
THE SPLITTING PRINCIPLE FOR GROTHENDIECK 
RINGS OF SCHEMES 

J. BURROUGHS 

(Receiced 12 August 1968 ; recised II June 1969) 

$0. ISTRODUCHON 

ONE OF the important theorems in complex topological K-theory concerns the structure of 

the KJX) algebra, K,,(P(E)), where E is a complex vector bundle over a topological space X 

and P(E) is the projective bundle associated to E. Explicitly it states that K,(P(E)) is isomor- 

phic to K,(X)[T](I where T is an indeterminate and I is the ideal generated by the poly- 

nomial I(- I)i[Ai(E)]T’. A special case of this theorem is one form of the periodicity 

theorem. 

A closely related theorem is the splitting principle which states that, if E is a complex 

bundle over a space Y, then there is a space X and a map p: X -+ Y such that p*: KO( Y) -+ 

K,,(X) is a monomorphism and the image of E in K,(X) can be represented as the sum of the 

images of line bundles over X. The proofs of these theorems and their applications can be 

found in notes from lectures by Atiyah [I]. 

It is the purpose of this paper to prove theorems in algebraic K-theory directly analogous 

to these theorems. In this case Y is the spectrum of a commutative ring, R, and K,,(Y) is the 

Grothendieck ring of the category of locally free modules of finite type of Y or, equivalently, 

the category of finitely generated projective modules over R. More generally, Y is a quasi- 

compact scheme and KO( Y) is the Grothendieck group of the locally free @,-modules of 

finite type. P(8), @ a locally free C:,-module, is the projective fiber of 8 as defined by Grothen- 

dieck in [3]. 

THEOREM. Let Y be a quasi-compact scheme. Let B be any locally free O,-module of 

finite type. Then there is an injectice ring homomorphism Q: K,( Y)[T],!Z -+ K,,(P(b)) where T 

is an indeterminate and 1 is the ideal of K,( Y)[T] generated by the polynomial 

c(- I)‘[A,(6’)]T’. 

If Y is Noetherian, @ is an isomorphism. 

The conclusion of this theorem is analogous to the topological theorem. 

COROLLARY. (The Splitting Principle). Let Y be a quasi-compact scheme ol’er an a&e 

scheme. Let B,, , 8, be locally free 0 ,-modules offinite t_vpe. There exists a scheme X and a 

projectile morphism p : X -+ Y such that: 

(1) p* : K,( Y) + K,(X) is a monomorphism. 

(3) Each p”(bJ has afinitejiltration whose quotients are locally free ofrank less than or 

equal to one. 
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This theorem is proved through the repeated use of the result about K,,(P(E)). 

I wish to thank Professor Richard Swan for his advice and suggestions concerning this 

research, which appeared as part of my dissertation. I also want to thank the referee for his 

very helpful suggestions and corrections. 

51. THE PROJECTIVE FIBER AND ITS MODULES 

In this section some of the pertinent facts concerning the projective fiber and its con- 

struction as done by Grothendieck in [3] are reviewed and some preparatory propositions 

are proved. Since this paper is concerned only with locally free modules it would be possible 

to use the classical construction instead of Grothendieck’s dual construction but it is simpler 

to use his work. 

Let S be any graded ring of positive degree, then Proj(S) denotes the spectrum of 

homogeneous prime ideals. Let f be a homogeneous element of S of degree d 2 1. 

D+cf) = Dcf) n Proj(S), where Dcf) is all the prime ideals not containing f. The collec- 

tion of sets D+cf> for allfin S form a basis for Proj(S). S,,, denotes the ring consisting 

of all elements of S,/, of the form x/f” where x is of degree kd. Since D+cf) = Spec (S,,,), 

Proj (S) has a prescheme structure which can be shown to be a scheme. If S is a graded 

A-algebra, then Proj (S) is a scheme over Spec (A). 

The above construction can be generalized to the situation where Spec (A) is replaced 

by a prescheme Y and S is replaced by a quasi-coherent graded 0 ,-algebra of positive degree 

9. There is a scheme X = Proj (9’) over Y with structure morphism p: X --, Y such that 

for each affine open subset U of Y, XI p-L(U) = Proj (r(U, 9’)). If 9’ is an O,-algebra of 

finite type, then X = Proj (9’) is of finite type over Y. 

