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The unitary spin-tensor operator transforming as the representation [4 2 0] in SU(3) 
(the 27-plet) is discussed in detail. Using a recent result for the unique (nonarbitrary) 
splitting of the multiplicity, complete algebraic formulas are determined for the complete 
27-plet operator. Symmetry properties of the 27-plet operator are given. Applications to 
both particle and nuclear physics are discussed. 

1. INTRODUCTION 

The 27-plet unitary spin operator-the SU(3) tensor operator transforming as 
the representation having Young pattern labels [4 2 O]-is of considerable interest 
for both physical and mathematical reasons. The 27-plet operator occurs in physical 
problems in both (elementary) particle physics and in nuclear structure (shell-model) 
physics. In particle physics, the 27-plet operator occurs most prominently in 
symmetry-breaking applications: in second-order corrections to the Gell-Mann- 
Okubo mass formula, in weak interaction Hamiltonians, and in electromagnetic 
interactions. In nuclear structure physics the 27-plet operator is of interest in the 
W(3) (rotator) model of Elliot which singles out a dominant SU(3) multiplet (the 
operator then directly splits the degeneracy). In shell model calculations, using a 
fractional parentage approach, wherein several SU(3) representations may be 
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mixed, the 27-plet operator occurs as one of the most important operators which 
leads to such mixings. (We discuss these applications in Section 4 below.) 

From the point of view of mathematical physics the (4 2 0), (27-plet), operator 
plays a most interesting role: It is the simplest operator in the simplest unitary 
group displaying a nontrivial multiplicity. To be sure, the octet operator (2 1 0), 
does indeed have multiplicity two (the familiar ‘I;” and “D” operators of Gell- 
Mann); however, this multiplicity is completely split by an involutory operation- 
the “conjugation parity” [I]. In this limited sense, multiplicity two is not general. 
By contrast, the 27-plet operator displays a multiplicity three for its diagonal matrix 
elements; two of the three systems have the same conjugation parity and in conse- 
quence the general multiplicity structure now appears. The principal new result of 
the present paper is a complete algebraic determination of the 27-plet unitary spin 
operator in a basis that resolves the multiplicity structure in a unique and non- 
arbitrary (canonical) way. 

For the evaluation of SU(3) operator matrix elements the simplest procedure 
makes use of the “canonical scheme,” that is, the subgroup chain SU(3) I3 SU(2). 
This chain induces a complete labeling scheme (Z2, Z, , and Yin particle physics). 
For nuclear physics this is not the physically relevant scheme; rather one is forced 
to use the chain SU(3) 1 R(3), where R(3) is the physical (orbital) angular 
momentum of the shell model basis. This latter scheme introduces difficult technical 
problems which we do not attempt to discuss here. However, for application to 
nuclear physics, our operator evaluation leads naturally to the determination of 
several $93) recoupling (Racah) coefficients (which are subgroup chain 
independent). Since these coefficients are of direct application in nuclear physics we 
have included a short tabulation in Appendix I. 

In Section 2 we discuss in detail the method of calculation of the 27-plet operator. 
In Section 3 we discuss several symmetry properties possessed by the 27-plet 
operator matrix elements, including an important new symmetry property based 
on asymptotic limits. In Section 4 we discuss applications to particle and nuclear 
physics. The tables are given in Section 5, along with several illustrative examples, 
so that the tabular results are directly accessible without detailed study of the method 
of calculation. 

2. CALCULATIONAL PROCEDURES 

Before beginning with the details of the methods of calculation, it might be 
useful to indicate briefly the underlying reasons why the structural problems 
presented by the 27-plet operator are of interest. (A more detailed, and broader, 
survey has been given recently by Wigner [2].) Briefly, the problem of multiplicity 
in groups larger than SU(2) has been the major stumbling block in the construction 
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of the associated Racah-Wigner calculus; the multiplicity appears, at least super- 
ficially, to introduce unavoidable arbitrariness in the construction. A canonical 
solution-that is, a solution involving no free choices-has, however, recently been 
proved to exist for the SU(3) group [3]. In consequence, there exists in fact only 
arbitrariness associated with phase conventions in the construction of any, and 
hence all, operators in SU(3). A systematic approach to all calculations involving 
unitary spin (SU(3)) is now feasible. 

The canonical construction given in Ref. [3] is necessarily rather abstract. 
Hence the explicit construction of the simplest example of a nontrivial multiplicity 
-the 27-plet operator-is of considerable value simply to illustrate the principles 
involved in the general construction. There is rather more than just this involved, 
for this explicit example also serves to provide a sort of “testing ground” for various 
conjectures of a structural nature. [In Section (3) below, we give illustrations of 
such conjectures.] 

Finally let us note that this determination of the 27-plet operator is unavoidably 
(algebraically) complicated. To obviate the possibility of error, we have actually 
carried out two (algebraically) independent evaluations: (a) construction via the 
product [2 0 0] x [2 2 0] + [4 2 0] and (b) construction via the product 
[2 1 0] x [2 1 0] + [4 2 01. Both procedures are equivalent for the canonical 
construction (ultimately they each involve six “quark” operators); but, since they 
employ different “paths” (arranging the work very differently) they provided a 
valuable-and very stringent--check on the correctness of the results. (Other 
checks are discussed in Section 3.) 

Not all readers will be interested in the details to follow; for such readers the 
examples of the use of the tables (Section 5) and the “translation guide” for relating 
various notations (Appendix II), will enable the remainder of this section to be 
skipped. 

Notational Preliminaries 

Let us restrict attention solely to the group U(3). 
Wigner operators are defined as unit tensor operators; equally well, one may 

define the Wigner operators by their effect on a generic state vector, j(m)), of U(3), 
where (m) denotes a Gelfand pattern: 

ml3 m23 

(4 = ml2 (2.1) 
ml1 

Here the mij are nonnegative integers, obeying the betweenness condition 
mi,j+l b mij 2 mi+l,i+l . Every such array is associated with a unique state vector 
of an irrep of U(3) and conversely. (The restriction to SU(3) is m33 = 0.) 
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A Wigner operator, denoted by the array 

i 

CL11 

l-Q2 P2z 
\ 

\ 

Ml3 Mm MB 9 (2.2a) 
Ml, ME 

Ml1 I 

carries two sorts of labels: (1) a Gelfand pattern, denoted by 

i 

Ml, Mm MM 
WI= MI, M22 9 (2.2b) 

Ml1 ) 

which specifies how the operator transforms under the generators, and (2) an 
“operator pattern” denoted by 

( 

CL11 

01) = Pl2 cl22 9 

1 

(2.2c) 
Ml3 M23 Mm 

which specifies the shifts, when acting on an initial state vector I(lyl)initial): 
mipl - lytgitial = Am,, = pll (2.3a) 

rni?l - rn&tial = Am,, = p12 + p22 - pll (2.3b) 

m:pl _ mi$tid = Am,, 
= Ml3+M23+ M,,-~12-~22. (2.3~) 

Just as the Gelfand pattern distinguishes state vectors of the same weight, so the 
operator pattern distinguishes operators inducing the same shifts A. (This is dis- 
cussed in more detail below.) 

A Wigner operator in U(3) is, at the same time, a sum of Wigner operators in the 
subgroup U(2); expressed symbolically, this statement becomes the subgroup 
reduction formula: 

I 

1111 PI1 

Pl2 CL22 CL12 P22 Wl 

Ml3 M23 
\ 

Mm = c Ml3 J423 M33 Ml2 

L 1 
t 

\ 

\ 
Ml2 4422 

i 

M22 - 

Ml1 Ml2 M22 Ml1 I 

Ml1 Wl (2.4) 
In this equation, [...I denotes a reduced Wigner operator (in particle physics this is 
called an “isoscalar factor” [4]). The U(2) Wigner operators in Eq. (2.4) are 
precisely the usual ones, whose matrix elements are the well-known “Clebsch- 
Gordan Coefficients.” 

(The V(2) Wigner operators and Wigner coefficients are given in the “pattern 
notation” in Appendix II.) 

The great advantage of the reduction law is that it permits one to tabulate a 
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simpler object, the reduced Wigner operator. Such an operator may be defined by 
its action on U(3) state vectors, but in order that it be a proper operator, it must 
however act on state vectors maximal in U(2), i.e., m,, = ml2 . Thus one has 

ml3 mz3 m33 
\ 

ml2 mz2 
ml2 I 

ml3 + hl mz3 + h2 + pz2 - 1-4 
=# ml2 + Ml1 

m33 + (Ml3 + Mz3 + MS3 - p12 -pz2)\ 
mz2 + @41~ + Mz2 - Ml11 

ml2 + Ml1 
i. 

