients have the symmetry

U0 AN20); (1" X") — —; (1oho) — Vo)
= (=1 U((Aw)20)A'p)(02); A1) ——: (Aopte) — v2o),  (4.19)
where p(y) is defined in Eq. (3.3). The latter are a by-product of the present calcula-

tion. For (Ague) = (22), if (\'w’) corresponds to one of the 12 outermost (single)
points of the weight diagram of Fig. 1, the U-coefficients are unity. U-coefficients
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for the remaining (A'u’) are tabulated in Appendix 1. The SU(3) Racah coeflicients
which are a natural byproduct of the present caculation can therefore be used to
simplify the calculation of nuclear shell model matrix elements.

5. TABLES

Multiplicity Three Cases

These cases comprise the operators with operator pattern (y) = (4 2¢), (3 24),
(> 2 ») and their parities are 41, —1, 1, respectively. The matrix elements for the

operators
2 2 2
[44200], [43210}, [42220]
(@) (o) ()
are given in Tables I to IV, as follows: The common “pattern factor” f(a) part is

given in Table I; the F(o, y) parts are given in Tables II, ITL, IV. The normalization
factors are

# (% o) =W — Dl — DO+ D0+ DA+ 3o + A+ WA +p + D

XA+p+3)A+p+HE—HDE—9 (5.1)
4 (3 : 1) = PO+ D + DA+ g+ DA+ + 3 ge—9), (.2)
4, 22) = fog(g — 4 (5.3)

Here g is the second-order Casimir invariant of SU(3) as defined in Appendix 1L

[It is of interest to note that the zeros of the invariants A" explicitly give the null
spaces associated with the operators. That is, A4"(;2,) vanishes for g =0 or
g = 4, i.e,, for the irreps [000], [100], [110]; #7(; %2 ,) vanishes for the particular
irreps [000] and [210] as well as for all, irreps of the form [p00] or [pp0]; A (42 4)
vanishes for all irreps of the form [p00], [p10], [pr0], [p p—1 O].

It is an interesting, and significant, fact that these null spaces are simply ordered;
that is, the null space of (, 2 ) includes that of (; ?,) which, in turn, includes that

of (322).]
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Multiplicity Two Cases

These cases comprise the operators with operator patterns:

) = (430)’ (3 ’ 1)

W) G

(310)’ (21 1)

The matrix elements for the operators

3 3
[44200} and [43210]
(@) (o)
are given in Tables V, VI, and VII. The common f(«) part is given in Table V.

The F(«, y) parts are given in Tables VI and VII.
The normalization factors are

K (g o) = 220 — Dx +4) + 22+ 13) + 2N+ DA +2)

XA+dp—Dp+ D+ A +p+ DA+ p+2)
X (A4 p+4), (5.4)

# (37 ) = 50 DO+ D+ DA+ s+ DR — Do + D
A A+ 13) - 3% (5.5)
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The other ten cases can be obtained from the listed ones using symmetry 3
together with Table X1.

Multiplicity One Cases

These cases comprise the operators with the operator labels:

) = (2 1 0)’ (44 1)’ (41 1)’
(432)’ (3 30)’ (300)’

ok (4720 60k (%0 GO0) (070

The matrix elements for the operators

4 4 3
[44210], [44220] and [44220]
(o) () ()

are given in Tables VIII, IX, X. Since these operators have a simple structure in
these tables we list all three parts together (f, F, and .47), that is the complete
expression for the matrix elements is given in the tables.

The matrix elements for the other nine operators can be obtained from the
listed ones using symmetry 3 together with Table XL

How to Use the Tables

To use the tables, one proceeds in the following way:

(1) Determine the multiplicity (3, 2 or 1) of the operator and whether or not
it is listed (see Section 5, above). If it is a listed operator, the appropriate table and
the normalization A4 are given in the text (Section 5, above). One finds the two
parts fand Fin the designated tables; the complete operator is defined in Eq. (3.1)
from f, F, and A"

(2) If it is not a listed operator, we must use symmetry 3 of Section 3. The f,
F, and A" parts of the listed operator are then transformed by this symmetry into
(the parts of) the operator one seeks.
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Examples
(1) Evaluation of the matrix element of

>
[422?0].
3

Since this is a multiplicity three operator, it is completely tabulated. We use
Tables I and 11 to find its parts f and F. The normalization factor A4"(; 2 ;) is given
by Eq. (5.3). Using Eq. (3.1) we have

2
4 2 2 2 0 (m13 Moy ma3}
4 3 1 Myo Moo

_2 [5()\ — P +p + 20 + HRHRA + 3)]”2
3 @A+ 2)g(g—4) '

(2) Evaluation of the matrix element of
1
[4 129 0].
4

This is a multiplicity two operator and is not in the tables. However, a look at
Table XI shows us that its matrix element is related to the matrix element of

3
[4:2?0}
4

(which is in the tables) through symmetry 3, i.e.,

595/60/1-8
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Now we use Tables V and VII and the normalization factor A(, 2 ;) given by Eq.
(5.4) to get