Let Y be a prescheme and 9 be a graded O,-algebra generated by 9,. There is a 

functor - from the category of graded quasi-coherent .9-modules, 5 to the category of 

quasi-coherent Ox-modules, y which is the usual localization functor. 

Definition 1 .I. -Y(n), n E Z, is the graded SP-module given by letting 

9(n)i = 9,+iO&) = 9(n)_. 

If 4 E J$, then A(n) = ,K @ O,(n). 

If 9’ is generated by ,4p1, then for n, m E Z OX(n) 8 Ox(m) = O,(n + m) and Ox(n) = 

(6,(l))” [2, Corollary 3.2.7, p. 551. 

There is a functor r + : I$ --+S defined by T,(A) = &,zp*(4H(/z)). ,K E M. 

Definition 1.2. Let M be an Y-module. 

(1) A4 is TF if there is an N such that UnzN M, is of finite type. 

(2) M is TN if there is an N such that for n > N, Mm = 0. 

THEOREM 1.3. Let C be the category of all graded quasi-coherent Y-modules that are TF. 

If 9, is ofjnite type Asian @,-module, then 

(1) IrMEC, M - is an Qx-module offinite type. 
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(2) If ,M E C, M _ = 0 if and only if M is TN. 

(3) (T,(A))- = A for all quasi-coherent G,-modules. 

(4) If Y is either quasi-compact scheme or the underlying space of Y is noetherian, then, 

IY ,Y is ofjnite type, there is an M E s such that M _ = A. 

The proof of these four statements is in [2, Section 3.4, p. 591. 

Let (Y, JZJ) be any ringed space and let d be any d-module over S. There exists a 

graded d-algebra s(8) which is called the symmetric d-algebra of 6. It satisfies the usual 

universal property of a symmetric algebra [3, Paragraph 1.7.4, p. 151. The equations 

S(cP @ F) = S(b) @ S(9) and S(6), = S(&,) for all y in Y are valid, as one would expect 

from the affine case. 

Let Y be a prescheme, then, if B is a quasi-coherent 0,-module, S(b) is a quasi-coherent 

@,-algebra generated by s,(a) = 8. P(&‘) denotes the Y-scheme Proj (S(6)) and is called the 

projective fiber of 8 over Y. If 8 is of finite type, then P(8) is of finite type over Y. If 8 = 0 yk 

then S(B) = Oy[tl, . . . , tk] and Pyk-i denotes P(d). Note that P,’ = Y. 

Definition 1.4. Let Y be any prescheme. Lr is the category of locally-free O,-modules of 

finite rank. 

For the rest of the paper the following conditions and notation will apply even if they 

are not explicitly mentioned. Y is a quasi-compact scheme, B is a locally free @,-module of 

finite type, and X = P(8). 

In order to prove the following proposition, we need a lemma based on [4, Proposition 

2.22, p. loo] 

LEMMA 1.5. Let R be a ring, X = PRk-‘, and 9 be in Lx. Then 

(1) H “( X, 9(n)) is an R-module of finite type for large n. 

(2) H’(X, L?(n)) = 0 for i > 0 and large n. 

Proof. The lemma is true if J.? = o,(n) by [4, Corollary 2.1.14, p. 991. Since 

H ‘(X, _) = 0 for i > k - 1, we can use an induction argument. Assume that (2) is valid for 

i >j. By [3, Corollary 2.7.9, p. 401 there is a short exact sequence 

O+X-+O,(-a)“-+S-+O. 

X is obviously in &, . Now the long exact cohomology sequence and the induction hypothe- 

sis applied to X yield either (1) or (2), depending on i. 

PROPOSITION 1.6. Let 2 be in Lx. l?,(8) is a locally-free @,-module of finite type for 

lurge n. 

Proof. It is clear that since these are local properties and since X is quasi-compact, it 

suffices to consider the case where 8’ is a free Ormodule of rank k and Y is an affine scheme. 

Let R be the ring associated to Y. The construction of X = P(8) in this case is dual to the 

classical case and X = Pyk-’ = P,‘-l [3, Corollary 4.2.6, p. 751. 

