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Four groups were run with response difficulty and stimulus difficulty varied factori- 

ally. A two-stage Markov model fit the data adequately. The parameter associated 

with the first stage depended on stimulus difficulty as well as response difficulty, 
refuting an interpretation of the first stage as response learning. The learning param- 

eters associated with the second stage seemed to depend only on stimulus difficulty. 
The results suggest that the first stage of learning involves storage of the stimulus- 

response pair in memory, and the second stage involves learning to retrieve the item 
reliably. 

Since Underwood, Runquist and Schulz (1959) introduced the idea that paired- 
associate memorizing involves two stages, response learning and associative learning, 

many investigators have used the idea in interpreting experimental results. The imme- 
diate stimulus for the present study was Kintsch’s (1963) hypothesis that these two 
stages could be represented by a Markov chain with three states. In the first state, 
neither the response for an item nor the stimulus-response association has been 
learned. On some trial, the response becomes learned and the item goes into the 

intermediate state where there is some probability that the subject will give the correct 
response. Then on that trial or some later trial, the subject learns the association and 
this permits the subject to give the correct response on all later trials. 

i This research was done in several places. M. H. collected the data at Reed College in partial 
fulfillment of a BA degree, and continued working on the project at Stanford University. J. G.‘s 

contribution was begun while he held a visiting faculty position at Stanford University, and 
was continued at Indiana University. Financial support was provided by the U. S. Public Health 
Service under Grant MH12717 to Indiana University. 
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The experiment was designed so that the difficulty of response learning and the 
difficulty of association learning would vary independently. Two levels of stimulus 
difficulty and response difficulty were used with the intention of observing the changes 
in parameter values between groups. If  Kintsch’s version of the response-learning, 

association-learning hypothesis is correct, we should expect the probability of accom- 
plishing the first stage of learning to differ between groups with different responses, 
but not to depend on stimulus difficulty. 

EXPERIMENTAL METHOD 

Materials. Response difficulty was manipulated by varying pronounceability, and stimulus 

difficulty was manipulated by varying the number of elements in each stimulus and thus the 
number of common elements between stimuli. There was no guarantee that these manipulations 
would have completely separate effects on the processes of response learning and association 

learning, although they had considerable face validity. 

Two lists of stimuli and two lists of responses were combined to make four paired-associate 
lists. These were learned by separate groups. The stimuli were numerals and the responses 
were trigrams. The lists are shown in Table 1. The abbreviations EE, HE, EH, and HH will 

be used throughout this paper; the first letters refer to the stimulus difficulty and the second 

letters refer to the response difficulty. 

TABLE 1 

Experimental Lists 

__-~~ 
EE EH HE 

l-HA2 
2-MAK 

3-GAW 
4-RAS 

5-BAQ 

6-LAN 
7-DAP 
8- JAV 

1-HPF 
2-IPW 

3-NPE 
4-GPS 

5-JPV 

6-MPA 
7-BPC 
8-XPO 

1 l-RAS 

12-MAK 

13-JAV 
21-BAQ 

22-HAZ 
23-FAC 

31-DAP 
32-GAW 

HH 

11-GPS 
12-HPF 

13-BPC 
21-IPW 

22-NPE 

23-XPO 
3 I -RPK 
32-MPA 

Procedure. Nine random orders of each list were constructed with the restrictions that each 

item started one order and ended one order, but no item could end one order and begin the next. 
The items were presented on a memory drum using the anticipation procedure at a 3.5:3.5-set 
rate and a 21-set intertrial interval. The subject was required to spell the responses. Each subject 

was run until he reached a criterion of three consecutive errorless trials on the list. Five subjects 
failed to reach the list criterion, one in group EH and four in group HH. These subjects were 
stopped after 34 to 37 trials. 
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Before learning the assigned experimental list, each subject was given six trials on a practice 

list with color names as stimuli and shape names as responses. These were presented at the 

same rate as the experimental list and the subjects were asked to spell their responses. 
Subjects. Ten males and eight females were used in each group. The subjects were volunteers 

from the student body at Reed College. The subjects of each sex were randomly assigned within 
blocks of four to the experimental groups in the order of their participation in the experiment. 

RESULTS 

Sequences were analyzed through a criterion of five consecutive correct responses 

on each item. If there were not five consecutive correct responses on a sequence, the 
final run of successes was counted as the criterion run. 