3

4 4 2 0 0 (mls Mg m33)
4 4 | my, My

_ [(Plz —Pos + D)(Do2 = P3s)(P1s — Pra = 1)( P13 = Poo)(Pra — Poz + 1) (P12 — Pog + 2)
(Pr2=Poat+1)(Pra— P22 +2)( P12 P t3)2(u-1)p + 4+ AM2p 4 13) + 3A%]

X (P12 — Pas + 3)(P1z — Pas + 1)(P12 — D3z + 2) ]1/2
MA+DA+H2)A+)(p - Dip+DEp+2)A+p+1D)A + p + A + 1 + 4)

X H(e + 620w — D + 4) + Qu + 13X + 327
+ M — D(p + Dp + 3) + Gp® — p + 28X — 4(u + 50 ~ 6%

We now apply to this matrix element the transformation P,,

(/\—»—/\—2 )

P13 < Daa 1or equivalently | w At 1

and finally get

1
4 4 9 0 0 (m13 Mg msa)
4 4 1 mys Moy

(P13 — P12 — 1)(P22 — P33)( P12 — Pas + 1) (P2 — Pe2)(Pag — P2z + 1) ] 1/2
X (P13~ P12 = (P13~ P12 — 3)(P12 = Pss + D)(P12—paz 1 2
[(Plz = Doz + 1)(P1a— Poa + 2/ (P12 —Pae + D2A + A + p + 5) ]

— (A A + 2 + 15) -+ 3 + 22J(X + (A + DIA-2)
X A+ WA+ p+ DO+ p + Dl + D + 3)
X H(e + 6DRA + A + g + 5) — @A + 2z + 1A + 2) + 3A + 2)7]
40+ WA+ i+ DO+ e+ 5) — A+ BN 4 6Ms + 5A 4 32 + 5+ 30)
— 4\ + p + 6)A + 20 + 6 + 2)%}.

In order to facilitate the use of the tables we could tabulate explicitly all
(27)? = 729 matrix elements of the [4 2 0] operator. But taking into account that
probably the most useful of these operators will be those with multiplicity three,
we decided for brevity to list only these completely, and rely on symmetry 3 to
shorten the tabulation of the others. Symmetry 2 can be used to shorten the entries
even further, but this is a difficult symmetry to use and requires an additional
tabulation of the phase factors e.
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TABLE II
FPart for the Multiplicity Three Operator with Operator Labels (y) = (:%)

Its £ part is given in Table I and its normalization factor is given by Eq. (5.3).
Equation (3.1) is used to assemble the matrix elements of the operator.

(a) |Flo, 2,2, 2) () | Fla, 2, 2, 2) - (o) | Fla, 2,2, 2)

td | (29) | ea-neAN2AsDEA+Y (29 | -enre an
(9] (1% | o 19 | ea-neasa
{:2)| o) | 0 ‘ (%) | o

() fo (2 | L6 e-za (2?) | L rePeancar-g
()] earearn (o) | F 6 er2a-g : {21) | L geszave
(42) | ea-1pzas2) () | -2 . () | Foc- 2
910 1) '2;_0[<3+324tA(A;l)-126(9+3)+81"] . &9 |,

o b |2 ] el

f:0)fo 6.9 [0 | e |
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APPENDIX [
We give here a tabulation of the Racah coefficients U(...) discussed in Section 4, B.

The Racah coefficients are defined by a recoupling equation involving three
SUQ3) irreps, in complete analogy with the SU(2) Racah coefficients:

(‘)’)12 ()’)12 3
[m];s [m)y\ /[m] [m]s2
PANES <[ ]2> e <[ ]3> o,
(‘)’)23 ()’)1 23
_ [m]es [ml\ /[m]s [m]
-2 (o <[ ]3> oo <([”;]> o,

(7)23(7)1 23

X U([mh[mlslm]lmls ; Imha(¥)re(V)iz.s 5 [Mlas(¥)es(P)r.25)s (I-1)
where we use the abbreviated notation [m] = (my3 mg mys) or (Aw),

() = ("‘12 o “22) or (eAM,) and ()= u

(7’12 '}’22) )

Some properties of the Racah coefficients are more evident when we express them
in terms of Wigner coefficients. Using the orthogonality properties of the Wigner
coefficients Eq. (I-1) becomes

U([m)y[mo[mllm]; ; [mhe(¥ie(¥he.s 5 [mlas()2s(2)1.29)

(Yhe
_ [m];s [ml,
N () (@) a)g (%1 <([Z;]2> (“)1>
()ggladgs
’ (Yhe.s (¥)es (V1,2
/I < > ke, /Il < > [l /] < > o
X [m]s [m]s [m]zs pE
(d) (05)3 (o‘)l (a)23 ((x)3 ((X)2> (0[) (0‘)23 (‘x)l
. (I-2)
Similarly, from (I-1) we get
(Yha.s (Yhe (9)es
[m] [mho\ /[mhs [m]y\ /[m]as [m],
(a,z(a, @ <{Z‘)]> @ <[(':}> @ o <[(’Z}> @)
[m] (’}’)1.23 [m]
= Z (®) [m]2s (a)l U([m]y[m)alm]lmls 5 (V)12(Phz.s 5 (¥)2s(¥)r,29)-
(v)y, (ag)23 1 (1'3)

