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Polynomial Psychophysics of Risk 

CLYDE H. COOMBS AND LILY C. HUANG~ 

University of Michigan, Ann Arbor, Michigan 48104 

Three mathematical transformations on two-outcome games are defined. It is 
assumed that these transformations induce corresponding transformations on perceived 

risk. The rule governing the joint effect of these transformations is assumed to be the 
distributive model. An experiment is reported in which a class of simple polynomials 

are compared using the measurement-free methods of polynomial conjoint measure- 
ment. Substantial support for the distributive model is obtained. 

1. INTRODUCTION 

Portfolio theory (Coombs and Huang, 1968; Coombs and Meyer, 1968) is a theory 
of risk preference and is intrinsically independent of the definition of risk. Experi- 

mental study of portfolio theory, however, is dependent upon the manipulation of 
risk and hence discrepant experimental results do not clearly distinguish between 
the faults of portfolio theory and the incorrectness of assumptions about the nature 
of risk. In this paper we approach the problem of risk itself, independently of the 
problem of risk preference. 

There are in the literature various attempts to define risk for purposes of descriptive 

theory and normative theory (e.g., Royden, Suppes, and Walsh, 1959; Coombs and 
Pruitt, 1960, 1961; Markowitz, 1959). Some experimental studies of the descriptive 
approaches have been made and the results suggest that these views of risk are 
inadequate and that the nature of risk is to some degree idiosyncratic. Like beauty, 

it is in the eyes of the beholder. 
We shall consider games (we prefer this term to gambles) of the form g = (y, p, 2) 

where p is the probability of obtaining y  amount of money, otherwise z amount, 
and y  3 Z. We propose in portfolio theory that such a game is perceived in terms of, 
and may be characterized by, two parameters, expected value, E, and perceived risk, R. 

i The study reported here was supported in part by National Science Foundation Grant 
GB-6782 to the University of Michigan. We would like to also express our appreciation to David 
Krantz, J. E. Keith Smith, and Amos Tversky for criticism and much discussion. 
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Expected value is equal to the inner product of the outcomes and their respective 
probabilities, but risk is left essentially undefined. 

In this paper we propose a structure for perceived risk and present an experimental 
test of some of the conditions implied by the structure. Potentially it can lead to 
the measurement of perceived risk in spite of certain individual variations in the 
concept of risk. 

The approach is to define transformations on these games which permit trans- 
forming any one of these games into any other with the same probability of winning. 
We propose that these transformations induce corresponding transformations on 

perceived risk. We add another transformation for the multiple play of a game which 
may also induce a transformation on perceived risk. We propose that the joint effect 
of these transformations on perceived risk has a particular polynomial form which 
we test by conjoint measurement. 

2. CONSTRUCTION OF GAMES 

Let &, denote the space of all two-outcome games for which p is the probability 

of winning y  amount of money, otherwise z (with probability 4 = 1 - p), and y  > z. 
We define the following three sets of transformations on these games: 

A = {a, a’, a” . ..} 

B = {b, b’, b” . ..} 

c = {c, c’, CM . ..} 

and 

&‘)=(y+a,p,z-$a,) VUEA, (1) 

b(g) =(y $J,P,z+h) Vb E B, (2) 

444 = (Y, P, W) vc E c, (3) 

in which a and C are real numbers and c is a nonnegative integer and designates 
that the game g is played c times independently. 

Letting E(g) indicate the expected value of g, it is easy to show that u(g) is 
expectation-preserving and b(g) increments the expectation by the amount 4. That is 

-W(g)] = E(G) + 4. (5) 

It is also easy to show that any game g E Q, , can be converted by these two 
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transformations into any other game g’ E Q, . To transform g = (y, p, Z) into 
g’ = (y’, p, x’) we must have 

y’ = y  + cc + 6, 

Solving for a and b we have: 

n = q[(y’ -y) - (z’ ~ x)1, 

/: = p(y’ - y) + q(s’ - z), 

(6) 

and these equations always have a solution. 

Transformations a and b are associative and commutative and are always applied 
before multiple play. 

The transformation, c(g), for independent multiple-play, is the convolution of the 

game g with itself c times. For example, with e = 2, the game g is transformed into 
a three-outcome game g’, with outcome 2y with probability pz, outcome y  + x with 
probability 2pq, and outcome 22 with probability q2, i.e.: 

g’ = (2Y, P2, y + z, 2pq, 26 q2). 

Because independent multiple-play accumulates expectation, we have 

E[4‘dl = Jw. (7) 

We expect each of these transformations to have an effect on the perceived riskiness 

of a game, specific to an individual, reflecting his particular conception of what is risk. 
We also expect that for many, if not most, these effects will be ill-defined and fuzzy. 
The question arises, then, whether any structure can be found at all in perceived 
risk and what generality it might have. 