TABLE 2 

Summary Data 

Errors 

Group 

EE 
HE 

EH 
HH 

Before After 

first correct first correct 

3.10 1.17 
5.28 1.85 

5.06 1.57 
6.64 2.82 

Trials of 

last error 

5.71 
8.28 

8.01 
11.79 

The data were analyzed using a relatively general Markov model where it is assumed 
that learning requires two stages, and there are no correct responses in the initial 

stage. The model is a generalization of the system analyzed by Bower and Theios 
(1964). In this application, we use statistical properties of the general model that were 
analyzed by Green0 (1968). There are four states: 0, the initial state; E and C, inter- 

mediate states where errors and correct responses occur, respectively; and L, the 
learned state where only correct responses occur. The initial and transition proba- 

bilities are denoted 

P[L(l), E(l), C(I), O(l)] = [t, (1 - s - t) r, (1 - s - t)(l - r), S]. 

L(n + 1) E(n + 1) C(n + 1) O(n + 1) 

L(n) 1 0 
P = E(n) d (1 Odh (1 -!kP 0 

C(n) 
O(n) lb 

(1 - 4 9 (1 -4P 0 
a(1 - b)e a(1 - 6)(1 - e) 1 - a 

(1) 
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There are nine theoretical parameters, but there are only seven identifiable parameters. 
However, certain hypotheses about the parameters are testable. We ignored responses 
made on the initial trial of the experiment because they all had to be errors. Therefore, 
the first counted responses were those on the trial following a single study presentation 
of all items. A natural assumption is that all items were in State 0 before the first study 

trial, and that the first study trial had the same effect as all later study trials. According 
to this assumption, the probabilities of the four states on the first counted trial should 
equal the probabilities in the bottom row of the transition matrix. In other words, 

Y = e, 

S=l-aa, 

t = ab. 

(2) 

These three restrictions on the theoretical parameters imply two restrictions on the 
seven identifiable parameters (Greeno, 1968, Eq. 62). Therefore, the hypothesis can 
be tested using a likelihood ratio test with -2 log h asymptotically distributed as 
x2(2). The test was carried out using Subroutine Stepit (Chandler, 1965) to find param- 
eters that minimize -2 times the log of the likelihood function (see Greeno, 1968, 

Eq. 41). The minimization was carried out separately for each group with all seven 
identifiable parameters free to vary, and then under the restrictions that follow from 
Eq. 2. The results are given in Table 3. The quantity assumed to be distributed as 
x2(2) is the difference between the two numbers in each row. Clearly, there is no 

evidence that we should reject the hypothesis. I f  we combined all the data, we would 
obtain a value of -2 log h of 8.21, and the asymptotic distribution would be x2(S). 

TABLE 3 

Tests of the Hypothesis that the First Study Trial Was 
Like Later Study Trials 

-2 log& 

Stimuli Responses Unrestricted Restricted 

Easy Easy 1685.52 1686.82 

Hard Easy 2091.19 2094.30 

Easy Hard 1932.34 1934.33 

Hard Hard 2612.36 2614.17 

P 

.25 

.07 

.I6 

.I8 

A further testable hypothesis is that e = 4. If  that is accepted, the hypothesis b = d 
can be tested. The results of these tests are given in Table 4. The procedure used was 
the same as that one leading to Table 3. The results in Table 4 are differences between 
-2 log L minimized under the restrictions and -2 log L minimized under the more 
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TABLE 4 

Tests of Hypotheses About Transition Parameters in Single Groups 

Stimuli 

Hypothesis: e = q Hypothesis: b = d 

Responses -210gh P -2logh P 

Easy Easy 0.81 .37 0.17 .65 
Hard Easy 1.21 .27 1.79 .I8 

Easy Hard 1.07 .29 2.44 .I2 

Hard Hard 10.13 .002 

general hypotheses. Each test has one degree of freedom. The column titled “Restrict- 
ed” in Table 3 gives the general version used for testing e = 4, and the value obtained 
with e = 4 was the base line for testing b = d. The results indicate that both of the 

hypotheses e = 4 and b = d can be accepted for three of the groups, but e = 4 has to 
be rejected for Group HH. In that group, then, b = d is not a testable hypothesis. 
Since an important purpose of the investigation was to investigate parameter invariance 
among the different groups. it was decided that the analysis should be carried out with 

the largest number of free parameters needed for any group. Therefore, we let all the 
transition parameters be free, which means that there are five free identifiable param- 
eters, and six theoretical parameters. 

An important preliminary question is whether the two-stage theory is necessary for 
these data. We have found that we can specialize the theory in accord with a reasonable 
hypothesis about the first trial. Can we specialize it further to make it an all-or-none 
theory ? The all-or-none theory that would result has two free parameters (Green0 and 
Steiner, 1964). The present theory has five. Thus, if we minimize -2 log L for the 
all-or-none theory and subtract the minimum value obtained with the two-stage 
theory, we obtain a statistic that may be distributed as x2(3), if learning really was all- 

or-none. The obtained values of this statistic were 185.3, 252.8, 222.7, 352.1, respec- 
tively, for the four groups. There seems little doubt that the learning process involved 
at least two stages. 

