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For a general stochastic signal in white noise absolute continuity is proved 
and the Radon-Nikodym derivative is given. These results were stated in 
a previous paper (Duncan 1968). Independent  of the absolute continuity result, 
a modification is proved for the hypothesis with signal present. 

1. INTRODUCTION 

This paper is a sequel to an earlier paper by the author (Duncan 1968) 
where likelihood functions were obtained for diffusion process signals. While 
the general result was noted there, in this paper we explicitly prove the more 
general result and show that the proof easily follows from the techniques used 
in the previous work. We shall also indicate in a rigorous mathematical way 
how the hypotheses may be changed using some results for the decomposition 
of supermartingales. 

2. PROBLEM STATEMENT 

We consider the following detection problem. 

dY,  = Z ,  dt + dB, for signal present 

= dB, for signal not present 

(1) 

(2) 
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where the process B is an n-dimensional Brownian motion, the process Z is 
an n-dimensional process independent of B with 

f f ZJZ~dP  ds < (3) 

and Y0 ~ 0 and t ~ [0, 1]. 
Since the processes B and Z are independent, the stochastic differential 

equation for signal present defines one and only one process Y. This  detection 
problem description models a fairly general class of detection problems for a 
stochastic signal in white noise. I t  can be shown (Duncan 1969) that condition 
(3) is close to the most general condition for absolute continuity. The  assump- 
tion of independence of signal and noise can be dropped if existence and 
uniqueness properties can be established by other means for the stochastic 
differential equation for signal present. 

3. MAIN RESULT 

The  main result shows that tzr is absolutely continuous with respect 
to/~B, denoted/~r  ~ / ~ B ,  where/~B and/~r  are the measures for the processes 
B and Y respectively. With the absolute continuity of measures the Radon-  
Nikodym derivative, dt~r/dk~B, is also obtained in a convenient form. 

THEOREM 1. Consider the detection problem described by (1), (2), and (3). 
Then i X r ~  l~B where i~B and t*r are the measures for the processes B and Y 
respectively. The Radon-Nikodym derivative is 

~ 1 * ds] ¢,---exp[foZ2"dYs- foef2, (4) 

where ~,  = E[Zs ] Yu , 0 ~ u ~ s] with Y defined by (1) while in e t ,  Y has 
the 1~ distribution. 

Proof. Initially let Z be a bounded uniformly stepwise process i.e., there 
exists a finite subdivision of [0, 1], 0 = t o < t 1 < "-  < t n = 1 and a finite 
constant M such that 

Zt(oo) = Zt,(oJ) t~ ~ t < t~+, i = 0, 1,..., n - -  1 (5) 

and I Zt(oJ)] < M.  Le t /~rz  and/~Bz be the measures for the processes (U, Z)  
and (B, Z) respectively. T o  show that /~rz ~ / Z n z  we fix Z, a finite number  of 
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random variables, whose values are in a compact subset of a finite dimensional 
Euclidean space. With Z fixed, Y is a translate of Brownian motion and the 
Radon-Nikodym derivative is well known. Let ¢(Z) be this Radon-Nikodym 
derivative. Since ¢ is a continuous function of Z we can use a countable dense 
set of values of Z to determine the Radon-Nikodym derivative, ¢, which is 

[f*o 1 ~ ds]. (6) ¢, = exp Z~ T dYs -- ~ f o Z s T Z s  

To show t h a t / ~ y ~  b~B we note that/X~z is a product measure from the inde- 
pendence of the processes B and Z and, therefore, to obtain the measure/x~, 
we merely integrate the Radon-Nikodym derivative, ~, on the measure/~z.  
Define 

¢~ = E.z¢~ (7) 

where E.z denotes integration with respect to the measure/L z . Therefore 

dtx f ~ ,  = ¢. (8) 