We shall use g, = (0, p, 0) as the origin from which all other two-outcome games 
with the same probability of winning will be generated by means of the transformations 

A and B. With the multiple-play transformation C, we have three functions which 
we will consider to be the three variables of our system. We seek to study the perceived 
risk structure of this set of games in which these transformations are to be our variables. 

For later psychological relevance it is useful to point out that a two-outcome game 

with fixed p generated from g, by a E A and b E B is the game (a + k, p, d - (p/q)&) 
and for which the expected regret is q[(a + 4) - (G - (p/q)a)] = LZ and the expected 
value is 6. Furthermore, the effect of multiple play can be easily seen to multiply 
both the expected regret and the expected value. 

480/7!2-9 
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3. ALTERNATIVE POLYNOMIALS FOR PERCEIVED RISK 

We assume the existence of a real valued function, R, which assigns a measure 
of risk R(g), to each game generated from g, by means of the transformations A, B, 
and C, and we wish to study the composition function by which this measure depends 

on these three variables. The combination rules to be considered are those analyzed 
by Krantz and Tversky (1969) in which the variable ra adds to or multiplies rr and 
the variable ra than either adds to or multiplies the sum or product of y1 and r2 : 

Yl + y2 + 7-3 (additive model), 

(‘1 + ‘2k3 (distributive model), 

TIT2 A- y3 (dual-distributive model), 

r1y2.73 (multiplicative model). 

(8) 

(9) 

(10) 

(11) 

Because we expect the effect of the A and B transformations to be additive and 
transformation C, the number of plays, to be multiplicative over the joint effect 

of the other two, we direct our attention mostly to necessary and distinguishing 
properties of the distributive model. 

Every triple a E A, b E B, c E C, represents a game, g = [a, b, c], fromg, = (0, p, 0). 
The representation theorem we seek to establish, then, is the following: there 

exist real valued functions OL, /3, and y, defined on A, B, and C, respectively, such that 

g E [a, b, c] < g’ = [a’, b’, c’] iff [a(a) + /3(d)] Y(r) < [a(a’) + bYal> YCr’) 

where < = an empirical binary relation on perceived risk 
< = the natural weak ordering on real numbers. 

Heuristically, 01, p, and y  correspond to three psychophysical functions for the 
subjective effects on perceived risk of the corresponding transformations A, B, and C, 
respectively, on games. These mathematical transformations on games are our 
independent variables in this theory of perceived risk and play a role analogous to 
that which physical energy does in ordinary sensory psychophysics. 

As the transformation A is expectation-preserving it would not be surprising if (Y. 
were an increasing monotone function of a, because almost every candidate for a 
notion of risk, like variance, maximum possible loss, expected loss, and expected 
regret all increase with 01. 

The transformation I3 has no effect on variance or expected regret but maximum 
loss and expected loss vary inversely with 8, hence one might anticipate that /3 would 
not be an increasing function of 1”. 

The transformation C changes all such measures at the same time and in directions 
which could have opposite effects on perceived risk. 
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We are interested, then, in whether perceived risk has the structure of the simple 

distributive model and, if so, what might be said further about the functions OL, /3, 
and y  in individual cases. 

4. DIAGNOSTIC PROPERTIES 

I f  we generate a set of games from the Cartesian product A x B x C with some 
suitable fixed number of levels in each factor, and then obtain an empirical rank 
order of the riskiness of these games, we have a data matrix with a number in each 
cell representing the rank order of the conjoint effect of some fixed combination 

of the factors A, B, and C. There are various properties which this empirical ordering 
may exhibit which can be used to identify and distinguish the various polynomial 
models (Krantz and Tversky, 1969). We shall present these and discuss their applica- 
tion to the problem of testing the suitability of the distributive model. 

A basic concept that is relevant here is that of independence. If  the observed 
ordering of the joint effect of any subset of the variables at fixed levels of another 
second (disjoint) subset of the variables is unaffected by the levels at which these 
latter variables are fixed, all remaining variables held constant, the first subset of 

variables is said to be independent of the second. In the three variable case, the 
variable A is independent of B if the ordering induced on A with B and C held constant 
does not depend on the fixed value of B. If  a single variable and the joint effect of 
the remaining variables are mutually independent, then the single variable is called 

semiadditive. 
Sign-dependence is a more general form of independence. Consider the product 

of two numbers, x and y, and the order induced on the product, ~31, by fixing the 
value of x. Clearly the ordering thereby induced on my is not independent of the 
fixed value for x, because if x is negative the ordering on my is exactly reversed from 

the ordering on xy if x is positive. Furthermore, if x = 0 the ordering induced on .~y 
is degenerate. However, the variable x can be partitioned into signed classes (positive, 
negative, zero) such that the ordering induced on xv is independent of the choice 
of the value of x except for the “sign” of that value, with reversed sign reversing 
the ordering and the “zero-sign” producing degenerate ordering. 