Whether or not we can account for the data with just a two-stage theory depends on 

goodness-of-fit. First, we will present data obtained after the first correct response. 
Figure 1 shows the predicted and obtained distributions of errors after the first correct 
response in the four groups. The data are represented by the histograms, and the 
theoretical predictions are shown by the connected dots. The predictions were obtained 
using estimates of five parameters which maximized the likelihood for all the data, 
rather than for the specific distributions tested here. The goodness-of-fit to these 
distributions was tested using the Kolmogorov-Smirnov test and a chi-square test. In 
the K-S test, there is a probability of .20 of getting a maximum absolute discrepancy 
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0 2 4 6 8 

HE 

x~l6,81=519 

( p= (52, 74, 

lig 
2 4 6 8 IO 2 4 6 S 

HH 

X~(7.91:1245 

p=f 09. 191 

ERRORS AFTER FIRST CORRECT RESPONSE 

FIG. 1. Theoretical and empirical distributions of the number of errors after the first 
correct response. 

between cumulatives as high as .084. The maximum discrepancies observed in these 
four cases were .018, .056, .021, and .046. 

The degrees of freedom for the chi-square test are not well defined since the estima- 
tion did not minimize this chi-square statistic (Chernoff and Lehman, 1954). However, 
bounds on the distribution are obtained by considering two chi-square distributions 
with N ~ 1 and N - m ~ 1 degrees of freedom, where m is the number of estimated 

parameters. Two parameters need to be estimated to determine the theoretical distribu- 
tions in Fig. 1 (Greeno, 1968, Eq. 3 1). The chi-square statistics are shown in Fig. 1 in 
the following form: xz(i,j) = X, p = (y, z . i andj are the lower and upper bounds on ) 
the degrees of freedom, .r is the obtained chi-square statistic, and y  and z are the 
significance levels at which we can reject the hypothesis of an exact fit if we use the 

lower and upper bounds on the degrees of freedom. 
Figure 2 shows the predicted and obtained number of trials after the first correct 

response on which the last error occurred. If  there were no errors after the first 
correct response, this variable was set at zero. For the Kolmogorov-Smirnov test, the 
maximum absolute deviations were .031, .029, .025, and .062. The chi-square values 
are given in the figures again, in the same form as was used for the error distributions. 
Again, the theoretical distribution is determined by two parameters (Greeno, 1968, 
Eq. 32). 
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:H 
2(7.9)=549 
s=(62, so1 

FIG. 2. Theoretical and empirical distributions between the first correct response and 

criterion. 

A final prediction about responses after the first correct response is that errors and 
correct responses before criterion should be independent. A chi-square test with one 
degree of freedom is appropriate. The obtained values were 0.16,0.27,0.004, and 3.26. 

The last value hasp = .07. When the item criterion is set at four consecutive correct, 
the obtained values of the chi-square statistic were 1.10, 1.93, .79, and .012; when set 
at six consecutive correct, the obtained values were .02, 1.00, 6.59, and 6.06. The 
criterion of five was chosen as a compromise, including as much of the error data as 

possible while still excluding the most divergent points obtained at the end of the 
experimental session. 

It seems reasonable to conclude that the fit of the model to data after the first correct 
response was quite good. This is important, regardless of the outcome of the remaining 
analyses. It says that the learning which occurred on an item after the first correct 
response was all-or-none to a close approximation. 

The next data are the distributions of numbers of errors before the first correct 

response. The distribution of the total number of sequences with j errors before the 
first correct response was evaluated by the Kolmogorov-Smirnov test. Again, the test 
has a critical value of .084 if we adopt 01 = .20. The obtained maximum absolute 
deviations were .037, .05 1, .040, and .055. The data shown in Fig. 3 have the distribu- 
tions broken downintocomponents. Thedistributions in the lower panel have sequences 
with no errors after the first correct response. The distributions in the upper panel 
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have sequences with one or more errors after the first correct response. All five of the 
identifiable parameters are involved in the distribution (Greeno, 1968, Eq. 28), which 
means that the distribution of the chi-square statistic is bounded between x2(N - 1) 
and x2(N - 6). The values of the chi-square statistic and bounds on the significance 
levels at which we could reject the hypothesis of an adequate fit are given in Fig. 3. 

5- 

0 
02468 0 2 4 6 8 IO 0 2 4 6 8 IO I2 14 0 2 4 6 8 IO 12 14 16 18 

o-, , 
0 2 4 6 8 IO 0 2 4 6 8 IO 12 

EH HH 
x~(l4.19)=13 01 X’(l6,211=23 23 

p=(53. 84) p=( II, 341 

0 2 4 6 8 IO 12 14 0 2 4 6 8 IO 12 14 

TRIALS BEFORE FIRST CORRECT RESPONSE FOLLOWED BY ERRORS ON TOP BY NO ERRORS ON BOTTOM 

FIG. 3. Theoretical and empirical distributions of the number of errors before the first 
correct response, partitioned according to the presence or absence of errors after the first correct 

response. 