Applying the formula for stochastic differentials (It6, 1951)to Ct we obtain 

c}, =- 1 q- f ¢~Z~ T dB~. (9) 
o 

A simple verification shows that 

f ¢~zZsTg ~ ds < oo a.s./x~z (10) 

so that the stochastic integral in (9) can be defined as a pointwise and L 1 limit 
of finite sum approximations to the integral. For the finite sums we have 

n 

i = l  i = 1  

Since the limit of the integrand on the right hand side of (11) is well defined 
w e  have 

t 

E"z fo rfsZsTdBs-= fo E"zCsZff dBs a.s. ~B. (12) 
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Thus 

¢~ = 1 + f E , z¢ ,Z f f  dB ~ . 
0 

(13) 

Let F t = in Ct and apply the formula for stochastic differentials (It6, 1951) 
(which can be easily verified to be valid here) to obtain 

Consider the expression 

E~z¢tZ, T dBt 1 E.z¢tZtTE.z¢tZt dt 

E.z¢~ 2 [E.zCd ~ 

E,,zCt • 

(14) 

(15) 

Since ¢ = dl~rz/dt~Bz the expression (15) is the conditional expectation 
E[Zt I Yu , 0 <~ u <~ t] i.e., (15) has the proper measurability properties for 
E[Zt [ Y~ , 0 <~ u <~ t] and it calculates the correct probabilities. Thus 

and 

EuzCtZt 
2t & E[Ztl Y . , O  <<. u <~ t] = E.z¢ t (16) 

- i  f oZ :&ds]  • (17) 

For the case of an arbitrary process Z satisfying (3) we can obtain a sequence 
of bounded uniformly stepwise processes which converge to Z in L2(dt dP). 
By the Kolmogorov-Doob inequality for the stochastic integral and the usual 
L 1 bound for the ordinary integral we have that 

¢(~) -+ ¢ uniformly in t a.s./Znz. (18) 

All that remains to verify is that the absolute continuity has been preserved 
i.e., that the ¢(m ___> ¢ in Ll(dt~Bz). A necessary and sufficient condition for 
¢~) --~ ¢ in Ll(dlzBz) is that the sequence {¢(~)} be uniformly integrable. The 
fact that 

sup fq~(")ln~ (n) dlxBz < oO (19) 
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implies uniform integrability of the sequence {¢(n~}. The remaining arguments 
are the same to show 

t ,  A ¢,=exp[f*o2ZdB,--2foZZZ, ds]. | 
Similar to the detection of a Markov signal in white noise we can show that Ct 
induces the drift term Zt and our two hypotheses become 

dYt = ~t dt q- dBt for signal present, (20) 

= dB~ for signal not present. (21) 

We shall use another technique to prove the above relationships indepen- 
dent of the absolute continuity properties. This technique will use some results 
for the decomposition of supermartingales (Meyer 1962, 1963). 

We shall initially assume that Z ~< 0. Let ~ = "~(Yu, 0 <~ u <~ t), the 
sub-a-field generated by the random variables {Y,~, 0 ~< u ~< t}. We assume 
that all the sub-~-fields are augmented. Recall the fundamental probability 
space (D, ~ ,  P). The triple (Y , ,  ~'~, P) is a supermartingale, i.e., if t > s. 

(22) 

We shall apply the supermartingale decomposition result of Meyer (1962, 
1963) to the supermartingale Y. First we verify that Meyer's hypotheses are 
satisfied, i.e., that the supermartingale is in class (DL). Since the Brownian 
motion B is trivially in class (DL) an easy calculation shows that Y is in class 
(DL). Applying the decomposition we obtain 

Yt = Xt  -- At (23) 

where (Xt ,  ~,~,) is a martingale and A is a natural increasing process. This 
decomposition is then unique (Meyer, 1963, 1966). 

We wish to identify the martingale X and the natural increasing process _// 
in terms of the signal and the noise in (1). We first consider the martingale X. 
Since the supermartingale Y is continuous and locally square integrable the 
martingale X is also continuous and locally square integrable. For any locally 
square integrable martingale X there is a unique increasing process, (X) ,  
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such that Xt 2 -  ( X ) ,  is locally a square integrable martingale (Kunita- 
Watanabe 1967). 