(Equation (2.25) in the text is a particular instance of I-3.)
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We use next Eq. (I-1) and (I-3) to obtain the Racah coefficient for the recoupling
of (A\w) ® (20) ® (02) into (AR). (To find all the possibilities for this recoupling it is
helpful to use the graphical description of the Racah coefficient as a complete

quadrilateral.)

The possibilities for (Az) are of three types:

0 =

w);

G Q=A@ +2,p+2,A+3,1m),A+4p—2),Qp+3),
A=3pmA+2,p—4,Ap—3),A—-2,p—2)

The value (Ai) = (Aw) can be obtained by all the six possibilities for (Ajpuys)
[or (Agspees), (¥)1,23], then its tabulation is done by a 6 x 6 table (Table A-2). The
possibilities for (AZ) of type (2) can be obtained by only three possibilities for
(Apattrz) [or (Aagpss), (¥)1.23), then its tabulation involves six tables in the form of a
3 X 3 matrix. As a typical example, we give in Table A-1 the Racah coeflicients
for (AZ) = (A + 1, u + 1). Racah coefficients for the remaining possibilities of
type (2) can be obtained from this table and the symmetry under permutation of
U(3) partial hooks. The values (Ajz) of type (3) can be obtained by only one possi-
bility for (Ajppr1e) [Or (Aggitss), (¥)1.2s] and their Racah coefficients are unity.

TABLE A-1

Racah Coefficients U((Ap)}(20)(A + 1, ¢ + 1)(02); (Aapae)— ~; (Aagsas) — (¥))
(Here 7 = n(Aw) = (302 + 4Ap + 3p2 + 154 + 15p).)
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Specializing (I-3) to the recoupling in question, we see that the three types of
possibility for (Az) and the different ways they can be built from (A;opu10) [0 (Aggtias)
(¥)1.2s] are intimately connected with the multiplicity of the weight diagram of
[4 2 0] (Fig. 1) and the numbers of the terms in the sum (over i) of Eq. (2.18).

ArpenpIx 1T

We present now a translation guide for the different notations used in the various
fields to which our calculations are relevant. Given a U(3) (SU(3)) Gelfand pattern

My Mgy 77/
My My

my 2
we call “weight” of the state whose labels are given by this pattern, the triplet of
numbers
As = (43, s, 433) = (Myy , Mgy + Moy — Mgy, Mgy + Moy -+ Mg — Myy — Mys).

The connections with the SU(3) labels used in particle physics (/, I, , Y) and the
Elliott variables (A, M, , €) used in nuclear physics are

I = 1/2my — my) = A,
I, = 12Q2myy — myy — mgp) = M,
Y = 13[3(mys + mas) — 2Amys + myy + my)] = —¢/3.

The connection between the different variables used in this paper is

Pi; = my; + j — i (called a “‘partial hook™),
A= Pig — Pog — | = my3 — my,,

Bo= Pa3 — Psz — | = my3 — My
The converse relations are then:
P = D12 = Doz = Mgy — My,
q == Pag — Paz = Mgy — Mgz,

€=Q2Ax+u—3p —3q) = 2(p13 + Pas + Paa) — 3(Pr2 + Pa2) — 3,
A=12uw+p— q) = 1/2(p1a — pan — 1) = 1/2(my, — My,).

595/60/1-10
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The SU(3) Casimir invariants are denoted:
g = Second-order Casimir invariant = A% + u? 4 Au -+ 3(A + p)
= (Pis 1 P3s + Py — PigPag — Piylys — PouPss — 3) = 91, ;

I' = Third-order Casimir invariant = (A — p)(2A + p + 3)A + 2u + 3)
= —(P1s — 2Pss + Psl(—2P13 + Pas + Paa)(P1s + Pas — 2Pse) = 16215
The permutations of the partial hooks, in Elliott’s notation become
P3Py = A > —A—2,p—>2A+p+1)
P3Py = (—p—2, —A—2),
PP => A +p+1, —p—2),
Pia > Pop = (A — —A — 1)

The U(2) Wigner operators are directly related to the SU(2) Clebsch Gordan

Coefficients through
M1
m m
<M12 M22> w )
My, u

= {(IM¥(M;, — Mop)iQMy — My, — Myy) | J + %(2,“11 — My, — Myp)M
+ 32My — My, — My)),

<m12 + pn May -+ Mys + My — pny
my + My

where
J=¥myy —my) = P12 — P — 1) = 4,
M = §2my — myy —myy) = ¥2pyy — P12 — P +1) = M, .
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