(2.;) 
Here # denotes an algebraic function, that is, the explicit matrix element of the 
reduced Wigner operator, also called “reduced Wigner coefficients,” to distinguish 
them from the “Wigner coefficients” which are the matrix elements of the compo- 
nents of the full Wigner operators. 

From this equation one sees that a reduced Wigner operator causes two shifts: 

A3 = @ml,, Am,, , Am,,), in U(3) labels (2.6a) 
A, = (Am,, = M,, , Am,, = Ml2 + M,, - Ml,) in U(2) labels. (2.6b) 

It is helpful to note that there is an analogy between the sh$t pattern of an 
operator and the weight of a state vector. For the [4 2 0] state vectors we have the 
familiar 27-plet weight diagram: 

. ; . 

FIG. 1. Weight diagram for the irrep [4201 of SU(3). 
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We see that there are 12 weights (the outer points) with multiplicity one; 6 with 
multiplicity two (the circled points) and 1 with multiplicity three (the center point)‘. 

The multiplicity of the state vectors is resolved by the Weyl branching law; the 
resolution is denoted by the Gelfand pattern [l]. The multiplicity of the Wigner 
operators is resolved-for U(3) at least-by the existence of an operator branching 
law; the resolution is denoted by an operator pattern. 

The construction of extremal reduced Wigner operators (which have multiplicity 
one) has an elegant solution in the “pattern calculus” of Biedenharn and Louck [5]. 
We can use these techniques to check some of the multiplicity one 27-plet operators 
given in the tables of Section 5. 

The determination of the multiple operators is the most difficult task. For this 
purpose, we use the Factorization Lemma of Ref. [3]. Consider a boson operator in 
U(3) * U(3), that is, a polynomial operator made up of the nine basic boson opera- 
tors uji (with i, j running over 1,2,3) transforming as the two U(3) Gelfand patterns 
(M) and (AI’), where Mi3 = A&. Briefly put, this lemma asserts that the boson 
operator 

may be factorized into the product of two U(3) operators, each acting in a distinct 
U(3) space: 

MA 
M;, ML 

%a Mm Maa 
MIS Mm 

MI, i 

I 
Pll Pll 

Pl2 P2a PI2 f-422 

= 1 JW2 Ml3 

\ 

Mz3 \I Ma3 Ml3 

I\ 

M,, \ MS3 ~4+-~/~. 
h2beh1 Ml2 M22 W2 K2 

Ml1 G Wl I @ 

(2.8) 

Here A! is an invariant operator of U, * U, which has eigenvalue equal to the 
measure .A?(M,,M,,M,& for an arbitrary state vector with U(3) irreducible labels 
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(M13M2&13J and B is the boson operator which brings the vacuum state of 
U, * U, to a state with the assigned labels. That is, 

(2.9a) 

-’ = (Ml3 - M 
(Mm + 2) ! (Mm + 1) ! Mm! 

23 + 1)(M13 - Mz3 + 2)(M,, - MS3 + 1) --_ ~~~~~~~~~~~~~~~ 
(2.9b) 

The indices G and 11 designate the fact that the Wigner operators act, respectively, 
on the lower and upper Gelfand patterns of an arbitrary state vector of U, * U, : 

I 
H'll \ 

ml2 m& 
\ 

ml3 m23 tn33 
\ 

/I 

ml3 m23 m33 

ml3 m23 m33 = 

/ 

ml2 pi22 m;2 
, m,, \ 

ml2 m22 ml1 t 4l i,L 
(2. IO) 

ml1 

The crux of the multiplicity resolution is this: Upon choosing special U(2) shifts 
in one U(3) space, a single operator becomes nonvanishing, and the factorization 
lemma thereby determines this particular operator on generaE state vectors (in the 
second U(3) space). Expressed somewhat differently, by choosing special initial 
and final state vectors in one U(3)-corresponding to maximal shift in the U(2) 
subgroup-the multiplicity splits, that is, the operators branch ofl 

The actual methods of calculation are then the following. 

First Method: (2 0 0) x (2 2 0) -+ (4 2 0) 

We evaluate the Wigner operators for the SU(3) representation (4 2 0) from 
those of the representations (2 0 0) and (2 2 0) in a build-up fashion. Since these 
latter representations have no multiple weights, their Wigner operators can be 
easily obtained following Ref. [5], so we assume that they are known. 

The first step is to express the boson (polynomial) operators of the representation 
[4 2 0] in terms of those of [2 0 0] and [2 2 01. These relations can be obtained by 
coupling together the boson operators of [2 0 0] and [2 2 0] to a resultant [4 2 01, 
using the fact that both lower and upper patterns of the boson polynomials are 
coupled by means of known Wigner coefficients (the (2 0 0) and (2 2 0) coeffi- 
cients). 
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We then have 

Bc:)) = &;;,(J (z;:;“) l;:;)[(J (2:l;o) l;m;) 

xBf$)BcE), (2.11) 

where we use an abbreviated notation: (CX) = (oL11 aX1 ~18). 
As a second step we take Eq. (2.11) between initial and final state vectors of 

U(n) * U(n), i.e., between 

mil 
mi2 mL2 

ml3 m23 m33 \ 

I 

and 
ml2 m22 

ml1 

respectively. 

51; 
--I 
ml2 

--I 
m22 

- - 
ml3 m23 

\ 
E33 , 

- - 
ml2 m22 

- 
ml1 i 

Now apply the factorization lemma, Eq. (2.8) once on the left side of (2.11) and 
twice on the right side after expanding the product on a complete set of intermediate 
state vectors of U(n) * U(n). In this way, we obtain an equation relating Wigner 
operators of (4 2 0) to those of (2 0 0) and <2 2 0), namely, 

- 
ml3 =23 E33 64 %z z22 

ml1 I( II 
ml3 m23 m33 

420 ml2 m22 
(4 ml1 ) 

- 
ml3 m23 m33 ml3 m23 m33 

X 
-, ml2 62 mi2 mi2 

mil 4, 
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- -- -- 
ml3 m23 m33 mg3 m33 

X 
- 

ml2 *22 ml2 m22 
.- 
ml1 ml 

- 
ml3 623 E33 

X 
-, 
ml2 nl;z 

-, 
ml1 

====I 
ml3 

--I 
m23 

X 
--, 
ml2 

-==I 
mp2 

-==I 
ml1 

93 

=I 

m13 
5, 

m23 

ml2 
r, 
ml1 

fi'13 "?23 
, 

in,, (2.12) 
, 

ml1 

In view of the shifts Am,, induced by the Wigner operators (Eqs. 2.3) we have: 

(1) The sum in (y) extends to all (y) such that 

Am13(d = yll = ml3 - m13, 

Am2,W = Y12 + 7'22 - yll = E23 - %3, (2.13) 

Am,,(y) I 6 - y12 - yz2 = iii,, - nz3:$ 

(2) The sums in (7’) and (y”) extend to all (y’) and (y”) such that 

r;, + r;, = Yll ’ 

y;2 + rL2 + r;, + $2 = YlZ ~- Yae . 

(2.14) 

(3) The intermediate irreps should satisfy 

%3 = Z13 = ml3 + y$ 

FE - s23 = 
23 - m23 + <r’l, + ri, - r’il) (2.15) 

iii,, = FE;, = m33 + (4 - Y;, - r;,,. 

To find the explicit terms in the sum over iii,, , iii2,, iiiIl ; ?Zi2, EL2 , iiiiI and to 
evaluate the resulting matrix elements of SU(3) Wigner operators (i.e., SU(3) 
Wigner coefficients) it is, of course, advantageous to express these matrix elements 
in terms of matrix elements of U(2) Wigner operators (i.e., usual Clebsch-Gordan 
coefficients) and the matrix elements of the reduced Wigner operators (i.e., reduced 
Wigner coefficient or isoscalar factor). 
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This is done by taking matrix elements of the reduction formula (Eq. 2.4), i.e., 

Pl2 p22 

43 M23 M3: 

Ml2 4422 

M;l 

To simplify the writing of equations we will use the functional notation 

Ml3 M23 M33 
( 

rnji) rnrd rn!jt) 
rnfd ) mit2 ' 

(2.16) 

(2.17) 

to designate the explicit matrix element of the reduced Wigner operators. In this 
notation the part [**.I designates the function and the (+..) designates the variables. 
This functional notation is completely explicit since the labels of the final U(3) 
state vector in the matrix element are determined once we give those of the initial 
state vector, as can be seen in Eq. (2.5). (We have omitted ml";' since it must, by 
definition be equal to m$.) 