In the three variable case we say that the factor A is “sign-dependent” on C if 

the ordering induced on A by fixing B and C is independent of the level of C except 
for the sign of that level (C+, Co, C-). For example, in the distributive model of 
Eq. 9, A is independent of B and sign-dependent on C. If  C has only one sign 
(positive), however, then il is independent of C. 

The discussion and subsequent analysis of data, organizes itself conveniently 
around three sets of properties: (i) those properties which must hold for any of these 
four polynomial models to obtain; (ii) those properties which distinguish, on the 
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one hand, the additive and multiplicative models, from the distributive and dual- 
distributive models on the other; and (iii) a property which distinguishes between 
the distributive and the dual-distributive models. 

Plane Properties 

The first set of properties might be referred to as “plane” properties because 
they are necessary conditions for additivity to hold in a plane, by which is meant 

holding one variable constant, the joint effect of the other two must be additive. 
Additivity in every plane is a property which these four polynomials have in common 
provided that all scale values have the same sign. For example, in the distributive 
model of Eq. 9, holding ra constant and taking logarithms makes the function additive 

if all scale values are positive, because we would have log(r, + c) + log ~a . I f  all 
scale values were negative, the ordering would be unaffected because the value of 
the function is unchanged. But if y1 were positive and r2 were negative, for example, 
they could cancel and yield a degenerate ordering. 

Two necessary conditions for additivity in every plane are: (i) independence in 
planes, that is, independence of each variable relative to each other variable with the 

third variable held constant, and (ii) double cancellation in every plane. 

Independence in Planes 

Examples of the first condition are the independence of A with respect to B with C 
held constant; in formal terms: 

[a, h cl < [a’, k cl i f f  [a, b’, c] < [a’, b’, c] 

for all levels of A and B with C fixed; (12.i) 

and the independence of B with respect to A with C held constant requires that: 

[a, b, cl < [a, b’, cl i f f  [a’, b, c] Q [a’, b’, c] 

for all levels of A and B with C fixed. (12.ii) 

A graphical representation of these independence properties on the plane is given 
in Fig. 1, in which (12.i) is represented by the vertical arrows and (12.ii) is represented 

A 

I I 
a 

a’ 

b b' b" 

B 

FIG. 1. Mutual independence of A and B in an A x B plane. 
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by the horizontal arrows. The single arrows representing the left side of their respective 
expressions, the double arrow the right side. Each arrow represents an empirical 
binary relation with the arrowhead indicating the cell which is at least as risky. 

Double Cancellation 

The property of double cancellation is satisfied in the A x B plane for a fixed 
level of C if f  for all levels of A x B we have: 

[a, b’, cl < [a’, b, cl, 
and [a’, V, c] < [a”, b’, c], (13) 

imply [a, b”, c] < [a”, b, c]. 

A graphical representation of double cancellation is given in Fig. 2 in which the 
single arrows represent the two hypotheses and the double arrow the implication. 

FIG. 2. Double cancellation in an A x B plane. 

a” 

A a’ 
a 

b b’ b” 
B 

In this first set of properties, one variable is held constant and certain properties 

are observed of the ordering of the joint effect from varying the other two. 
The second set of properties pertain to the effect of the level at which the one 

variable is held constant (or to the effect of the levels at which two of the variables 
are jointly held constant). Another way of putting it is that the first set of properties 
are intraplane properties, the second set all involve effects of passing from one plane 
to another, interplane properties. 

Interplane Properties 

These properties serve the purpose of testing whether or not the effect of the 

variables, taken one at a time and taken two at a time, is additive with the remaining 
variable(s). Such properties are critical for distinguishing the additive and multi- 
plicative models from the distributive and dual-distributive models. 

In the distributive model of Eq. 9 for example, and with the real numbers as the 
normal domain of all variables, r3 should be sign-dependent on (yl + ra) and, also, 
(rr + r2) should be sign-dependent on r3 . That is, the ordering induced on r3 by 
holding (yl $- YJ constant depends only on whether the value of (rr + r2) is positive, 
zero, or negative, and vice versa. If  the domain of the three variables is only in the 
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positive reals, however, then the above induced orderings are independent and the 

two subsets of variables, (rr , rs) and rs , are semiadditive. These relations, of course, 
would also be true if the model were additive or multiplicative. 

However, the induced joint ordering of any two other variables, e.g., (rr , ~a) could 
violate independence under the distributive model, but not under the additive or 
multiplicative even if the domain of all variables is in the positive reals. 

Formally, for our variable C to be independent of the joint effects of A and B, 
we must have for all levels of A, B, and C, 

[a, 6 cl =G [a, 6 c’l i f f  [a’, b’, c] < [a’, b’, c’] (14) 

A graphical representation of this property is presented in Fig. 3. 