Finally, we consider statistics based on complete sequences. The predicted and 

obtained distributions of total errors are in Fig. 4. The values of the Kolmogorov- 
Smirnov test statistic are .032, .068, .044, and .036. The theoretical distribution can 
be obtained by knowing three identifiable parameters (Greeno, 1968, Eq. 36). The 
chi-square statistics are given in Fig. 4 as before. 

The distributions of trial of last error are given in Fig. 5. The Kolmogorov-Smirnov 
test statistics were .056, .063, .049, and .049. All five identifiable parameters are needed 
(Greeno, 1968, Eq. 37) so the bounds on the distribution of chi-square involve distri- 
butions differing in five degrees of freedom. 

It seems to us that the statistical tests warrant the conclusion that the model and the 
data agree to a satisfactory approximation. Of 20 distributions that were examined, 
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L 2 
EE 

X~lS,J)= 10 34 

p=(25.51) 

Eli 

Xz(12.15)~1272 

p=( 39, 63) 

HH 

x*~15.191=1060 

P’(.79,921 

4 6 S IO 12 14 0 2 4 6 S IO 12 14 16 0 2 4 6 8 10 12 14 16 I* 0 2 4 6 s II 

TOTAL ERRORS 

FIG. 4. Theoretical and empirical distributions of the total number of errors. 

1 EE HE EH HH 
x~l9.141=1696 x~l12.17).15 23 x~l11,161=15 75 x~(l4,191=1623 

p=lo5.261 p= I 23. 5a) p=( l6.481 P’( 30.65’ 

2 4 6 s IO 12 14 16 0 2 4 6 s 10 12 14 16 IS 20 0 2 4 6 8 10 I2 14 16 IS 0 2 4 6 8 IO 

FIG. 5. Theoretical and empirical distributions of the trials of the last error before criterion. 

there were no cases in which the model could be rejected by the Kolmogorov-Smirnov 
test. Using the chi-square test, one distribution permits rejection at 01 = .05 if we 
adopt a criterion that probably is too weak, and three rejections at 01 = .05 result if we 
use a criterion that probably is too strong. The hypothesis of independence between the 
first correct response and the criterion could not be rejected. Therefore, it seems 
reasonable to proceed with the investigation of parameter invariance. 

We were not clear at the outset whether or not the data would provide strong 
leverage on questions of invariance for a model with five parameters. We began by 
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testing a few sample hypotheses, but this did not lead to any striking insights about the 

matter of invariance. What we finally did was to test all possible hypotheses about 
parameter invariance regarding all four pairs of groups where either the stimuli or the 
responses were the same. The pattern of results that emerged from this bulldozing 
operation turned out to make quite a bit of sense. 

The results of the analysis are given in Table 5. The entries on the left under 
“Hypothesis” show which parameter(s) was held constant across groups for that test. 

A “1 ” indicates that a parameter was held constant, and a “0” indicates that a param- 
eter was permitted to vary between groups. For example, the first row of Table 5 has 
tests of the hypothesis that a was a constant between pairs of groups; the second row 

has tests of the hypothesis that b and c were constant between pairs of groups. 
The entries in Table 5 are test statistics for the likelihood ratio test and in parentheses 

the probability under the null hypothesis of a test statistic that large or larger. With no 
restrictions about parameter invariance, the minimum value of -2 log L for two 
groups is just the sum of the values of -2 log L for those groups from the second 

column in Table 3. For each test indicated in Table 5, we used Stepit to minimize -2 
log L for the data of two groups, under the restriction given. The test statistic is the 
difference between the value obtained under the restriction and the value obtained 
without any restrictions. For example, for each test in the first column, the test statistic 
is the difference between the minimum -2 log L under the stated invariance restriction 

and the value 1686.82 + 2094.30 = 3781.12. 

