SUM RULE FOR NONLEPTONIC HYPERON DECAY *

Y. TOMOZAWA
Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48104, USA

Received 25 June 1970

A simple sum rule is derived which relates the p-wave amplitudes to those of the s-wave of the non-leptonic hyperon decay.

The parity violating (s-wave) amplitudes of the non-leptonic hyperon decays have been successfully explained by various methods (current algebra [1], vector dominance model [2], the gauge field model [3,4] etc.), while the situation of the parity conserving (p-wave) amplitudes is yet to be clarified [5]. Most works on the latter rely on the pole model, which is not unambiguous with regard to the type of the vertex to be used.

In this note, we point out that the current algebra technique applied in the infinite momentum reference frame enables us to derive sum rules for the p-wave amplitudes. As a matter of fact, the soft pion limit in the decay process \(Y \rightarrow B + \pi \), taken in the rest frame of the initial particle \(Y \), implies that

\[
m_Y = m_B ,
\]

while the same approximation in the rest frame of the pion leads to a \(Y \) particle momentum of

\[
\sqrt{p_Y^2 + m_Y^2} = \frac{m_Y^2 - m_B^2 + \mu_\pi^2}{2\mu_\pi} \rightarrow \infty ,
\]

thus avoiding the condition (1) which makes the s-wave amplitudes vanish.

Our assumptions are

(I) The weak interaction Hamiltonian \(H_W \) is an octet [6] which satisfies the condition

\[
[q_0^\alpha, H^{pv}(pc)] = [q_0^\alpha, H^{pc}(pv)] ,
\]

where \(q_0^\alpha \) and \(Q_0^\alpha \) (\(\alpha = 1, 2, \ldots, 8 \)) stand for the axial- and vector-change respectively, and \(H^{pv}(pc) \) for the parity violating (conserving) part of \(H_W \).

(II) The PCAC (Partially conserved axial-vector current) relation between the pion fields \(\phi^\alpha \) and the axial vector current \(A_\mu^\alpha \),

\[
\phi^\alpha = \frac{\partial A_\mu^\alpha}{F_\pi^2} \partial \mu + \partial X_\mu , \quad (\alpha = 1, 2, 3) ,
\]

\(\sqrt{2}F_\pi \) being the \(\pi^\pm \rightarrow \mu^\pm \nu \) decay constant.

The standard application of the PCAC relation to the process \(Y \rightarrow B \pi^0 \), in the rest frame of the pion, gives

\[
\sqrt{2}q_0 \langle B(p), \pi^0(0) | H_W^{pv(pc)} | Y(p) \rangle = - \frac{1}{F_\pi^2} \left\{ \langle B | [Q_0^3, H_W^{pc(pc)}] | Y \rangle \right\}
\]

\[
-q_0 \sum_l \left\{ \frac{\langle B^3(0) | l | H_W^{pv(pc)} | Y \rangle - \langle B | H_W^{pv(pc)} | l | A_0^3(0) | Y \rangle}{q_0^2 + p_0^2 - p^2 + i\epsilon} - \frac{\langle B^3(0) | l | A_0^3(0) | Y \rangle}{q_0^2 + p_0^2 - p^2 + i\epsilon} \right\} p^l = p
\]

* Work supported in part by the U.S. Atomic Energy Commission.
If we take the limit \(q_0 \to 0 \) under constraint (2) i.e., \(q_0 |p| = \frac{1}{2}(m_\Sigma^2 - m_\Lambda^2) \), then we obtain a complicated sum rule, since every intermediate state can contribute in the sum of eq. (5). In order to derive a simple result, we therefore take the limits successively\(^*\) (lim first)

\[
\lim_{|p| \to \infty} \lim_{q_0 \to 0}
\]

The only intermediate state which contributes to the sum is, then, that with the mass equal to one of the external baryons. Noting that \(Q^3 = I_3 \), the third component of the isospin, we obtain

\[
\lim_{|p| \to \infty} \lim_{q_0 \to 0} \frac{2\sqrt{2}}{3} \int d^3 q \int d^3 p \langle H_{W}^{\text{PV}}(pc) | Y \rangle = \int d^3 p \left\{ \langle I_3 = 1/2 | (B | H_{W}^{\text{PV}}(pc) | Y \rangle \right\}
\]

where the spin sum of the intermediate particle gives the expression for the s- and p-wave amplitudes, \(A \) and \(B \), upon using tables 1, 2 and 3,

\[
\frac{1}{\sqrt{2}} \{ A(\Sigma^+) - A(\Sigma^-) \} = A(\Sigma^0) = Dpc - Fpc + g_A(Dpc - Fpc m_\Sigma - m_\Lambda)
\]