Consider the sum 

( Y h + l -  Yh) 2 (24) 
i = 1  

where the partitions Pn = {tl, t2 .... , tn+l} become dense in the interval [0, 1]. 
By assuming initially that Z is a bounded uniformly stepwise process and 
then taking the necessary limit we can show, following K. It6 (1951), that 

(Y,~+, --  Yh)2--> 1 a.s. (25) 
i = 1  

Since this must also be true when we use the expression for Y given by (23) 
and since the limit in (25) is not random, considering a sum with the expres- 
sion (23), we obtain 

( X )  (26) 

using results of Kunita and S. Watanabe (1967). Thus 

(X)~ = t (27) 

and by a result of P. L6vy (Doob 1953) the martingale X must be Brownian 
motion. 

It only remains then to determine the natural increasing process in terms 
of Z. We denote following Meyer (1966) 

Define 

p h Y ,  = E[Y~+h 1o~]. (28) 

f t Ys - - P h Y s  
A t  ~ = - ds. (29) 

o h 

Meyer (1966) has shown that if Y is in class (D) then for every stopping 
time T 

A T = lim A T  ~ (30) 
h-~0 

in the sense of the weak topology a(L 1, L°D). For the general case where 
Y is in class (DL) we can truncate the supermartingale via stopping times. 
The increasing process A is natural and by Meyer's results it is unique. 
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Proceeding from (1) it is not difficult to compute the natural increasing 

process A. 

Yt+h Yt + f~+~ = Z~ du + Bt+~ -- Bt .  (31) 
o t  

Conditioning on ~ we obtain 

E[Yt+,~ I o~] Yt + E Z u du [ 
L ¢ t  

By the properties of absolute continuity we have 

1 [*+~ Z u du = Zt a.s. P and for almost all t. (33) lim ~ ~t 

Since 

f * Y s - - p ~ Y s d  s A t e =  h 
0 

(34) 

~8 = E[Z8 I ~ ] .  (37) 

A simple computation shows that (X t ,  ~'t) is a martingale with continuous 
sample paths. Computing its oscillation as we did for Y in (24) and using the 
fact that f ~8 ds is of bounded variation we obtain the same limit as in (25). 
Thus (X, ,  ~ )  is a Brownian motion. Therefore we can write our hypotheses 
for the detection problem as 

dYt = ~t dt -t- dBt for signal present (38) 

= dB t for signal not present. (39) 

where 

it follows that 

At = lira At ~ 

t yEtz l ]d, f 2 a,. (35) 
0 0 

By Doob's optional sampling theorem (Doob, 1953) (35) can be verified for 
AT where T is a stopping time. 

For an arbitrary signal Z satisfying (3), noting the result for Z ~ 0, we 
define the process X as 

t 

Xt  = Yt -- f Z8 as (36) 
0 
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Using the results for the proof of Theorem 1 we could show that the formal 
limit obtained for the likelihood function for (38) and (39) is (i) a Radon-  
Nikodym derivative and (ii) the correct measure to associate with Y for 
signal present. 

4. REMARKS 

With additional assumptions on the signal and noise terms (e.g., Lipschitz 
continuity) the assumption of independence of signal and noise becomes 
unnecessary and we can solve the detection problem and obtain a result 
similar to (4). The  independence assumption was merely a simple scheme to 
establish existence and uniqueness for the process Y with signal present. 

The stochastic differential equation description has wide applicability in 
detection problems and is useful for establishing necessary and sufficient 
conditions for absolute continuity (Duncan 1969). 

Results similar to those obtained in Theorem 1 have been claimed by 
Kailath (1969), though Kailath's methods seem at best imprecise. The  original 
rigorous derivation was obtained by Duncan (1968) who in fact explained the 
generalizations. 
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