TABLE 5 

Tests of Parameter Invariance Across Pairs of Groups 

Hypothesis: 
abcdeq EE HE EH HH EE EH HE HH 

100000 5.97(.015) 6.69(.010) 14.23(.0002) 16.23(.00006) 

011000 1.21(.28) 0.09(.77) 0.47(.50) O.OO( 1 .O) 

010100 0.9tq.33) 0.01(.93) 0.25(.62) O.oo( 1 .O) 

010010 1.17(.28) 1.22(.27) 0.15(.70) 6.24(.013) 

010001 X69(.018) 0.04(.85) 4.66(.031) 0.08(.78) 

001100 0.02(.89) 5.34(.021) O.OO( 1 .O) 0.30(.59) 
001010 0.16(.69) 1.80(.18) 0.44(.51) 7.82(.006) 
001001 3.44(.064) 0.05(.83) 8.80(.004) 1.61(.21) 

000110 0.30(.59) 1.15(.29) 0.53(.47) 6.69(.010) 
000101 6.16(.014) 2.32(.13) 5.60(.018) 2.77(.10) 

000011 O.oo( 1 .O) 1.69(.20) 1.84(.18) 8.61(.004) 

111000 6.59(.038) 9.40(.010) 
110100 6.41(.041) 6.69(.036) 

Groups 

14.77(.0007) 
16.03(.0004) 

17.17(.0002) 
16.28(.0003) 

Table continued 



Hypothesis: 
abcdeq 

I10010 

110001 

101100 

101010 
101001 
100110 

100101 
100011 

011100 

011010 
011001 

010110 
010101 

01001 I 
001110 

001101 

00101 I 
00011I 

111100 

II1010 

111001 
110110 

110101 
11001I 

101110 
101101 

10101 I 
10011I 

011110 

011101 
011011 
010111 

001111 

111110 

111101 

111011 
110111 
101111 

011111 

111111 
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TABLE 5 (continued) 

Groups 

EE HE EH HH EE EH HE HH 

13.14(.002) 6.76(.035) 18.09(.0002) 16.57(.0003) 
12. I4(.003) 8.41(.015) 23.95(nil) I8.68(.00009) 

6.02(.050) 13.32(.002) I4.23(.0009) 17.45(.0002) 

9.36(.010) 6.69(.036) I6.20(.0004) 17.07(.0002) 

9.82(.008) 6.77(.034) 22.90(d) 17.92(.0002) 
9.94(.007) 6.77(.034) 16.14(.0004) 16.73(.0003) 

13.79(.002) 9.50(.009) 21.72(nil) 20.43(.00004) 
7.82(.021) 6.69(.036) 14.86(.0006) 17.43(.0002) 

1.21(.55) 5.38(.08) 0.74(.70) 0.69(.71) 

2.88(.24) 7.99(.019) 1.16(.56) 10.57(.006) 
5.92(.052) 0. I4(.94) 9.23(.010) 1.61(.45) 

0.88(.65) 0.22(.90) 1.36(.51) 6.71(.035) 
9.88(.008) 2.32(.32) 7.49(.024) 2.77(.26) 

6.94(.032) 3.24(.20) 10.12(.007) I 1.50(.004) 

0.31(.86) 8.16(.017) 0.64(.73) 9.33(.01) 

6.17(.046) 5.38(.068) 9.05(.Oll) 2.77(.26) 

3.71(.16) 1.91(.39) 9.20(.011) 9.08(.01 I) 
6.18(.046) 3.99(.14) 7.31(.026) I 1.34(.004) 

6.59(.087) 16.15(.002) 16.25(.002) 19.87(.0002) 

14.46(.003) I3.79(.004) 18.76(.0004) 11.08(.012) 

12.25(.007) 9.46(.024) 30.48(nil) I8.86(.0003) 
13.49(.004) 7.76(.052) 18.88(.0003) I6.98(.0008) 

15.84(.002) 10.73(.014) 26.88(nil) 11.25(.01 I) 
19.14(.0003) 8.96(.030) 28.61(nil) 22.52(.00006) 

9.95(.019) 13.37(.004) 16.40(.001) 18.65(.0004) 
13.79(.004) 13.40(.004) 24.03(.00003) 20.49(.0002) 

14.11(.003) 7.77(.052) 26.16(nil) 18.59(.0004) 

16.68(.0009) 9.52(.024) 22.91(.00005) 21.31(.0001) 

2.90(.41) 17.56(.0006) 2.48(.48) 12.32(.007) 

10.52(.015) 5.43(. 15) 9.50(.024) 2.77(.43) 
7.34(.062) 8.28(.05) 1 I .55(.010) 12.04(.008) 

10.58(.015) 4.39(.23) 12.71(.006) 12.60(.006) 

6.20(.11) 8.38(.04) 9.63(.022) 11.88(.008) 

14.48(.006) 23.74(.0001) 19.96(.0006) 22.85(.0002) 

17.27(.002) 16.20(.003) 32.05(nil) 21.56(.0003) 

19.99(.0006) 14.01(.008) 30.48(nil) 23.02(.0002) 
24.46(.00007) 10.23(.037) 32.20(nil) 23.90(.00009) 
16.94(.002) 13.46(.010) 26.76(.00003) 21.53(.0003) 

12.96(.012) 17.92(.002) 12.72(.013) 16.71(.003) 