I  I  
a 

A a’ 

a 

FIG. 

b b' b" 
0 

0 c= cl 

c=c 

3. Independence of C with respect to A x B. 

However, for our variables taken one at a time, say C, to be independent of the 
joint effects of the other two, A x B, it is sufficient that C be independent of A and 

that C be independent of B. Therefore, the independence of one variable with respect 
to the joint effects of the other two is a consequence of intraplane tests. 

For example, the independence of C with respect to A with B fixed means that: 

[a, h cl < [a, b, c’l - [a’, b, cl < [a’, 6 4, 
and the independence of C with respect to B with A fixed means that: 

[a’, 6, c] < [a’, b, c’] -3 [a’, b’, c] < [a’, b’, c’], 

and by transitivity we have expression (14). Hence, given that the intraplane properties 
are satisfied, as required, the interplane properties which remain to be tested for, 
are the independence of the variables taken two at a time with respect to the remaining 
variable. Of course, there are three such tests. 

For the joint effect of A x B to be independent of C, we must have, for all levels 
of A, B, and C, 

b, 6 cl < [a’, b’, cl i f f  [a, b, c’] < [a’, b’, c’]. (15) 

A graphical representation of this property is presented in Fig. 4. 
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a” 

A a’ 

a 

b b' b" 
0 

c= c 

II 
a 

A a’ 

a 

b b' b" 

0 

c= c’ 

FIG. 4. Independence of A Y B relative to C. 

I f  expression (15) holds only if c, c’ are both elements of Cf or of C-, then A x B 
is not independent but is sign-dependent on C. 

By interchanging the factors A, B, and C in expression (15) we have three distinct 

tests in this set of properties of the interplane variety. 
We have now discussed two sets of predictions. The intraplane predictions which 

must be satisfied if any of the four polynomials (8)-( 11) is to obtain; and the interplane 
predictions, which, if not satisfied as anticipated, reduces attention to the distributive 

and dual-distributive models. The property, then, which is next of interest, is that 
which may distinguish between these two models. 

Distributive Cancellation 

That distributive cancellation is a necessary condition for the distributive model 

may be shown as follows. If  the distributive decomposition is to hold, then: 

[a, b, cl < [a’, b’, ~‘1 - b(a) + /WI Y(C) < I+‘> + /WI de’), 
[a’, b’, c] < [a”, b”, 4 0 [a(a’) + IV’)] y(c) < [4a”) + B(Ol A”‘), (16) 

[a”, b’, ~‘1 < [a’, b, cl - [44 + BV’)ly(4 < b(*c’) + P(41 Y(C)- 

By simple algebra, the right-hand set of inequalities yields: 

[44 + B(e’)l y(e) G N4 + /WY Y(Q), 

which implies the following empirically testable relation: 

[a, b’, c] < [a’, b”, c’]. (17) 

We may illustrate graphically what is meant by distributive cancellation in the 
following manner. We represent the two planes of A x B obtained by fixing C at c 
and c’ by the two 3 x 3 matrices in Fig. 5. The three arcs with single headed arrows 
represent the three empirical inequalities on the left side of (16). The head end of 
the arrow indicates the cell which has at least as large a joint effect as the cell at the 
other end. The double-heated arrow represents the empirical inequality given in (17) 

which is a consequence of (16). 
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a” 

A a' 

a 
b b' b" 6 

B c= c' 

c=c 
FIG. 5. Distributive cancellation. 

Briefly, if one diagonal of a second-order minor at any fixed level of C dominates 
one diagonal of a second-order minor at any other level of C (or the same level), 

then the second diagonals of the respective minors cannot have a reverse dominance 
relation. 

That distributive cancellation may be violated by the dual distributive model is 

shown by the following example in which the numerical arguments are given in the 
margins and the cell arguments are calculated according to the model rira + r3 : 

4 19 39 2 18 40 

rl 

I7 

-__ 
Yl 

3 15 30 1 15 26 

4 9 3 14 
r2 r2 

Ya = 3 YQ = 12 

5. THE EXPERIMENT 

Subjects. There were originally 36 subjects of whom 28 yielded complete data. 
There were 21 males and 7 females, all graduate students taking a general mathematical 
psychology course at the University of Michigan in the winter term of 1968. The 
data were collected at the beginning of the course and neither conjoint measurement 
theory nor decision processes had yet been presented. 

Stimuli. The basic games were all p = l/2 and were generated in a 3 x 3 matrix 
by transforming g,, as indicated in Table 1. 

The third transformation, multiple play, took on two levels, one and jive. So 
A x B x C = 3 . 3 . 2 = 18 games in all. For convenience of experimental design, 
a 19th game was added, (2.30, 3 , -1.30), played once. 