Choosing appropriate values for the labels of the U(3) * U(3) final state vector 
in (2.12), using (2.16) and the explicit expressions for the matrix elements of the 
reduced Wigner operators of [2 0 0] and [2 2 0] one gets an equation with the 
following structure: 
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where the ai depend only on (m13, mZ3, m,,); g and g’ are the same functions, the 
first having the variables (ml3 , mZ3 , ms3 , ml, , m,,), and the second, the variables 
(ml3 , m23 y 17233 , mi2 y mk,). (The sum in i comes from the fact that in general there 
are more than one pair (y’)(y”) satisfying (2.14)) 

For the cases in which (m,, - ml3 , fi,, - mZ3, wlg3 - m33) is equal to a weight 
A of multiplicity one, both summations in Eq. (2.18) have only one term and the 
final answer has the factored form 

[ I 4(i)CI (m13 7n12 m23 7n22 ““‘j = da, y> Aa, y) al(y). 

(4 

(2.19) 

For those cases in which (?i?,, - ml3 , ii12, - mZ3 , Zi,, - ma3) is equal to (2,2,2), 
that is, the cases with multiplicity three, the right side of (2.18) has 6 terms and the 
triple degeneracy in the left side can be split by the arguments that follow. 

When we compute the right side of (2.18) for d(y) = (222) and (CX) = (/I) = 
(* 4 “), we find g, = g, = g, = 1 and g4 = g, = g, = 2. With these values the 
right side factors completely, and assumes the form 

(2.20) 

In other words the right side has the form of a function in (mlzmzz) multiplied by 
the same function in (m&mi2). Since (ml2 , m2J and (m;, , mL2) are independent, 
and the three operators in the sum on the left side are linearly independent, this 
requires that only one of these three operators dfirfrom zero, the others necessarily 
vanishing. We may then make the assignment of labels (precisely why is discussed 

i I 43;10 
i 
ml3 m23 m33 ) = [42:20 1 l ml3 333 m33 

440 ml2 m22 440 ml2 m2, ) 
From this assignment, (2.21), and Eq. (2.18) we get the result 

below): 

(2.21) 

0. 

(2.22) 



96 CASTILHO ALCARAS, BIEDENHARN, HECHT, AND NEELY 

Using this value in Eq. (2.18), we get 

[ 1 4 4 f O 0 (ml3 m12 m23 m22 rn33) = g&j]l,2 i gd4 g&G * (2.23) (4 
There are two arbitrary steps in this procedure: (a) the specific assignment of 

labels (Eq. 2.21), and (b) the choice of a f sign in extracting the square root 
(Eq. 2.22). When we discuss the limit properties (in Section 3), both steps will be 
seen as necessary in the light of a larger structure. 

This procedure determines completely one of the three operators which induces 
a shift A, = (222). Now we use (2.23) to eliminate one of the three terms on the 
left side of Eq. (2.18). This determines a new equation, involving now only two 
operators. Putting (a) = @) = (4 4 l) in this new equation, once again we see that 
the right side splits into a product of two factors, one in the unprimed, the other 
in the primed variables. In other words, our previous argument may be iterated to 
determine successively the three operators having d = (222). 

For the cases in which @I,, - m13, E33 - m23, Es3 - mm) is equal to a weight 
of multiplicity two, we use again the lower U(2) labels (” 4 O), and the same argument, 
used above, shows that the right side splits. 

Second Method: (2 1 0) x (2 10) -+ (4 2 0) 

In this method a buildup process is again used to construct Wigner operators 
of U(3) irreducible tensor character (4 2 0). There are two differences from the 
first method. In place of the representations [2 0 0] and [2 2 01, the buildup process 
employs the representations [2 1 0] and [2 1 01. In place of Boson (polynomial) 
operators, U(3) Wigner operators of character (2 1 0) are coupled directly to 
form an operator of irreducible tensor character (4 2 0): 

where (y’), (~3, and (a) arejixed. The matrix elements of such an operator between 
U(3) state vectors ((m)j and j(m)) can be expressed as a linear combination of 
Wigner operators which induce the shifts Ami = iFit3 - m, (i = 1,2, 3) in the 
irrep labels of the initial state vector, since Wigner operators form a basis for tensor 
operators. The coefficients of such a linear combination must be U(3) invariant, so 
they are functions only of the irrep labels Cii3 , mi, , [4 2 0] and the operator (upper 
pattern) labels (y), (y’), (‘y”), (2 2 3. In fact these coefficients are precisely U(3) 
Racah coefficients as can be seen by comparing the linear combination with the 
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recoupling transformation involving three U(3) irreducible representations-the 
classical way of defining Racah coefficients. 

Taking matrix elements of (2.24) between U(3) state vectors (@?)I and I(m)) 
one thus gets 

.Y . -  _ 

%3 %3 m33 
- _ 

X ml2 %2 
\ 

ml1 i 

%3 ml3 my3 ms3\ 
-e 

X %I2 42 tn22 ! 
ml1 i 

- - 
ml3 m3 In23 

= is 
%2 m22 NI, 2 m2.J 

Zll ml1 

where the sum in (r) extends to all (r) such that Ok = IGii, - mi3 and the U- 
“coefficients” are U(3) Racah coefficients in unitary form. [Our notation for the 
Racah coefficients is a generalization of the notation of ordinary angular momen- 
tum calculus; the order of the U(3) irrep symbols is that introduced by Racah. The 
row and column indices in the Racah coefficients must include the operator 
(upper pattern) labels (y’), (y”), (r) and (y”‘) = (% 2 1); but since mi3, Fii, and Zi3 
are fixed, we see (by Eq. (2.3)) that, in the problem we are dealing with, the labels 
y22 are sufficient to characterize the multiplicities, when present.] 

By writing a second equation of the form (2.25) with (ol)‘s replaced by @)‘s, 
multiplying the two equations, summing over (y’) and (y”) (hence also FQ, and 
using the orthonormality relations of the Racah coefficients, an equation of the 
form (2.12) is obtained. The present method however, makes use of Eq. (2.25) 
directly and therefore leads to a simultaneous calculation of the U(3) Wigner and 
Racah coefficients. (Explicit tabulations of the matrix elements of the operators 
[2 1 0] needed for the evaluation of (2.25) are given in Refs. [lc] and [61.) 

In cases where the @ii3 - mi3) do not lead to multiplicities, the single U-coefi- 
cient that then appears in Eq. (2.25) serves merely as a normalization constant. 
Its magnitude can be evaluated from the orthonormality relations of the U(3) 
Wigner operators. 
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In cases where there are multiplicities, this can be resolved by special choice of 
(y’) and (7”). This can be seen by using some special features of the U(3) Wigner 
operator [2 1 01. The U(3) Wigner operators (2 1 0) with operator labels 
(I4 = (111), ((2 1 0 1’ 1 )) is identified with the generators of the group [lc, 61. As 
can be seen from the expressions of its matrix elements [lc, 61, the maximum 
change in the isospin (Z = 1/2(mi2 - mzz)) that a SU(3) generator can produce is 
I dZ 1 = l/2. Therefore the reduced Wigner operators of <z 1: 1 o) with 1 dZ ] > l/2 

must vanish identically and this in fact happens for [ ;2:0] and [e:iio], which 2 
produce dZ = 1 and dZ = - 1, respectively. 