\[
\frac{1}{\sqrt{2}} \{ A(\Sigma^+) + A(\Sigma^-) \} = A(\Sigma^0) = \frac{1}{\sqrt{2}} \left\{ Dpc - Fpc + g_A(Dpc - Fpc m_\Sigma - m_\Lambda) \right\}
\]

\[
A(\Xi^-) = -\sqrt{2} A(\Xi^0) = \frac{1}{\sqrt{3}} \left\{ Dpc - 3 Fpc - (Dpc - Fpc m_\Xi - m_\Lambda) \right\}
\]

\[
B(\Xi^-) = -\sqrt{2} A(\Xi^0) = \frac{1}{\sqrt{3}} \left\{ Dpc - 3 Fpc + [g_A(Dpc + 3 Fpc) + 2(Dpc - Fpc m_\Xi - m_\Lambda) \right\}
\]

\[
\frac{1}{\sqrt{2}} \{ B(\Sigma^+) - B(\Sigma^-) \} = B(\Sigma^0) = -\frac{1}{\sqrt{2}} \left\{ Dpc - Fpc + g_A(Dpc - Fpc m_\Sigma - m_\Lambda) \right\}
\]

\[
\frac{1}{\sqrt{2}} \{ B(\Sigma^+) + B(\Sigma^-) \} = B(\Sigma^0) = \frac{1}{\sqrt{2}} \left\{ Dpc - Fpc - g_A(Dpc - Fpc m_\Sigma - m_\Lambda) \right\}
\]

\[
B(\Sigma^-) = -\sqrt{2} B(\Sigma^0) = -\frac{1}{\sqrt{3}} \left\{ Dpc - 3 Fpc + (Dpc - 3 Fpc m_\Xi - m_\Lambda) \right\}
\]

\[
B(\Delta^-) = -\sqrt{2} B(\Delta^0) = -\frac{1}{\sqrt{3}} \left\{ Dpc + 3 Fpc - [g_A(Dpc + 3 Fpc) + 2 Dpc - Fpc m_\Lambda - m_\Lambda \right\}
\]

Here \(D, F, D_a, F_a \) (a = pv, pc) are the d- and f- type coupling parameters defined in tables 1 and 2. In computing the \(\Sigma \) decay amplitudes, we omitted the contribution form the \(\Sigma^+ \) state since it would not be a discrete state if the limit

\[
m_\Sigma - m_\Lambda > q_0 \to 0
\]

* Of course, there is no guarantee that these two limits will give the same result in a mathematically rigorous sense, as in most applications of the limiting procedures in physics. Only a reasonable answer obtained is an a posteriori justification. Exception is the axiomatic field theory where a rigorous proof is required, since there is no experimental data to be compared with.
Table 1

The SU$_3$ Clebsch-Gordan coefficients $C_{\alpha}(Y \rightarrow B)$ in the
relation $\langle B | P_Y | \alpha \rangle = 2F_Y \Gamma_{\alpha} C_{\alpha}(Y \rightarrow B) \mu_B \mu_Y$

(a = pv or pc, $\Gamma_{pv} = \gamma_5$, $\Gamma_{pc} = 1$)

<table>
<thead>
<tr>
<th>$C_{\alpha}(Y \rightarrow B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma^+ \rightarrow p$</td>
</tr>
<tr>
<td>$D_a - F_a$</td>
</tr>
<tr>
<td>$\Sigma^0 \rightarrow n$</td>
</tr>
<tr>
<td>$-\frac{1}{2} \sqrt{2}(D_a - F_a)$</td>
</tr>
<tr>
<td>$\Lambda \rightarrow n$</td>
</tr>
<tr>
<td>$-\frac{1}{2} \sqrt{6}(D_a + 3F_a)$</td>
</tr>
<tr>
<td>$\Xi^0 \rightarrow \Lambda$</td>
</tr>
<tr>
<td>$D_a + F_a$</td>
</tr>
<tr>
<td>$\Xi^0 \rightarrow \Sigma^0$</td>
</tr>
<tr>
<td>$-\frac{1}{2} \sqrt{2}(D_a + F_a)$</td>
</tr>
</tbody>
</table>

Table 2

The SU$_3$ Clebsch-Gordan coefficients $G(B, B')$ in the
relation $\langle B | A_0^3(0) | B' \rangle = G(B, B') \mu_B \mu_{B'}$