Procedure. The stimuli were arranged in a balanced incomplete block design of 
19 sets of 10 games each. In such a design each pair of games is replicated five times. 
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TABLE 1 

The Basic Games 

a” = (1.40, -1.40) 

a’ = (1.00, -1.00) 

a = (0.60, -0.60) 

(1.50, 4, -1.30) 

(1.10, +, -0.90) 

(0.70, fr, -0.50) 

b = (O.lO,O.lO) 

(1.70, a, -1.10) 

(1.30, a, -0.70) 
(0.90, $, -0.30) 

b' = (0.30,0.30) 

(1.90, +, -0.90) 
(1.50, 4, -0.50) 

(1.10, +, -0.10) 

b” = (0.50,0.50) 

Each game was printed on an IBM card and the cards were correspondingly arranged 
into 19 decks of 10 cards each. 

Each subject was given a complete set of 19 decks and asked to return them 2 days 

later with each deck arranged in rank order from most to least risky as perceived 
by the subject. The subjects were asked to rank order each deck independently. 

The cards were randomized within each deck and the decks were in an arbitrary 
order, but no effort was made to insure that the subjects sequentially went through 

the decks in the order given. 

Orderings. For each subject the decomposition (Coombs, 1964, pp. 53-54) of the 
incomplete blocks provided five replications on each pair of games. These pairwise 

counts were consolidated into a total rank order of all 19 games in two different ways. 
One way was to sum for each game the total number of times it was ranked over 
other stimuli; this ordering is called the tota vote count. The second way was to 
first reduce each pairwise count to the stochastically dominant choice, scored (1, 0), 
and then to sum for each game the total number of other games it was stochastically 
dominant over; this ordering is called the stochastically dominant ordering. 

The stochastically dominant ordering is a vote count ordering in which each pair 

is weighted equally, consistency matters nought. The total vote count ordering is 
one in which each vote is weighted equally so in effect, pairs are weighted by their 

consistency. 
Assuming the data to be stimulus comparison data and not preferential choice 

data in the sense of involving an ideal point (Coombs, 1964), each of the above methods 
provides an estimate of the rank order stimulus scale for perceived risk. The entire 
subsequent analysis testing the polynomial model for perception of risk was carried 
out independently for each of the two rank orders. 

6. RESULTS 

Consistency and Intransitivity 

The extent to which a subject’s pairwise split of the five replications deviates from 
chance is indicative of his consistency of judgment, and the extent to which weak 
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stochastic transitivity is violated is indicative of intransitivity of choice. Inconsistency 
muddies the water, intransitivity is fatal to the theory. 

The degree of a subject’s consistency of choice is an important consideration for 
evaluating his performance relative to a theory. With five replications of a 50/50 
choice on each pair the chance distribution of the dominant choice is a folded binomial 

over 3, 4, and 5 with a mean of 3.44 and a standard deviation of 0.371. A significant 
deviation from chance at the .Ol level (one-tail test) of the average over 171 pairs 
is 3.52 or more out of the five replications. 

The number out of five replications in the dominant choice, averaged over the 
171 pairs, is presented in the first column of Table 2 for each subject. The subjects 
have been ordered from the most to the least consistent. 

As is evident, only one subject, No. 23, fails to deviate significantly from chance, 
and his performance is almost exactly that expected by chance. This student, when 
questioned some weeks later, said that he had ordered half the decks on one night 
and the rest the following night. In retrospect he feared that he had placed them 

from most to least risky in a deck one night and from least to most the other night, 
but he was not sure of that. In any event, his level of inconsistency makes his data 
worthless and represents a failure of the model in that the model says a subject will 
be able to significantly discriminate differences in risk. 

Given a subject’s dominant choice on each pair, his intransitivity of choice was 
evaluated by counting the number of intransitive triples. For n = 19, the expected 
number of intransitive triples, if the pairwise choice is 50/50, is 242 and the maximum 
is 285. The second column of Table 2 reports the number of intransitive triples 

for each subject. 
The degree of intransitivity appears to closely follow inconsistency. On a scatter 

diagram the relation is clearly curvilinear. On the whole, intransitivity of choice 
does not appear to be a problem. 

Plane Properties 

Independence in Planes. As a matter of notational convenience in discussing and 
reporting the independence of one or more variables with respect to one or more 
others with another held constant a semicolon will be used to indicate “with respect 
to,” and a colon to indicate that what follows it has been held constant. For example, 
the independence of A with respect to B with C fixed at c would be coded A; B : C = c, 
the independence of A relative to B in the C = c plane. In this case, A; B : C = c, 
signifies a comparison of how the effect of the three levels of A are ordered at each 
of the three levels of B with C fixed at the level of c. Hence, there are three orderings 
of three elements (cells) which should be the same. 