For the multiplicity three cases (7) = (z 2 2), and therefore (7’) and (y”) can 
independently be (1 l 1) or (z 1 J. With the choice (7’) = (r”) = (1 r 3 the operator 
(2.24) has the property that its reduced Wigner operators with Gelfand labels 
(lower pattern) (CX) = (* 4 O), (40 O), (* 3 O), (* 1 O) and similarly (CX) = (* 4 l), (* 1 3; 
(” 3 O), (” o O) are all equal to zero. [The first of these has the components 2, -2, 1, 
-1 of an Z-spin tensor of rank 2 while the second has the components of two 
Z-spin tensors of rank 3/2.] This property allows us to identify the operator (2.24) 
resultant from this choice as the operator <a 2 i 2 *) of the first method. Then the 
sum over (7) in the right side of (2.25) collapses to a single term, and the calculation 
proceeds as for a matrix element without multiplicities. With the choice 
(Y') = (1 llh (Y") = (2 '0) t i would appear from similar arguments that the matrix 
elements of Eq. (2.25) would involve a combination of matrix elements of Wigner 
operators (* 3 i 1 o) and (4 2 i 2 o). In this case, however, the symmetry under conju- 
gation parity (Symmetry 1 of Section 3) rules out (* 2 ij 2 o> and the calculation of 
the matrix elements of the operator (a 3 E 1 o) proceeds as for a matrix element 
without multiplicities. With the choice (y’) = (y”) = (2 l o), the matrix elements of 
Eq. (2.25) involve a combination of matrix elements of Wigner operators (* 4 i o o) 

and (* 2 i 2 o), both with the same conjugation parity. Since we already know one 
of them, the other ((* 4 E o o)) can be calculated using the orthonormality relations 
for Wigner operators. 

To resolve the cases of multiplicity two we observe in Fig. 1 that the positions 
of the double degenerate weights coincide with the positions of the single weights 
of the analogous figure for the representation [2 1 01. This tells us that for the multi- 
plicity two cases (y’) and (7”) should be chosen such that one of them is equal to 
(1 l J or (2 lo) and th e o th er is equal to any (y) different from (1 l J and (2 l o) 
(the ones leading to single weights in the weight diagram of [2 1 01). The rest 
proceeds in the same way as the multiplicity three cases. 

Since this method essentially calculates only products of Wigner and Racah 
coefficients, these are again determined only to within an overall & sign which is 
fixed by the limit properties to be discussed in the next section. 
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3. SOME GENERAL PROPERTIES OF THE MATRIX ELEMENTS 

The matrix elements of the reduced Wigner operators all have the general form 

mz3 m33 
ml2 mz2 1 

= f((4 4!! F(N, y) 
X’Ky) . 

The functionf‘is a square root of a product of linear factors. Up to a numerical 
factor, it can be obtained directly from the “pattern calculus” [5]. Note that f 
depends on (y) only through the weight (i.e., shift) of the upper (operator) pattern. 
[That is, operators with different (7) but the same d(y) z (yI1, ylZ + ysZ - yrl , 
6 - yla - ynz) have for the same (a) the same factor J] 

The function A’ is a normalization factor, and depends only on the U(3) irrep 
labels (ml3 , nzz3 ) PB~~). The function N may (and indeed must) vanish for certain 
(lexical) choices of the variables (nzi3j 1. For such a case the numerator of Eq. (3.1) 
also vanishes, but we nonetheless must, for consistency, define the operator to 
vanish when operating on state vectors having these labels. 

[This vanishing of the normalization function &” reflects an important structural 
property of the canonical splitting of the multiplicity. It is a necessary property 
that when (4 2 CQ acts on certain irreps the actual multiplicity is less than the maxi- 
mum. (This is not unfamiliar; for example, all operators acting on ![nl13 0 01) 
state vectors necessarily have multiplicity one.) In every case where the actual multi- 
plicity is not maximal, one or more of the normalization functions will necessarily 
vanish. We may express this by saying that the vanishing of ,/lr determines the null 
space belonging to the associated operator [7].] 

The function F is a polynomial in the five SU(3) labels, ml3 , ma3 , m33 ; m,, ? m22 . 

The methods of Section 2 determine the reduced Wigner operators up to an 
overall phase; in addition, there is a choice in assigning upper (operator) labels to 
the operators with multiplicity. To solve these problems we make use of an impor- 
tant asymptotic limit requirement on the matrix elements of reduced Wigner 
operators [7], namely, 

(Y) 

mpg’-oo E$t.m lim ([ I 4 2 O (m13 
%3 n133 

(4 ml2 11132 0 

Yl2 Y22 Yll 

= 6 s * 
[ I 
0112 a22 ( 

ml3 m23 
1. 

812 0122 %l 
ml2 

(3.2) 

This formula, due to the presence of the delta function factors, tells us that in the 
limit of (negatively) large m22 and mB3 the matrix element of the reduced Wigner 
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operators must vanish unless the V(2) irrep labels of the operator pattern (nz , yzz) 
coincide with those of the lower pattern (IX 12 , c&. This property, for the case of 
multiple operators, determines uniqueZy which upper labels must be assigned to 
the operators. 

When the labels match properly, the right side of (3.2) gives us an SU(2) Wigner 
(Clebsch-Gordan) coefficient in the variables @Q~, mz3, ml&. [For U(2) the 
reduced Wigner operator (denoted by square brackets) coincides with the Wigner 
operator itself (angular brackets). We chose to use square brackets in Eq. 3.2 to 
indicate that this is a special case of a more general property.] 

By comparing with the asymptotic limit of the operator on the left side, we also 
determine the correct overall phase of the operator. 

The matrix elements of the reduced Wigner operators have the following symme- 
tries: 

(1) The Symmetry Related to Conjugation 

Here (-)I)(?‘) is an overall sign for all the components of an operator with upper 
labels (r). (It is just the parity of the operator under conjugation.) For the multi- 
plicity three cases it coincides with (-P,. 

It is quite difficult to give an explicit formula relating (y’) to (r). From (r) one 
knows directly the shifts it induces on the initial irrep labels. That is, (r) -+ d(y). 
Similarly, we know that &‘) is known from d(y); this is just the operation of 
conjugation applied to the shift labels: &‘) = ii( Explicitly, 

[Here x = 4 - yll is a “translation factor” to make d”<r> an allowed weight of 
(4 2 WI 

If one could obtain (y’) from A(f), we could then find the induced transforma- 
tion: 

(Y) - (Y’) 
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However, only in the absence of multiplicity is this association (a priori) unique. 
The canonical splitting of the multiplicity makes the association always unique. 

Using the canonical labelling, we first partition the 27-plet operators into three 
classes: 

Class I contains the 19 operators with operator labels: 

Class II contains the 7 operators with operator labels: 

Class III contains only the operator with operator labels: (y) = & 2 2). 

The canonical splitting requires that this symmetry operation not mix classes. 
This symmetry is an extension to the reduced matrix elements of the conjugation 

operation applied to the (complete) Wigner coefficient, i.e., 

(W1(m)2 / (m),> - C-P <(~)1(42 I (+33)* 

For the U(2) Wigner coefficients this symmetry is precisely the symmetry under 
change of sign of the magnetic quantum numbers. 

(2) RefEection in the Hypercharge Axis 

(24 
i li 4 2 0 m13 m, _ l m23 m33 

22 ml2 + 1 1 
L (x) 1‘ 

==e 

64 
4 2 0 

%2 a22 

a12 + q2 - a11 1 ( 
ml3 mz3 m33 

ml2 mz2 b 
(3.5) 
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where E is a plus or minus sign. For the multiplicity three cases we have 
E = (+2+erz*+w;*-1) . (For the other cases the phase E is very complicated and 
will be omitted.) 

(3) Symmetry Under Permutation of the U(3) Partial Hooks 

(Y) pi j ir I 420 m13 
( 

ma3 m33 = 
(Y’) 

(4 
ml2 m22 )I ~(a, y, y’) [ 1 4 2 0 (m13 m12 m23 m22 m33) (3.6) 

(4 

where Pij is the permutation pi3 t) pi3 in the matrix element. (The partial hooks 
are defined by: pij = mij + j - i.) 

The relation between (7) and (y’) is analogous to the one in the conjugation 
symmetry, the only difference being that now the shifts LIP and do are related 
by a permutation in the di3 . That is, &‘)a = d(y), , 4% = d(Y), , the 
other remains unaltered. 

For the multiplicity three cases we have (y’) = (r) and E(OI, y, r’) = 1. This 
means that the matrix elements of these reduced Wigner operators are invariant 
under all permutations of the { pi3}. Then, by the fundamental theorem on invari- 
ants [8] they can be expressed in terms of the symmetric variables: the two Casimir 
SU(3) invariants and the U(2) variables Z(isospin) and Y (hypercharge). (These are 
the four (Elliott) variables g, r, E, rl-see the notation guide in Appendix II.) 

For the other cases the values of E (a, y, 7’) are given in Table XI for the entries 
(4, 64 (Y’), i, j. 

This symmetry was recently studied by Alisauskas and Jucys [9]. 