B = B' except the last row $G(B, B')$

<table>
<thead>
<tr>
<th>B</th>
<th>$G(B, B')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>$\frac{1}{2} \delta_A^A = \frac{1}{2}(D + F)$</td>
</tr>
<tr>
<td>n</td>
<td>$-\frac{1}{2} \delta_A^B$</td>
</tr>
<tr>
<td>Λ</td>
<td>0</td>
</tr>
<tr>
<td>Σ^+</td>
<td>F</td>
</tr>
<tr>
<td>Σ^0</td>
<td>0</td>
</tr>
<tr>
<td>Σ^-</td>
<td>$-F$</td>
</tr>
<tr>
<td>Ξ^0</td>
<td>$-\frac{1}{3}(D - F)$</td>
</tr>
<tr>
<td>Ξ^-</td>
<td>$\frac{1}{3}(D - F)$</td>
</tr>
<tr>
<td>(Λ, Σ^0)</td>
<td>$\frac{1}{3} \sqrt{3} D$</td>
</tr>
</tbody>
</table>

Table 3

The infinite momentum limit of the Dirac bilinear forms, $ar{u}_1 \Gamma u_2$ (ξ being the Pauli's two component spinor, p the
unit vector)

<table>
<thead>
<tr>
<th>Γ</th>
<th>$\lim_{m \rightarrow \infty} \bar{u}_1 \Gamma u_2 2 \sqrt{m} \mu_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(m_1 + m_2)\xi_1 \xi_2$</td>
</tr>
<tr>
<td>γ_4</td>
<td>$2</td>
</tr>
<tr>
<td>γ_5</td>
<td>$(m_2 - m_1)\xi_1 \xi_2$</td>
</tr>
<tr>
<td>$\gamma_4 \gamma_5$</td>
<td>$-2</td>
</tr>
</tbody>
</table>

Table 4

Comparison of the sum rule (14) with experimental data
(in the unit 10^5 sec$^{-1}$)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ^+</td>
<td>$0(0.02 \pm 0.04)$</td>
</tr>
<tr>
<td>Σ^-</td>
<td>1.87 ± 0.03</td>
</tr>
<tr>
<td>Ξ^0</td>
<td>2.07 ± 0.03</td>
</tr>
<tr>
<td>Λ^0</td>
<td>1.52 ± 0.02</td>
</tr>
</tbody>
</table>

had been taken. In fact, we note that

$$m_{\Sigma} - m_{\Lambda} = O(\mu_{\pi}^2/\mu_{\mu})$$

This can be seen by taking the limit $\mu_{\pi} \rightarrow 0$ in the relation

$$\langle \Sigma | \frac{\partial A^\alpha_0}{\partial \mu_{\mu}} | \Lambda \rangle | p_{\Sigma} = p_{\Lambda} = i (E_{\Sigma} - E_{\Lambda}) \langle \Sigma | A^\alpha_0(x) | \Lambda \rangle = -2 \frac{F_{\pi} \mu_{\pi}^2}{\mu_{\mu}^2} \frac{m_{\Sigma} - m_{\Lambda}^2}{(E_{\Sigma} - E_{\Lambda})^2} \langle \Sigma | J_{\phi^\alpha}^\alpha (x) | \Lambda \rangle | p_{\Sigma} = p_{\Lambda}$$

where $J_{\phi^\alpha}^\alpha$ is the source of the π^α field. On the other hand, in deriving the formulae for the Λ decay amplitudes, we have assumed that

$$m_{\Sigma} - m_{\Lambda} = O(\mu_{\pi}^2/\mu_{\mu})$$

so that the Σ^0 intermediate can contribute. This would be the case if the relevant amplitude depends upon the ratio $\mu_{\pi}/(m_{\Sigma} - m_{\Lambda})$ in an essential way, e.g. term such as $\mu_{\pi}^2/(m_{\Sigma} - m_{\Lambda})^2$ appearing as an important factor. In such a case, we should take the limit with the ratio $\mu_{\pi}/(m_{\Sigma} - m_{\Lambda})$ kept constant. Lacking knowledge of the mass dependence of the amplitudes, we rely on the experimental data to guide us in the choice of limiting procedure. In fact, taking the limit (10) for the Λ-decay amplitudes leads to the result that $B(\Lambda) = 2$.

In eq. (8), the parameters D and F are given by [7]

* If $F_{\pi} = O(\mu_{\pi})$ as $\mu_{\pi} \rightarrow 0$, then we have $m_{\Sigma} - m_{\Lambda} = O(\mu_{\pi})$, however.