The independence of A with respect to B must be tested at each level of C, c, and c’. 
So A; B : C = c’ also has three orderings of three elements each, all of which should 
be the same, but not necessarily the same as the orderings for A; B : C = c. 
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TABLE 2 

Consistency and Intransitivity 

Subject no. Consistency Intransitivity 

4 5.000 0 

22 4.995 0 

19 4.975 0 

20 4.960 0 
28 4.950 0 

12 4.935 0 
18 4.925 I 

21 4.920 0 

I5 4.905 0 

35 4.845 1 
6 4.840 1 

17 4.825 2 

5 4.800 I 

2 4.190 1 

IO 4.760 3 

30 4.750 4 

13 4.735 4 
3 4.680 1 

26 4.650 0 
1 4.645 1 

II 4.625 3 
36 4.605 0 

9 4.505 7 

24 4.485 14 

25 4.350 19 
7 4.345 16 

29 4.265 16 

23 3.430 131 

Kendall’s 7 is linearly related to the proportion of pairwise reversals2 between two 
orderings, (1 - 7)/2. So the average 7 is a measure of the extent to which several 
orderings agree. An indicator, then, of whether A is independent of B with C held 
constant, A; B : C, is the average of the two average T’S, one for A; B : C = c and 
one for A; B : C = c’. 

In the case of C; d : B the ordering on the two levels of C are compared at three 
levels of A for each of the three levels of B. So there are nine orderings of two elements. 
These nine orderings are partitioned into three subsets of three orderings, which 
should be the same in each subset. 

At the heading of each column of Table 3 the particular property of plane inde- 

2 Ties were counted one-half. 
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pendence being tested is indicated. The subjects are in the order from most to least 
consistent (see Table 2) and a cell of the table contains the two average T’S for the 

subject on the test, the average 7 on the left side of the cell is based on the total vote 
count ordering, and the average 7 on the right side is based on the stochastically 
dominant ordering. All four polynomials should satisfy this property of independence 
in every plane, i.e., all T’S should be one. 

The results based on the different orderings are in substantial agreement and 
neither ordering seems to be biased in either way with respect to the other. Because 
the factors do not all have the same number of levels (3 for A and B, 2 for C), care 
must be taken in comparing these average 7’s. In the case of C; A : B a reversal 
on one adjacent pair in one of the three orderings in one subset will reduce the average 
from one to 55.5. Whereas, in the case of the test A; B : C, there are six orderings 

partitioned into two subsets of three orderings of three elements each. A reversal 
on one adjacent pair in one of the three orderings in one subset will reduce the average 7 
from one to .777. 

In Table 4 we summarize the results of these tests of independence reported in 
Table 3, by counting the number of subjects out of 28 who had average T’S of exactly 
one and average r’s that admit of no more than one pair reversed in one ordering. 
As is clear from Table 4, factors A and B satisfy independence for almost all subjects, 

and factor C for at least half the subjects and perhaps three-quarters or more. 
Factor C will fail to satisfy independence in this experiment if the transformation 

from one play to five plays will be perceived as increasing riskiness in the case of 
some games and decreasing it in others. 

Table 4 does not convey the entire story, however, because all six of these properties 
should hold for each subject. Table 3 shows that there are nine subjects for whom 

all six properties hold exactly for both basic orderings, i.e., all cell entries are equal 
to one. There are seven more subjects, 9, 10, 13, 17, 24, 26, 36, for whom all entries 
indicate no more than one violation. So for these 16 subjects, we will conclude that 
all four models are viable in so far as independence in planes is concerned. 

Double Cancellation 

Double cancellation should also be satisfied in every plane for any of the simple 
polynomials to hold. The experimental design, having only two levels of the factor C, 
does not permit testing double cancellation in A x C or in B x C. So this property 

is tested in only A x B at each of the two levels of C. 
Double cancellation was tested only on those subjects who satisfied plane inde- 

pendence both of A with respect to B and B with respect to A. So this property 
is tested on those subjects who perfectly satisfied both A; B : C and B; A : C. Hence, 
the number of subjects on whom the different tests could be made varies. These 
tests were made, as usual, on the orderings based on the total vote count and on 
the orderings based on stochastic dominance. 
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The results are reported in Table 5, where there are three numbers in each cell, 

the first number is the number of subjects who violated double cancellation; the 
second number is the number of subjects who satisfied all the antecedents for the 
test and hence a violation could have occured; the third number includes in addition 
those subjects who satisfied plane independence but for whom the single arrows 
in Fig. 2 go in the opposite direction and so the test of double cancellation could 
not be violated. 

TABLE 5 

Tests of Double Cancellation in A x Ba 

Ordering based on Orderings based on 

total vote count stochastic dominance 
~.. 

A x B:C = c 1:18:21 3:18:22 
A x B:C = cf 0:16:20 1:17:23 

a The three numbers constituting each cell entry are, in turn, the number of subjects who 

violated double cancellation out of the number of subjects who satisfied the premises for the 

test out of the number of subjects who satisfied plane independence. 

The subject who violated double cancellation in A x B : C = c in the ordering 
based on total vote count is number 24. For the ordering based on stochastic dominance 
the three subjects who violated it in A x B : C = c were numbers 3, 24, 35, and 

the one who violated it in A x B : C = c’ was number 3. It is to be noted that 
subjects numbered 3 and 24 were two of the more inconsistent subjects. 