25.83(.0001) 24.06(.0003) 32.2 I (nil) 28.32(.00004) 
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The tests in Table 5 are grouped by degrees of freedom. Since a is an identifiable 
parameter, the hypothesis of its invariance is testable. However, the remaining param- 
eters are not identifiable. This means that, for example, the value of b could be set 

arbitrarily (within limits) and the remaining parameters could be estimated and the 
goodness of fit would be just the same as if b had been set arbitrarily at a different value. 
Of course, in this situation a test of invariance of the parameter b, c, d, e, or q is not 
testable. However, if we test the simultaneous invariance of two of the above param- 
eters, we have a hypothesis which does place a restriction on the data and is testable. 

We have set up Table 5 and calculated significance levels with the assumption that 
there is one degree of freedom if a is held constant and the number of additional 
degrees of freedom equals one less than the number of nonidentifiable parameters that 

are held constant. We do not have a formal proof that this is correct; however, we feel 
reasonably confident about the conjecture that this gives the right number of degrees 
of freedom for the chi-square distribution in the likelihood ratio test. 

Now recall that the main theoretical interest in this investigation is the hypothesis 
that paired associates are learned in two stages, with the first stage consisting of 

response learning. If  the first stage of learning in the Markov model consisted of 
response learning, then we should find that the parameter a is approximately the same 
in groups having the same responses. In the statistical tests shown in Table 5, we 
would expect to accept null hypotheses of parameter invariance for a in the first two 
columns. The first test shown (100000) is the one most directly relevant to the question, 

since it tests the invariance of a with all the other parameters free to vary. The results 
indicate rejection of the invariance of a. On the other hand, the tests involving the 
various parameters are not orthogonal, and many of the tests involving parameters 
other than a permit acceptance of null hypotheses. It is possible that a could be held 

constant across a pair of groups with the same responses if some acceptable restriction 
were imposed on the other parameters. However, this possibility did not materialize. 
There were 37 hypotheses about invariance of some subset of the parameters b, c, d, e, 
and q across Groups EE and HE or across Groups EH and HH that were acceptable 
(a = .05). In each of these 37 cases, we can test the invariance of a and the other 
parameters as a null hypothesis, with the invariance of the other parameters as the 
alternative. In each of these tests, the test statistic (-2 log A) is the difference between 

two values given in Table 5, and the test has one degree of freedom. (For example, 
111000 is one null hypothesis, and 011000 is its alternative. For Groups EE and HE, 
the test statistic is 6.59 ~ 1.21 = 5.38.) N one of these 37 tests indicated that the 
invariance of a was an acceptable hypothesis at 01 = .05. We conclude that the value 
of a must have depended on both the stimulus and response variables in this situation. 

The situation regarding the remaining parameters is less clear, which is understand- 
able since their estimates probably interact in complex ways. However, if we look at the 
tests with two degrees of freedom, we see that the hypothesis of invariance for 6, c, and 
d could be accepted with 01 = .05 for all pairs of groups; and in the tests with three 
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degrees of freedom, all of the acceptable invariance hypotheses involve at least two of 
the three parameters b, c, and d. It seemed reasonable, then, to test hypotheses about 

the invariance of b, c, and d across all groups. Recall that b, c, and dare not identifiable 
parameters for data from a single group. However, if two of these are assumed to be 
constant across four experimental conditions, we have a testable restriction. We are 
working with a model that has five identifiable parameters; thus, the general parameter 
space for four groups has 20 dimensions. Estimating values of a, e, and 4 separately for 
four groups uses 12 dimensions. Now suppose that we assume that b and c are constant 

across four groups, with d varyin g. This gives four values of d and a single value of b 
and one of c; the effect is to add 6 parameters to the 12 used for a, e, and 4, giving 18 
in all. Since this is two fewer than the number of identifiable parameters with no 

restrictions, we conclude that assuming that b and c are constant across the four groups 
is a testable restriction. Of course, the same argument holds regarding the assumption 
that 6 and d are constant with c varying, and the assumption that c and d are constant 
with b varying. We have assumed that under each of these null hypotheses, the test 
statistic for the likelihood ratio test is distributed approximately as chi-square with 

two degrees of freedom. 
The tests were carried out using the same procedure as with pairs of groups. Stepit 

was used to minimize -2 log L across all four groups under each restriction. The 

minimum of -2 log L without a restriction is equal to the sum of the four values in the 
second column of Table 3. Tables 67, and 8 show the obtained parameter values under 
the three restrictions involving two parameters at a time. All of these tests permit 
acceptance of the null hypothesis. 