(4) Symmetry Under Permutation of the Representations Involved 

The SU(3) Wigner coefficients have also definite symmetries under permutations 
of the representations involved [6]. We present here only that permutation which 
takes the (4 2 0) operator into itself. For this we find 

w 
((m)Pinal 1 4 2 0 I(m)initi [ 1 (4 

= (~)qr+“zz-=ll 
[ 

dim([mi3]final)(p12 - p,,)‘nitial l/2 

dim(h31 initial)(p,2 - p22)final 1 

I J (m)final), (3.7) 
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where 

dim([m,,]) = 1/2(m,, - mz3 + I)(%, - nj33 + 2)(%, - m33 -I- 1) 

= WP,, - P23h3 - P33XP23 - P33) 

= l/2@ + l)& + 1)(X + P + 2). 
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(3.8) 

4. APPLICATIONS 

A. Particle Physics 

The present situation in particle physics has reached something of a consensus: 
unitary symmetry is to be confined almost exclusively to singlets and octets for 
mesons; and unitary singlets, octets and decimets for baryons. The justification for 
this restriction is entirely empirical; it has, however, been raised to the status of an 
axiom (“the absence of exotic resonances”) in the so-called duality diagrams. For 
the present work this has a clear implication: the 27-plet is essentially of no interest 
as a possible particle multiplet-although, to be sure, there are early papers to the 
contrary. 

Unitary symmetry is, however, strongly broken and implies that the particle 
wave functions must contain components from other multiplets, preserving, 
however, I and Y. It is usually not possible to estimate this mixing, since a dyna- 
mical basis for particle physics is lacking. Admixture of 27-plet components into 
the baryon decimet was proposed by Cutkosky [lo] to explain the reduction of the 
relative width QZ(l385) ---f 27 + n)/&?(1385) -+ (1 + n) from 0.16 (SU(3) value) 
to the experimental value ~0.04. Cutkosky estimated the mixing to be expected on 
a self-consistent (bootstrap) model of the baryon states. Wali and Warnock [1 1] 
and Golowich [12] show that 27-plet mixing is less important than might 
be expected [lob]. 

As a unitary operator, however, the 27-plet system is of considerable current 
interest. Applications of the 27-plet operator occur in several basic ways: 

(a) Second order terms in the Gell-Mann-Okubo mass formula [13]. 
(b) Electromagnetic mass shifts [lob]. 
(c) Two photon operators [lob]. 
(d) Weak interactions (dl = 3/2,27-plet piece of the weak Hamiltonian) [ 141. 
(e) Chiral (SU(3) x SU(3)) symmetry breaking [15]. 

As an illustration of the applicability of the present results, let us consider in 
more detail item (a). In terms of unitary operators, the celebrated Gell-Mann- 
Okubo mass formula can be considered as the statement that the medium strong 
interactions which break unitary symmetry transform as the I = Y = 0 component 
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of the two octet operators (2 1: 1 J and (2 2 : o ,)-the F and D operators respec- 
tively. To first order, then, the mass operator has the form 

(4.1) 

from which we obtain the general algebraic form of the Gell-Mann-Okubo 
relation 

1/2Y 
M=a+b*---- 2/Ia + -& - (Z(Z+ 1) - (5)’ - I2 - 9 Y), (4.2) 

2 
with B = (4123 + 122 - 361,3/I, . 
[Here I, and I3 are the second and third order Casimir invariants given in Appen- 
dix II.] 

If we specialize to the octet case, our general result for the Gell-Mann-Okubo 
formula takes the form 

M = a + b * $ + % (Z(Z+ 1) - (-$)” - 1). (4.3) 

This result-and hence our general result-differs from the usual version of the 
Gell-Mann-Okubo formula in two ways: (a) The operators have been properly 
normalized (this is the origin of the complicated normalization factor, B, above); 
(b) the operators have been given precise (covariant) meaning [16] (note the extra 
“- 1” in the last term compared to the usual form of the Gell-Mann-Okubo result). 

Both changes are essential in the Gel&-Mann-Okubo formula, if we are going to 
compare the symmetry breaking terms between various unitary multiplets, and if 
we are to compare the actual size of the various terms arising in different orders. 

Let us now extend these results to the next order. Estimates of the size of the 
second order effect of the symmetry breaking in the Gell-Mann-Okubo mass 
formula-specialized to the octet-were first carried out by Okubo [13] and by 
Dalitz [17]. Since the separation of properly covariant tensor operators has not 
been taken explicitly into account in this, or subsequent work, it is of interest to 
indicate these changes here. 

To second order in the medium strong interaction (and using normalized cova- 
riant operators), one finds for the mass formula the form 

Mo,,=a~l+b~f~~~O~ +c~~~~O~ 
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The general matrix elements of this operator can be written down from the tables 
of Section 5, but we shall specialize at once to octets and decimets. For both of 
these cases only one 27-plet operator is nonvanishing and we get, for the octet, the 
mass formula 

M=a.~+b.~+f.[z(z+~)-~~ji-l] 

+d+[Y2+;z(z+ l)- 11. 

(It is interesting to note that just these four operators form orthonormal vectors 
(with respect to the trace) over the four Z, Y multiplets of the octet.) 

Applying this to the baryon octet we find 

a, = (1150.18 3 0.12) MeV, 

b, = (379.07 & 0.36) MeV, 

c8 = (89.01 -& 0.12) MeV, 

d, = (-11.87 f 0.20) MeV. 

(4.6) 

These terms show the expected variation in order of magnitude, in particular the 
second-order effect, $ , is very small. Electromagnetic splittings are of the order of 
d, so we must correct da for such effects. We can do this most expediently by the 
very nice technique (of Dali& [17]) which uses as the (Z, Y) multiplet average masses 
the values 

M(Z = l/2, Y = 1) = l/2(Mp f M,), 

M(Z = 1, Y = 0) = M,, -+ /VI,- - ME, , 

M(Z=O,Y=O)=M,, 

M(Z = l/2, Y = -1) = 1/2(M,,, + ME-). 

(4.7) 

For this choice all electromagnetic effects cancel out in determining d, . The 
corrected value of d, is found to be $ = - 12.34 f 0.40 MeV. This is only slightly 
changed from the previous value and shows that the 27-plet contribution is probably 
genuine (but small) and nonelectromagnetic in origin. 

Specializing next the general mass formula to the decimet, the D operator, 
Cz 2 : o ,,>, vanishes, along with two of the 27-plet operators, and we find 

M= a+b* &+d .&Y’+ 3Y-- 5). 
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Applying this to the 3’ decimet one finds 

a 1o = 1383.6 MeV, 

b,, = -415.3 MeV, 

d,, = -6.43 MeV. 
(49 

The second-order term, dI,, , is quite small and of the order of the electromagnetic 
splittings. We can correct for these effects by including D, and (27)8 terms, along 
the Q-direction; that is, 

M=a+b &+d 5y2+3y-5 +e21/Z A+f 
5Q2 + 3Q - 5 1/T 9d7 

. 
9 (4.10) 

Again applying this to the #’ decimet we find 

a 1,, = 1381.4MeV, 

b,, = -416.5 MeV, 

d,, = -17.1 MeV, 

ho - - -14.1 MeV, 

fro = 15.9 MeV. 

(4.11) 

We note that a,, and bIo are essentially unaffected, in contrast to the term Q. . 
We conclude that the second-order effects are probably not significantly determined 
by data of the present accuracy. 

It would be reasonable now to apply the second-order formula to the pseudo- 
scalar and the vector meson octets. The situation, however, is not very clear: If one 
uses the Gell-Mann-Okubo approach (extended to the 27-plet), singlet-octet 
mixing is not included; if one uses the quark model approach (with the lambda 
quark heavier) singlet-octet mixing occurs very naturally, but then the model fails 
to give the (baryon) Gell-Mann-Okubo formula and excludes 27-plet corrections. 
A purely phenomenological approach is under-determined. We will not pursue 
this further except to say that the vector meson octet, with singlet-octet mixing, 
shows a very small 27-plet contribution (less than 1% of the central (mass)z term). 

It should be remarked that the tables of SU(3) recoupling coefficients are directly 
of interest in particle physics as crossing matrices. The results presented in Appen- 
dix I are a considerable extension of previously given tables. 