Interplane Properties 

The interplane properties involving the independence of each variable taken singly 

with respect to the joint effect of the other two-A; B x C, B; A x C, C; A x B- 
are, as we have seen, consequences of independence in their respective planes. 

The interplane properties with which we are concerned, then, involve testing for 
the independence of the joint effects of each pair of variables with respect to the 
remaining variable (i.e., tests of the form A x B; C) of which there are three. 

In principle these tests need to be made only on those subjects who have satisfied 
the intraplane tests but, because the latter decision is somewhat arbitrary, we report 
the tests in full. 

The three tests differ in the number of elements being ordered, in the number 
of orderings being compared, and hence in the effect of a single reversal on the 
average 7. Thus, in testing the independence of A x B with respect to C we have 
two orderings of the nine elements in A x B, and if they differ by one reversal of 
an adjacent pair, the (average) T is .944; in both B x C with respect to A and A x C 



334 COOMBS AND HUANG 

with respect to B, we have three orderings of six elements, so with one reversal 
of an adjacent pair, the average 7 is .911. 

For the additive and multiplicative models the orderings in each test should all 
be the same if the scale values within each factor all have the same sign. If  the 
distributive or dual-distributive model obtains, however, only the two orderings of 

the nine elements of A x B must be identical. The other two tests may or may not 
violate independence. 

TABLE 6 

Interplane Tests of Independence” 

S No. AxB:C BxC;A A x C;B 

**4 1 
**22 1 

**19 1 

20 I 
**28 .944 

**12 I 
18 .944 

**21 1 
15 I 

35 .666 

**6 .816 
*17 .986 

5 I 
2 .944 

*10 .957 

30 .9.57 

*13 1 

**3 ,944 

*26 I 

1 .944 

**11 .944 
*36 ,944 

*9 ,971 
*24 .888 

25 .777 

7 .986 
29 .873 

23 .366 

1 
1 

1 

1 
1 

1 
1 

.929 
I 

.783 

.899 

1 
.986 
.944 

.986 

.986 

.944 

,816 
,816 

,929 
1 

.986 

.985 

.816 
,944 
.857 

- .029 

,911 
.911 

.911 

.733 

.911 

.911 

.911 

.911 

I 
1 

I 
.866 

.91 I 

.644 

1 
,828 
.644 

.733 

I 
.911 

1 
.I96 

,953 
.977 
,377 

,733 
.793 

-.233 

.733 

.822 

.822 

,377 
.822 

,822 
.822 

I 
-.066 

.200 

1 
.91 I 

.077 
,733 

1 
.701 
.841 

.822 

.911 
,571 

.91 I 
1 

.876 

.953 

p.208 
.748 
.530 

.083 

7 .922 ,937 .823 

,911 .733 

.911 .822 

.911 .822 

.733 .371 
,911 .822 

.911 .822 

.911 .822 

.91 I 1 
I ~ .066 

I .288 

1 1 
,866 .885 

.977 ,200 
,644 .733 

I ,977 

.887 ,511 

.644 .822 

,733 .822 
.911 1 

,822 .644 

I .911 
1 ,977 

.885 .833 
,977 1 

.476 - .066 

.885 .733 
,887 ,718 

.249 .066 

.855 .750 .784 

a All entries are average 7’s. The 7 on the left is based on the total vote count ordering. The 
7 on the right is based on the stochastically dominant ordering. 
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For example, the test, B x C; A may or may not violate independence depending 

on the levels chosen in the experiment for the three factors, thus, 

[da) + Pm1 Y(C) < [4a) + W’)l Y(4 iff ol(~) < ‘(~‘) ‘(“) - ~(6) Y(‘) 
Y(4 - Y(4 ’ 

so, clearly, the ordering on the two cells [a, b, c] and [a, b’, c’] is not diagnostic for 
the model. Another way to help make clear that this test can be violated is to note 
that the effect of factor C is to magnify the joint effect of A x B. I f  A increases 

risk and B decreases it their joint effect may be positive or negative depending on 
the experimental levels chosen. 

The results on the interplane tests are reported in Table 6. At the head of each 
column the particular property being tested is indicated. The subjects are in the 
order from most to least consistent and a cell of Table 6 contains the two average 7’s 
for the subject on that test, the -r on the left side is based on the total vote count 

ordering and the one on the right side is based on the stochastically dominant ordering. 
We have indicated with a double asterisk those subjects who perfectly satisfied all 
six intraplane tests, and with a single asterisk those subjects who deviated by a single 
reversal in one ordering. 

In Table 7 we summarize the results of these interplane tests of independence. 
The results are summarized separately for all 28 subjects and for the 16 subjects 

who satisfied all tests of independence in planes at a minimum level of no more 
than one pair reversed in one ordering. 