We also tested the hypothesis that all three of the parameters b, c, and d were con- 
stant across all four groups. However, this null hypothesis was unacceptable for our 
data. With b, c, and d held constant across all four groups there are 15 parameters 
estimated, so when we compare the minimum -2 log L with the value obtained 
without invariance restrictions the test statistic should have the chi-square distribution 
with five degrees of freedom. The obtained value of --2 log X was 14.14, which has 

p < .02. 

TABLE 6 

Parameters and -2 log h for Invariance of b and c 

Stimuli Responses a b c d e Q 

Easy Easy .30 .26 .oo .36 .74 .54 

Hard Easy .21 .26 .oo .28 .63 .60 
Easy Hard .I9 .26 .oo .33 .52 .64 
Hard Hard .13 .26 .oo .25 .11 .64 

-2 log x = 3.95; p = .14 
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TABLE 7 

Parameters and -2 log X for Invariance of b and d 

Stimuli Responses a b c d e 4 

Easy Easy .29 .I6 .I9 .22 .55 .43 

Hard Easy .22 .I6 .I0 .22 .68 .56 

Easy Hard .1x .I6 .I8 .22 .39 .56 
Hard Hard .14 .I6 .06 .22 .I7 .61 

-2 log A = 2.03; p = .37 
-. 

TABLE 8 

Parameters and -2 log h for Invariance of c and d 

Stimuli Response a b c d e 4 

Easy Easy .29 .24 .18 .I7 .57 .42 
Hard Easy .22 .06 .I8 .I7 .63 .51 

Easy Hard .I9 .I4 .I8 .I7 .47 .54 
Hard Hard .I3 .oo .I8 .I7 .06 .56 

-2 log h = 5.62; p = .06 

Up to this point, the study of parameter invariance had been fairly mechanical, and 
apparently we are close to the limit of acceptable hypotheses of invariance. Two more 
hypotheses were considered that arose in an &hoc consideration of the results obtained 
thus far. First, we went back to the results in Table 4 where in three of the four groups 

it was possible to test the hypothesis b = d independently of other assumptions about 
parameters. In all of those cases the hypothesis was acceptable. Therefore, it seemed 
that it would be worthwhile to investigate the effect of introducing that restriction now, 
in the context of a restricted parameter space with some of the parameters held con- 
stant across groups. The second consideration came from examining Tables 6, 7, and 

8. In all those cases restrictions on two learning parameters were acceptable, and the 
third learning rate then apparently covaried with stimulus difficulty, more or less 
independently of response difficulty. This fact made us suspicious of the invariance 
obtained earlier. We know that acceptance of a hypothesis about parameters may be 
misleading because the model is not identifiable. Therefore, the apparent equality of 
parameters across all four groups could arise because in each group one parameter can 
be adjusted to take up slack. 

The fact that at least one learning parameter covaries with stimuIus difficulty led 
us to the following hypotheses about the two stages of paired-associate learning. 
Suppose that the learning of a paired associate requires two achievements: (1) the 
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pair (i.e., the stimulus-response combination) has to be stored in memory, and (2) the 

subject must acquire a retrieval strategy which permits him to use the stimulus of the 
pair as a cue, find the pair in memory, and perform the response. Then the first stage 
of learning would involve storage of the pair in memory. Before that happened the 
probability of giving the correct response would be zero. The learning process would 

be in the intermediate stage on the trials when the item was stored in memory but a 
retrieval strategy had not yet been acquired. During the intermediate stage there 
would be some (presumably) nonzero probability of performing the correct response. 
The final stage of learning would involve the acquisition of the retrieval strategy which 
would permit the subject to use the stimulus as a cue for finding the pair in memory 

and then outputing the response. This hypothesis about paired-associate memorizing 
is similar in structure to Kintsch and Morris’ (1965) hypothesis about free recall 
learning. 

A specific version of the preceding story is partially illustrated in Fig. 6. 

FIG. 6. Graph representing a model with stimulus-response storage and acquisition of 

retrieval strategy. 

The nodes represent stages of learning: In State 0, the pair has not yet been stored in 
the subject’s memory. In State 1, the pair is in memory, but the subject does not have 
a retrieval strategy for it. And in State 2, the pair has become learned. 0 and p represent 
transition probabilities as follows: 0 is the probability of storing a pair in memory, p is 

the probability of acquiring a retrieval strategy. It is assumed that in State 0, the prob- 
ability of a correct response is zero; in State 1 a correct response occurs with some 
nonzero probability. 

The story relates to the parameters in the following way: First, since we are sup- 
posing that storage in memory involves the stimulus-response combination, the value 

of u should depend on both stimulus and response variables. On the other hand, if the 
retrieval strategy depends mainly on learning how to use the stimulus as a search cue, 
the value of p should depend mainly on stimulus variables, and especially on the 
similarity between the stimuli. 