B. Nuclear Shell Theory 

In shell model calculations of light nuclei, in particular in the 2s - Id and lp 
shell, a classification of many-nucleon states according to representations of SU(3) 
leads to a physically meaningful truncation of the shell model space. Unfortunately 
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the relevant classification scheme leads to the group chain SU(3) 2 R(3) where R(3) 
refers to the orbital angular momentum (L) of the shell model basis. The Wigner 
coefficients for the canonical group chain SU(3) 1 SU(2) therefore have few direct, 
immediate applications in nuclear structure problems. The calculation of nuclear 
matrix elements by fractional parentage techniques can, however, be simplified by 
performing sums over the SU(3) subgroup labels. The resultant expressions involve 
SU(3) Racah coefficients. Since these are independent of the subgroup chain and 
are a natural byproduct of the calculation of SU(3) Wigner coefficients, the results 
of the present work can be used in applications to shell model calculations. 

A totally antisymmetric n-nucleon wave function can be expanded in totally 
antisymmetric functions for (n - 1) particles coupled to an n-th one by an expan- 
sion in terms of coefficients of fractional parentage (cfp). The cfp can be factored 
into a space and a supermultiplet (SU(4)), -spin (S)-isospin (7)) part 

where M is the dimension of the irreducible representation of the permutation 
group on n objects described by the Young pattern labels [fn]. The contragredient 
representation describing the symmetry of the n-particle spin-isospin function is 
denoted by [in]. The labels 01 are short hand notation for all space quantum 
numbers other than L; /3 describes the supermultiplet quantum numbers other than 
S, T, when needed. For lp shell calculations the space part of the cfp is a reduced 
SU(3) Wigner coefficient (in the SU(3) 3 R(3) scheme). For 2.s-ld (and higher) 
shells, the space part of the cfp can be factored into two parts; one involving the 
higher symmetries, and a second which is again a reduced SU(3) Wigner coefficient 
(matrix element of a reduced Wigner operator). 

Space part of cfp = 

The SU(3) irrep labels have been written in the Elliott notation (&.L) = (ml3 - pnZ3 , 
m 23 - m33). In the 2s-ld shell the Young pattern labels [f’] characterize irreducible 
representations of SU(6). Additional labels, a, are needed to fully characterize the 
SU(6) r) SU(3) part of the group chain in this case. The reduced SU(3) II R(3) 
Wigner coefficients are characterized by (&L); the orbital angular momentum L; 
and an additional label K. (The difficult technical problems associated with this 
additional label have been discussed by several authors; see, e.g., J. D. Vergados 
WI.) 
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The 27-plet operator arises as one of the most important U(3) tensor operators 
making up the residual two-body interaction in the lp and 28-M shells. It is also 
one of the irreducible tensor pieces making up the most general one-body operator 
in the 2s-ld shell. The calculation of nuclear matrix elements will be illustrated for 
a one body operator in the 2s-Id shell. Let 0 be a one-body operator 

(4.14) 

of definite irreducible tensor character characterized by (Go), L,, , ML0 , [fo], S, , 
Mso , To , MT0 . The one-particle matrix elements can be factored through a 
generalized Wagner-Eckart theorem 

with (A& = (20) in the 2s-ld shell. The matrix element of an operator 0 between 
n-nucleon states can be expressed by the cfp expansion 

([f’] a’(h’p’) K’L’M,‘; /%S’M,‘T’M,’ 1 0 ([f] a(+) KLM,; ,t?SM,TM,) 

= ,F,, [N;;;1:]- S(space) F(spin-isospin), (4.16) 

where 

F(space) 

= c a.LIlan-l(~,-titLn-I); w II VI 4PD<P) II 0 l/(w~ 
a,-l(A,-,u,-l) 

x <If,-11 &-I (L-1 pn-1); (20) II [f’l a’(~$)> 

X 
1 
K _ LK X<(~n-~n-l) K-A-, ; (2’3) L’ II&4 KLX(W 8; &PO) Lo ll(20) 0 
ntn1 

x <(&a-~~n-d K,-&n-, ; (20) f ll@‘r-l’) K’L’) 

w + 1)Pd + 1) 
x [ (2L,, + l)W, + 1) 1 1’2 (~l)Lo+Ln-‘-~‘-L x U(L{L’e’. L,-,L,) 9 ! 
x (LM,L,M,, I L’M,‘). (4.17) 
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The corresponding spin-isospin part has been discussed in detail in Ref. [19]. By 
identifying the spin-isospin part of the cfp as a reduced supermultiplet SU(4) 
Wigner coefficient it was possible to carry out the spin-isospin cfp sums and express 
P (spin-isospin) in terms of SU(4) Racah coefficients and reduced SU(4) matrix 
elements involving only final and initial state quantum numbers. In exact analogy 
with the techniques outlined in Ref. 19 it is possible to sum the SU(3) part of .F 
(space), enclosed in curly brackets in the cfp expansion (4.17). The result gives 

F(space) = c (K-11 Qn-lGL/-b-1); (20) II Lfl4$); 
a,-l(A”-lu,-l) 

X WW-11 G-I(LI/-%---~); (20) I/ [f’l Q’(h’p’),~~C(20)1i 0 ll(20)) 

(4.18) 

i.e., sums over the SU(3) subgroup-labels have been performed. [To simplify the 
notation we used the symbol “-‘I to indicate that the value of the correspondent 
yiz is not relevant since there is no multiplicity involved. The label ysz accounts for 
the multiplicity of (A,,& which can be (22), (11) or (0, 0), i.e., the irreducible 
components of (02) @ (2Oj.l The reduced SU(3) 1 R(3) Wigner coefficients 
appearing in the final result involve only initial and final state quantum numbers, 
but the resultant expression also involves U(3) Racah or U-coefficients which de- 
scribe the recoupling process for (A~) x (02) x (20) + (A’~‘). The U-coefficient in 
the denominator, involving the identity representation (00) is a seemingly 
complicated way of writing trivial W(3) dimensional and phase factors which 
arise from the symmetry relations needed to permute certain of the SU(3) represen- 
tations. By writing the result as a ratio of U-coefficients, however, the result is 
independent of the particular phase conventions chosen for the Wigner coefficients 
of the SU(3) 1 R(3) scheme. 

The Racah coefficients have the symmetry 

wf-w%Pw(20); ww - - ; cuoxo) - yzz) 
= t - 1Y) wh.4(m(~$jw) ; WP”) - - ; O,,) - y32), (4.19) 

where p(y) is defined in Eq. (3.3). The latter are a by-product of the present calcula- 
tion. For (A,,,,) = (22), if (h’p’) corresponds to one of the 12 outermost (single) 
points of the weight diagram of Fig. 1, the U-coefficients are unity. U-coefficients 
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for the remaining (A’$) are tabulated in Appendix I. The SU(3) Racah coefficients 
which are a natural byproduct of the present caculation can therefore be used to 
simplify the calculation of nuclear shell model matrix elements. 

5. TABLES 

Multiplicity Three Cases 

These cases comprise the operators with operator pattern (7) = (4 2 J, & 2 1), 
(2 a 2) and their parities are +l, - 1, +l, respectively. The matrix elements for the 
operators 

are given in Tables I to IV, as follows: The common “pattern factor” f(a) part is 
given in Table I; the F(ol, r) parts are given in Tables II, III, IV. The normalization 
factors are 

= 6&(hi - l)& - l)@ + 2)& + 2)@ + 3)(lu. + 3)(h + P)(x + I* + 1) 

x (A + CL + 3)0 + p + 4(g - 4(g - 9), (5.1) 

2 
N3 1 ( ) = &G + 2)0/ + 2)@ + p + 1)(X + p + 3) g(g - 9), (5.2) 

Jv (2 2 2) = Mg - 4). (5.3) 

Here g is the second-order Casimir invariant of W(3) as defined in Appendix II. 
[It is of interest to note that the zeros of the invariants M explicitly give the null 

spaces associated with the operators. That is, .M& 2 2) vanishes for g = 0 or 
g = 4, i.e., for the irreps [OOO], [loo], [IlO]; .N(g 2 1) vanishes for the particular 
irreps [000] and [210] as well as for all, irreps of the form [pOO] or [ppO]; N(, 2 ,,) 
vanishes for all irreps of the form [pOO], [plO], [ppO], [pp-1 01. 

It is an interesting, and significant, fact that these null spaces are simply ordered; 
that is, the null space of (4 2 J includes that of (3 2 3 which, in turn, includes that 
of (2 2 21.1 
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Multiplicity Two Cases 

111 

These cases comprise the operators with operator patterns: 

(y) = (4 3 0)’ (3 3 li 

(320j’ (22 1) 

(421j’ (,“,I 

(3 IO)’ (2 l 1). 