TABLE 7 

Summary of Interplane Tests of Independence 

AxB;C BxC;A AxC;B 
7 > .944 7=1 T > .911 7=1 7>.911 +=l 

All subjects TVC” 22 10 17 6 7 4 

N = 28 SDOb 19 11 16 6 8 4 

Subset TVC 14 7 12 4 7 4 

of 16” SD0 11 6 12 4 8 4 

0 TVC = the total vote count ordering. 

* SD0 = the stochastically dominant ordering. 

c These are the 16 subjects who satisfied each test of independence in planes according to a 
criterion of no more than one pair reversed in one ordering. 

We see that the independence of A x C; B is satisfied by only seven or eight 
of the subjects, even at the less stringent criterion, and on these grounds we may 

480/7/2-l 0 
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reject the additive model. We may also reject the multiplicative model if we assume 
that all scale values have the same sign within one factor. We also see from Table 7 
that the independence of A x B; C is satisfied by most of the subjects, as required 

by all four models and, in particular, the distributive and dual-distributive. So we 
turn to the test of distributive cancellation. 

Distributive Cancellation 

The number of tests that may be made of this property for each subject depends 
upon his ordering of the cells in the first place. In this experiment, the number of 
tests that could be made on a subject varied from 0 to 72. 

For each subject, and for each of the two basic orderings, the number of violations 
of distributive cancellation and the number of tests it was possible to make on the 
subject are reported in Table 8. The subjects are ordered from the most to least 

consistent. 
It appears that the property of distributive cancellation is satisfied, supporting the 

distributive model. We have not, however, eliminated the dual-distributive model, 
the property of distributive cancellation could be satisfied by a subset of data 
satisfying the dual-distributive model. Another cancellation property is required by 

the dual-distributive model but a larger-scale experiment is required to test it. Our 
preference for the distributive model over the dual-distributive is not based on 
evidence from this experiment but is based on arguments presented in the discussion. 

7. DISCUSSION 

While only qualitative comparisons of models have been possible in this experiment 
there appears to be substantial support for the empirical relational system for 

perceived risk we seek to capture with the distributive model. The principal negative 
results are the tests of plane independence of C with respect to A with B fixed and 
of C with respect to B with A fixed, which were satisfied by only half the subjects 
at the strict criterion level of 7 = 1 and by three-quarters or more at the lesser criterion 
level of no more than one reversal. 

As a matter of substantive interest riskiness was perceived without exception to 
increase as a increased, other things being constant, for 20 of the 28 subjects and 
most of the time for six more. Riskiness was perceived without exception to decrease 
as d increased other things being constant, for 26 of the 28 subjects and most of 
the time for the remaining two. The effect of multiple play is merely to enhance 
the joint effect of the other two factors, according to the distributive model, and this 
is supported by the data. 

One of the structural conditions given by Krantz and Tversky for the distributive 
model to hold is that (A x B)O and Co not be empty, i.e., that there must exist a 
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TABLE 8 

Testing Distributive Cancellation 

Subject No. of No. of No. of No. of 
no. tests violations tests violations 

4 24 0 

22 24 0 

19 24 0 

20 60 0 

28 24 0 

12 24 0 

18 50 0 

21 0 0 
15 5 0 

35 0 0 

6 0 0 

17 34 0 

5 8 1 

2 48 0 
10 8 0 

30 56 0 

13 54 2 

3 33 1 

26 44 0 

1 58 0 

11 20 0 
36 56 0 

9 60 I 

24 29 0 

25 33 5 

7 72 4 

29 35 3 

23 0 0 

AV. 31.5 0.82 

24 0 
24 0 

24 0 

56 0 
24 0 
24 0 

60 0 

0 0 
5 0 

0 0 
0 0 

60 0 
8 I 

52 0 
8 0 

50 1 
46 I 

38 2 
46 0 

40 0 
8 0 

52 0 

53 2 
47 3 
19 3 

59 5 
15 0 

1 0 

30.1 0.64 

Total vote count 
ordering 

Stochastic dominance 

ordering 

level of A x B for which the ordering induced on C is degenerate, and a level of C 

for which the ordering induced on A x B is degenerate. 
We would argue that g, = (0, p, 0) in A x B induces a degenerate ordering on C 

in that this game is perceived to remain unchanged in risk no matter how frequently 
it is played, so g, E (A x B)O. W e would also argue that all games in A x B played 
zero times are reduced to equal risk, so c = 0 E C O. While these properties are not 
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strictly necessary they reinforce our view that the distributive model is appropriate 
and the dual-distributive model is not. 

The transformations A, B, C investigated here are not the only ones possible; 
there are alternatives to these and there are additional transformations to be included. 
Obvious ones are a transformation on the probabilities and a transformation that 

introduces dependent multiple play (in contrast to C). It is not feasible at this time 
to study five variable polynomials by conjoint measurement methods but different 
subsets of three could be studied in a manner similar to this experiment. 
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