Now we return to the parameters of the two-stage Markov model. Clearly, we have 
a = (T, and the story is consistent with our finding that a depended on both stimulus 
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and response difficulty. There are at least two ways to map p into the theory. One way 

is to suppose that on each trial in State 1, there is probability p that a retrieval strategy 
will be acquired. If  we include the assumption that a retrieval strategy can be acquired 
on the trial when storage occurs, we have 

b=c=d=p. 

On the other hand, we may assume that the retrieval strategy is acquired though a 
process of selection, so that if a correct response occurs in State 1, the subject will not 
acquire a retrieval strategy; in other words, the transition from State 1 to State 2 occurs 

only on errors. This version of the story has 

b=d=p, c = 0. 

In either case, we expect p to depend mainly on stimulus variables. 
Both versions of this hypothesis were tried, and both of them produced acceptable 

hypotheses about the parameters. Table 9 shows the results obtained using b, c, and d 
all equal, with one value for groups with easy stimuli and another value for groups 

with hard stimuli. Table 10 shows the results obtained using c = 0 in all groups, 
with b and d equal to one value for groups with easy stimuli and another value for 
groups with hard stimuli. In both cases there are 14 free parameters for the groups, 
which means that we have six degrees of freedom when we compare the minimum -2 

log L with the value obtained without invariance restrictions. 
Tables 9 and 10 raise some intriguing questions about the possible invariance of e 

and 4 that could lead to rather interesting hypotheses in connection with our proposed 
version of a two-stage learning process. For example, we investigated the hypothesis 

e = 4 earlier, and we were able to accept that for all but the group with hard stimuli 
and hard responses. (This result was presented in Table 4.) Were we to investigate 
e = Q now with the invariance of parameters that has developed, it looks as if we could 
accept it for the groups with easy responses, but not for either group with hard 

TABLE 9 

Parameter Estimates and -2 log X for b = c = d = p, 

with p Depending Only on Stimulus Difficulty 

Stimuli Response a b c d e Q 

Easy Easy .29 .20 .20 .20 .55 .43 

Hard Easy .22 .15 .I5 .15 .68 .52 

Easy Hard .I8 .20 .20 .20 .34 .55 
Hard Hard .I3 .I5 .I5 .15 .oo .51 

-2 log A = 8.44; p = .21 
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TABLE 10 

Parameter Estimates and -2 log h for c = 0, b = d = p, 

with p Depending Only on Stimulus Difficulty 

Stimuli Response a b c d e 4 

Easy Easy .29 .34 .oo .34 .68 .54 
Hard Easy .21 .26 .oo .26 .66 .60 
Easy Hard .I8 .34 .oo .34 .38 .64 
Hard Hard .I3 .26 .oo .26 .I0 .64 

-2 log X = 4.31; p = .62 

responses. This could lead to some interesting speculations, but we feel that we should 
leave the situation as it now stands, pending further experimental work to check the 

reliability of the tentative conclusions presented already. 

SUMMARY AND CONCLUSIONS 

First, we found that the data from all groups could be described to a satisfactory 

approximation by the assumption of a two-stage learning process, with each stage 
consisting of an all-or-none event. Of course, this does not constitute a strong demon- 
stration that the learning process involves exactly two discrete steps. However, we 
take the view that a two-stage process should be preferred over more complicated 

possibilities unless there is evidence requiring the move to a more complex structure. 
Within the framework of a two-stage system, we have rather firm evidence against 

one hypothesis that we and others had considered as the most likely candidate. The 
refuted hypothesis postulates an initial stage of response learning, followed by a stage 
in which associative hookups are learned. The hypothesis led us to expect that the 
probability of accomplishing the first stage of learning should depend on response 

difficulty; actually, we found that the relevant parameter depended almost as strongly 
on stimulus difficulty as on response difficulty. 

Our results led to an alternative hypothesis about the nature of the two learning 
stages. We propose that the first stage involves storage in memory of the stimulus- 

response pair, and that the second stage involves learning how to retrieve the correct 
response using the stimulus as a search cue. The evidence regarding our constructive 
suggestion seems to us to be encouraging, but far from definitive. Mainly, our reticence 
comes from the biographical fact that we thought of the hypothesis after, rather than 
before, we saw the results of the analysis. We have the classical problem of cross- 
validation; we observed a pattern of correlations between parameters and variables, 
and we think there might be some interesting processes that produced the observed 
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pattern. On the other hand, the observed pattern could have been produced by acci- 
dent, or by something peculiar to the specific experiment that was carried out. N7e 
intend to carry out further studies on this problem to see whether our results can be 
replicated. In the meantime, the evidence against the two-stage theory with response 

acquisition in the initial stage seems firm and worth putting into the record. 
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