The matrix elements for the operators 

are given in Tables V, VI, and VII. The common f(u) part is given in Table V. 
The F(oI, y) parts are given in Tables VI and VII. 

The normalization factors are 
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The other ten cases can be obtained from the listed ones using symmetry 3 
together with Table XI. 

Multiplicity One Cases 

These cases comprise the operators with the operator labels: 

(I4 = (2 lo)’ (4 4 1)’ (4 l 1)’ 

(432)y (330)’ (3’0)’ 

(4’0)’ (,“2)’ (220)’ (442)’ (2’0)’ (440)’ 

The matrix elements for the operators 

are given in Tables VIII, IX, X. Since these operators have a simple structure in 
these tables we list all three parts together (f, F, and N), that is the complete 
expression for the matrix elements is given in the tables. 

The matrix elements for the other nine operators can be obtained from the 
listed ones using symmetry 3 together with Table XI. 

How to Use the Tables 

To use the tables, one proceeds in the following way: 

(1) Determine the multiplicity (3, 2 or 1) of the operator and whether or not 
it is listed (see Section 5, above). If it is a listed operator, the appropriate table and 
the normalization N are given in the text (Section 5, above). One finds the two 
partsfand Fin the designated tables; the complete operator is defined in Eq. (3.1) 
fromf, F, and M. 

(2) If it is not a listed operator, we must use symmetry 3 of Section 3. Thef, 
F, and M parts of the listed operator are then transformed by this symmetry into 
(the parts of) the operator one seeks. 
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Examples 

(1) Evaluation of the matrix element of 

Since this is a multiplicity three operator, it is completely tabulated. We use 
Tables I and II to find its partsf and F. The normalization factor A’& 2 J is given 
by Eq. (5.3). Using Eq. (3.1) we have 

[ 1 4 “4 ‘2 ; 0 (Ml3 m12 m23 m22 ““3) 
3 

2 5(X - p)& + p + 2)(P + 1)(2&(2A + 3) 1’2 =- 
3 [ (211 + 2) & - 4) 1 . 

(2) Evaluation of the matrix element of 

4lo [ I 442410. 

This is a multiplicity two operator and is not in the tables. However, a look at 
Table XI shows us that its matrix element is related to the matrix element of 

[ I 44:oo 
441 

(which is in the tables) through symmetry 3, i.e., 

P 
12 

I[ 4; :; 0 I 4 (m13 m*am23 m22m33 4 

= I 4 “4 : ‘: m23 4 0 1 (“‘3 m33). m12 m22 



114 CASTILHO ALCARAS, BIBDENHARN, HECHT, AND NEELY 

Now we use Tables V and VII and the normalization factor A’(, 3 ,J given by Eq. 
(5.4) to get 

430 L 1 44;10 ( 
ml3 m23 m33 

ml2 m28 1 

= (PlZ-P23 + 0@22 -P33bS-P12 - 1)(P13-P22)h3-P22 + l)(p,,-P23 + 2) 

12-P22+NP12-p22+3)P~- l)& + 4) + X(2p + 13)+ 3X2] 
(PI2 -p23 + 3h2 -Pw + ')(Pl2 -P33 + 2, l/2 

’ X(h+ l)(A+2)(X+4)(~ - l)&+ 1)0L+2)@+~+ 1)0 + P + %A + II + 4) 1 
x HE + 6JWp - l>Cp + 4) + (2~ + 13)h + 3h21 

+ ‘VP - I>& + 4101 + 3) + (3~' -P + 28)h - 401+ 5)A2 - 6h3}. 

We now apply to this matrix element the transformation PI2 

p13 4+ pz3 /or equivalently (: 7 Tii $ 1) 

and finally get 

4lo [ 1 44;10 ( ml3 m23 m33 

ml2 m22 1 

(P13-PlZ- 1)(P22-P33)(P12 -P23 + 1)(P23-P22)(P23-P22 + 1) 
x (P13 - ~12 - %Pl3 -PM - 3>(P12 - P33 + l)(m2 - ps3 -t 2 1 

= (~12 -PZZ + MP,~ - ~22 + Np12 -~22 + WW + /-4X + CL + 5) 

- (A + 2)(2X + 2p + 15) + 30( + 2)210 + 2)O + l)h(h-2) 
x 0 +!m + P + 2M + P + 3)dP + l>oL + 3) I 

x S{(E + 64[2@ + tL)(X + CL + 5) - (2X + 2p + 15)@ + 2) + 3(X + 2j2] 

112 

+ 4@ + p)(h + /.L + 4)@ + p + 5) - 0 + WA2 + 6+ + 5h + 3p2 +5/-t +30) 

- 4@ + p + 6)(X + 2)' + 60( + 2)3}. 

In order to facilitate the use of the tables we could tabulate explicitly all 
(27)2 = 729 matrix elements of the [4 2 0] operator. But taking into account that 
probably the most useful of these operators will be those with multiplicity three, 
we decided for brevity to list only these completely, and rely on symmetry 3 to 
shorten the tabulation of the others. Symmetry 2 can be used to shorten the entries 
even further, but this is a difficult symmetry to use and requires an additional 
tabulation of the phase factors E. 



TA
l3L

E 
I 

f 
Pa

rt 
of

 th
e 

M
ul

tip
lic

ity
 

Th
re

e 
O

pe
ra

to
rs

 
Th

is 
pa

rt 
is

 c
om

m
on

 
to

 t
he

 o
pe

ra
to

rs
 

wi
th

 
op

er
at

or
 

la
be

ls 
(y

) 
= 

(a
aO

), (
3a

l) 
an

d 
(a

22
). I

n 
Ta

bl
es

 
II,

 
III

 
an

d 
IV

 
we

 
fin

d 
th

e 
F 

pa
rt 

of
 t

he
se

 o
pe

ra
to

rs
 

an
d 

th
ei

r 
no

rm
al

iza
tio

n 
fa

ct
or

s 
ar

e 
gi

ve
n 

by
 E

q.
 

(5
.1

) 
to

 
(5

.3
). 

Eq
ua

tio
n 

(3
.1

) 
is

 u
se

d 
to

 
as

se
m

bl
e 

th
e 

m
at

rix
 

el
em

en
ts

 
of

 t
he

se
 o

pe
ra

to
rs

. 

(a
l 

f((
a)

. 
(2

22
1)

 

p4
q 

~l
3-

P1
2-

1~
(P

,3
-P

l2~
~~

~~
-~

~~
~~

~~
~~

~~
~~

~~
(p

12
-.1

3+
1~

(p
l2-

p3
3+

~~
 

* 
12

 
22

 

&
 

[2
(‘1

3-
‘2

2 -I~
~P

,,-
Pl

2-
l~

~P
l2

-P
33

~l
~~

P2
2-

P3
3~

~~
~P

l2
-P

23
+~

~~
P2

3-
P*

2-
~~

 

(P
,2

-P
22

+l
)(P

12
-P

22
-l)

 
I h 

(4
z2

) 
[ (P

l3
-P

22
-1

)(P
13

-P
22

-2
)(P

23
-P

22
-1

)!p
2J

-P
22

-2
)(P

12
-P

3J
+~

)(P
22

~P
33

+2
) 

a 

(P
12

-P
22

-l)
(P

12
-P

22
-2

) 
I 

(4
41

) 
~(

~2
~-

p3
3~

~~
13

-p
~~

-~
)(

p~
~-

~~
z 

-2
)(P

12
-P

23
+l

)(P
12

-P
23

-+
2)

!P
~2

-_
p3

3+
2)

fP
l3

-P
22

)~
P2

3-
P2

2)
(P

l2
-P

33
+1

) 

1 

h 

~P
,~

-P
~~

+l
~~

Pl
~-

P~
~+

2~
~P

12
-P

22
+3

~ 

(4
31

) 
~~

~:
:I~

::;
:l~

~~
::~

:::
::i

:::
=:

:I:
:lt

 

(4
21

) 
/fi

~:
::,

‘::
I:I

:,‘
:::

~I
:I:

:i~
:::

~:
:::

l( 

(q
 

j2
(P

12
-p

3l
)(p

l3
-P

22
-~

liP
?~

-P
2*

-2
::p

*~
~P

2~
T~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~2

-o
ii)

“2
2-

Pl
i+

l)~
P2

2-
1)