487
\[D = 0.74 \pm 0.02, \quad F = 0.49 \pm 0.02, \quad (g_A = 1.23 \pm 0.03), \] (13)

and the other parameters, \(D_A, F_A \), \((a = pv, pc) \) are unknown. Eliminating the latter, we obtain relations among the \(A \) and \(B \) amplitudes. The first two are

\[B(\Sigma^+) = g_A \frac{m_{\Sigma^+} - m_{\Sigma^-}}{m_{\Sigma^+} - m_{\Lambda}} A(\Sigma^-), \quad (14^+) \]
\[B(\Sigma^-) = g_A \frac{m_{\Sigma^-} - m_{\Lambda}}{m_{\Sigma^+} - m_{\Lambda}} A(\Sigma^+) = \sqrt{2} \left(D_{pv} - F_{pv}\right). \quad (14^-) \]

In order to simplify the result, we assume that

\[A(\Sigma^+) = 0 \quad (D_{pv} = F_{pv}). \quad (15) \]

Then the rest of the sum rule reads,

\[B(\Sigma^-) = (D - F) \frac{m_{\Sigma^-} - m_{\Lambda}}{m_{\Sigma^-} - m_{\Lambda}} A(\Sigma^-) + \frac{2}{\sqrt{3}} (1 - (D - F)^2) D_{pv}, \quad (14\Sigma) \]
\[B(\Lambda^-) = \left[g_A \frac{m_{\Lambda} - m_{\Lambda}}{m_{\Sigma^+} - m_{\Lambda}} A(\Sigma^-) + \frac{4}{\sqrt{3}} (g_A^2 - 1) D_{pv}\right] \quad (14\Lambda) \]

where

\[\frac{1}{\sqrt{3}} A(\Lambda^-) + \frac{2}{\sqrt{3}} A(\Sigma^-) + \frac{1}{\sqrt{3}} A(\Sigma^-) = -\frac{4}{\sqrt{3}} \left[g_A \frac{m_{\Lambda} - m_{\Lambda}}{m_{\Sigma} - m_{\Lambda}} + (D - F) \frac{m_{\Sigma^-} - m_{\Lambda}}{m_{\Sigma^-} + m_{\Lambda}}\right] D_{pv}. \]

Table 4 gives the numerical result. The agreement with the experimental data is excellent. Some remarks are in order.

i) The smallness of \(B(\Sigma^-) \) is a result of \(A(\Sigma^+) = 0 \).

The experimental fact

\[\frac{P(\Sigma^+)}{S(\Sigma^-)} = \frac{(m_{\Sigma^-} - m_{\Lambda})^2 - \mu^2}{(m_{\Sigma^+} - m_{\Lambda})^2 - \mu^2} \]
\[B(\Sigma^+) = 1.02 \pm 0.04 \quad (A(\Sigma^-)) \]

suggests an empirical relation

\[g_A = \frac{m_{\Sigma^-} - m_{\Lambda}}{m_{\Sigma^+} - m_{\Lambda}} \left[\frac{(m_{\Sigma^-} - m_{\Lambda})^2 - \mu^2}{(m_{\Sigma^+} - m_{\Lambda})^2 - \mu^2}\right]^{1/2} = 1.19. \]

The relations (14) and (18) explain the observed form of the \(\Sigma \) triangle (the isosceles right-triangle of Gell-Mann-Rosenfeld).

ii) The left hand side of eq. (16) is the Lee-Sugawara [8] combination under the constraint (15).

The approximate validity of their relation for the s-wave amplitudes stems from the appearance of the mass difference on the right hand side of eq. (16). (The parameter \(D_{pv} \) calculated from the experimental data is 1.23.) On the other hand, the even better Lee-Sugawara relation for the p-wave cannot be explained in a simple manner.

iii) If \(A(\Sigma^+) \) is small but nonvanishing, then our prediction is

\[S(\Sigma^+)/g_A P(\Sigma^+) = g_A P(\Sigma^-)/S(\Sigma^-) \]
\[\alpha(\Sigma^+) = g_A^2 \alpha(\Sigma^-). \]

We give the present experimental numbers [7], \(\alpha(\Sigma^+) = 0.026 \pm 0.042 \) and \(\alpha(\Sigma^-) = 0.060 \pm 0.047 \), although we are not sure about the validity of our approximation (soft pion limit) in computing such small quantities.
It is a pleasure to thank Y. P. Yao, O. E. Overseth and I. Kimel for useful discussions and N. Buttimore for reading the manuscript.

References
For recent review articles, see e.g., B. W. Lee, in Topical Conf. on Weak interactions (CERN, ed. J. S. Bell, 1969) p. 183; B. Stech, Springer tracts in modern phys. 52 (1970) 50, where further references can be found.

* * * * *