?l
+2

)li
 

12
 

22
 

(~
2~

 
(4

44
 

[ 
- 

(P
12

-P
22

~1
)(P

12
-P

22
+2

)(P
12

-P
22

+3
)(P

i2-
P*

2+
4)

 

(4
30

) 
(P

*2
-P

33
)(P

l3
-P

l2
-‘)

(P
iz-

P*
3+

1)
(P

~3
-P

22
)~

P2
3-

P*
2~

~P
~2

-P
33

+l
~ 

: 

(P
,2

-P
22

+l
)(P

,,-
P,

2+
2)

(p
12

-P
*2

+3
HP

l*-
P2

2-
*~

 
I 

-1
_-

 
J 



TA
BL

E 
I 

(c
on

tin
ue

d)
 



I------------ 
-.-__- 

I- 
- 

t 
(~zd-zrd)(zrd~~rd)(~Fd_l~d~z 

9 
(zzd-czd)(zzd-~rd)(~E,_zz,)Z 



118 CASTILHO ALCARAS, BIEDENHARN, HECHT, AND NEELY 

TABLE II 

FPart for the Multiplicity Three Operator with Operator Labels (y) = (a2a) 

Its fpart is given in Table I and its normalization factor is given by Eq. (5.3). 
Equation (3.1) is used to assemble the matrix elements of the operator. 

(a) Fta. 2. 2, 2) 

(442) 1 

(432) 1 

(422) 1 

(441) 0 

(439 (zN(zAt3) 

("24 (zA-l)(zA+z) 

(411) 0 

(44:) 0 

(430) 0 

F(cu, 2. 2, 2) 
I 

0 

0 

$q3 <-2A-6) 

$ (3 c+2A-4) 
I 

(n) i(B1, 2, 2. 2) 

(329 - (ZA)(Z A+31 

(31') (2A-1)(2A+Z) 

(300) 0 

$ ~r2+4A(A+lh1 

(229 5 (3 t + ZA+S) 

(211) $3~2A+43 

(229 1 
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c 

(Y) 430 430 430 320 320 131 331 331 221 2'1 442 442 442 4'2 422 432 432 441 441 

(y') 3'0 431 4lO 3lO 4'1 2'1 332 3% 2% 3'2 440 422 2'0 2'0 4'0 3'0 330 4ll 2lO 

i,j 1.3 2.3 1.2 1,2 2.3 I,3 2.3 1,Z 1.2 2.3 2.3 1,2 1.3 2.3 1.3 1.3 2.3 1.2 1,3 (a) 

x x x x x x x x x P42) 

x x x x x x x x (432) 
I I , I, , I, , I I I I 
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APPENDIX 1 

We give here a tabulation of the Racah coefficients U(...) discussed in Section 4, B. 
The Racah coefficients are defined by a recoupling equation involving three 

SU(3) irreps, in complete analogy with the SU(2) Racah coefficients: 

where we use the abbreviated notation [m] = (ml3 mz3 ms3) or @cc), 

(a) = (a1z olll a22) or and (r) = (,, 3/l’ Y21). 

Some properties of the Racah coefficients are more evident when we express them 
in terms of Wigner coefficients. Using the orthogonality properties of the Wigner 
coefficients Eq. (I-l) becomes 

Similarly, from (I-l) we get 

(Equation (2.25) in the text is a particular instance of I-3.) 
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We use next Eq. (I-l) and (I-3) to obtain the Racah coefficient for the recoupling 
of (+) @ (20) @ (02) into (IF). (To find all the possibilities for this recoupling it is 
helpful to use the graphical description of the Racah coefficient as a complete 
quadrilateral.) 

The possibilities for (&) are of three types: 

(2) ($4 = (A + 1, I” + l), (X + 2, p - 11, (A - 1, p + 21, (A - 2, I-1 + 1)* 

0 + 1, P - 21, 0 - 1, P - 1); 

(3) (&4 = 0 + 2, I’L + 2), @ + 3, PI, @ + 4, P - 2), (4 I* + 3), 
0 - 2, p + 4), (A - 3, p + 3), (A - 4, P + 2), (A + 3, p - 3), 
(A - 3, p), @ + 2, p - 4), (4 p - 3), 0 - 2, p - 2). 

The value ($) = (Xp) can be obtained by all the six possibilities for (hltilJ 
[or (X2+&, (Y)~,& then its tabulation is done by a 6 x 6 table (Table A-2). The 
possibilities for (@) of type (2) can be obtained by only three possibilities for 
(hltil.J [or (&3/~&, (y)1,23], then its tabulation involves six tables in the form of a 
3 x 3 matrix. As a typical example, we give in Table A-l the Racah coefficients 
for (&) = (X + 1, p + 1). Racah coefficients for the remaining possibilities of 
type (2) can be obtained from this table and the symmetry under permutation of 
U(3) partial hooks. The values ($) of type (3) can be obtained by only one possi- 
bility for (hlz& [or (h,+&, (y)1,23] and their Racah coefficients are unity. 

1Q4*& (Y 

\ 
(WlZ’ 

0.. r4 +u 

(A+*. ll I 

0.+1, p -1) 

TABLE A-l 

Racah Coefficients U((MGN~ + 1, P + 1X02); (&P&- -; C.&P& - (~1) 
(Here r = T&) = (3X2 + 4Xp + 3p2 + 15h + 15p).) 
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Specializing (I-3) to the recoupling in question, we see that the three types of 
possibility for (&) and the different ways they can be built from (hlsl.J [or (&& 
(~)~,~a] are intimately connected with the multiplicity of the weight diagram of 
[4 2 0] (Fig. 1) and the numbers of the terms in the sum (over i) of Eq. (2.18). 

APPENDIX II 

We present now a translation guide for the different notations used in the various 
fields to which our calculations are relevant. Given a U(3) (SU(3)) Gelfand pattern 

i 

ml3 m23 it133 

11'12 m22 

ml1 /' 

we call “weight” of the state whose labels are given by this pattern, the triplet of 
numbers 

A3 = V13, d23, d33) = (mll, ml2 + m22 - mll,m13 + m23 i m33 - ml2 - mz2). 

The connections with the W(3) labels used in particle physics (Jr, , Y) and the 
Elliott variables (A, MA , e) used in nuclear physics are 

I = 1/2(m12 - m2.& = A, 

I, = 1/2(2m,, - ml2 - mz2) = MA , 

Y = M3(m12 + m22) - 2(m13 + m23 i ms3)] = -c/3. 

The connection between the different variables used in this paper is 

pij = mij + j - i (called a “partial hook”), 

h =P13 -P23 - 1 = m13 - m23, 

tL = P23 -P33 - 1 = mz3 - m33. 

The converse relations are then: 

p = Pl2 -P23 = m12 - m23, 

q  =P22-P23=m22-m33, 

' = (2x +P - 3P - 3q) = 2h3 i-P23 +P33) - 3(P12 -t-P& - 3, 

A = l/G +P - 4) = 1MP12 -pz2 - 1) = 1/2(m12 - mz2). 
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The SU(3) Casimir invariants are denoted: 

g = Second-order Casimir invariant = A2 + p2 + A,u + 3(h + p) 

= (P;, + P& + P& - p13~23 - p13pa3 - p23pa3 - 3) = 91, ; 

I’ = Third-order Casimir invariant = (A - p)(2X + p + 3)(X + 2~ + 3) 

= -(Pu - 2P23 + Pd-2 P13 + P23 + P33)(Pl3 + P23 - 21333) = 16213 - 

The permutations of the partial hooks, in Elliott’s notation become 

P13t)P23j(X~--h-22,~.--t++++1), 

P13 4+ P33 =t- c-p - 2, --h - 9, 

P23 ++ P33 * CA + p + l, -tc - 2), 

Pl24+P22 * 64 + -A - 1). 

The U(2) Wigner operators are directly related to the SU(2) Clebsch Gordan 
Coefficients through 

ml2 
( 

+ pll mz2 + Ml2 + M22 - pll M pll M ml2 m22 
ml1 + Ml1 12 22 

Ml1 
ml1 > 

= (JM3Uh - MwM2& - M12 - M22) I J + K&I - Ml2 - WxdM 

+ @Ml - Ml2 - hf22)>9 

where 

J = $(m12 - m22) = *(p12 - pz2 - 1) = 4 

M = &(2mll - ml2 - mz2) = 6(2~~ - ~12 - ~2~ + 1) = MA . 
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