Let {Vi) be the standard affine covering of PRk-l. Let Cp = C’({U,}, U(n)) be the 

alternating ‘eech p-cochains relative to {Vi>, where n is large enough so that Lemma 1.5 is 
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valid. Let Ri,, . , Lp be the afine ring of Lrio n . . . n CTip = bei . . . ip and Li, . *. ip be the 

Xi, . . .;,-module corresponding to Y 1 Vi0 . . . ip. Li, . ip is projective over Ri, *. . ip and 

therefore over R, since Ri, .. . i, has a free basis of monomials as an R-module. Since 
CPZULi&... ip, we have Cp is projective over R. 

By Lemma 1.5 the sequence 0 -, r,(Y) -+ Co --* ... + C’-’ -0 is exact. Therefore, 

r,l(9) is a projective R-module. 

PROPOSITION 1.7. If0 + 9" + 3 -+ 9" -+O is esact i/z Ly tlrerz 0 -+ r,(y’) -+ r,(2)+ 

i-,(5?“) -+ 0 is TN exact. 

ProoJ Since Y is quasi-compact one can assume that Y = Spec (R) and X = PRk- I. 

The sequence 0 ---t r”(9”) -+ r,,(9) -, rJ_rp”) -+ H’(X, I’) is exact. By Lemma 1.5 

H’(X,Z”(n)) = 0 for large n and therefore the sequence is Tic’ exact. 

$2. THE MORPHISM a$ 

We first define a map 4: K,(Y)[T] + Ko(X) which induces Q, on K,( Y)[T],Z. The 

structural morphism p: X+ Y induces a homomorphism of rings from K,(Y) to K,(X). 

This homomorphism of rings is denoted by p*. Then (p(s a, Ti) = 2 p*(ai)[O,(-i)]. 

PROPOSITION 2. I. (b is a ring homomorphism. 

Proof. Sincep* is a ring homomorphism, it suffices to check that q5(T”j) = #~(T’)q5(Tj). 

This is obvious. 

PROPOSITION 2.2. If Y is a Noetheriarl scheme then qb is onto. 

Proof. Let L be in ,L, . Since Y is Noetherian, r,(9) is TF by [4, Corollary 2.3.2, p. 1041. 

Then there exists an N such that for n 2 N, umzX r,(9) = ,/L is a finitely generated graded 

module over S(G’) and by Proposition 1.6 r”(9) is a locally free G,-module of finite type. 

Since ,/I’ 2 9’ by Theorem I .3, it suffices to show [.A-] is in the image of 4. Suppose 

r,(Y), N I i 5 N,, generate ,/l as an S(tp) module. Let PO = u;l r,(9) 0 S(B)(--n). 

[So’] is clearly in the image of $ and there is a homomorphism of go onto &. It is clear 

that the kernel is a finitely generated graded module over s(J) and each submodule of a 

fixed degree is a locally-free 0,-module of finite type. Therefore by repeating the process, one 

can define pi, 0 2 i I k, k greater than the rank of G such that 

o~~tl‘_,~k-r..~-*.~o-r_/~~o 

is exact and [pi-] is in the image of 4. 

Let ~71 be the first integer such that .,Y,, f 0 and consider the homomorphism from 

,Y, @ S(&‘)( -m) to X. We claim that this homomorphism is a locally split monomorphism. 

It suffices to consider the case where Y = Spec (R) and t- is free of rank r < k. In this case 

we can view S(tp) as the polynomial ring R[t,, . . . , , t ] which we will write as S. ,M corre- 

sponds to the S-module, M. M is projective as an R-module and the Pi are projective as 

graded S-modules. By [5, Section 5, p. 81 M has projective dimension I r as an ungraded 

S-module, and, therefore, projective dimension 51’ as 3 graded S-module by [2, Section 6, 

p. 761. Thus N is projective as a graded S-module. Let Q,(F) = Ni’Di(N) where 
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/Ii = zj<i Si_j:Vj. By [2. Section 6, Lemma 2, p. 771 we have N is isomorphic to 

JJci= Qi(N) 0 SC,-i). Q,(V) = IV, and therefore ,V,,, @ S(-m) 4 PI is a split monomor- 

phism. Returning to the general situation we have that the cokernel ,,1” of Jt“m@S(-m)-+_ 1/’ 

satisfies the same local conditions as ,t‘ and in addition has ,t’,,’ = 0 for n < I where I > m. 

The homomorphism .,t^,’ 0 S( - I) -+ ,Y“ is again a locally split monomorphism. One 

proceeds in this manner on successive cokernels until the resulting cokernel is zero, which 

happens after a finite number of steps since ,4‘ is TF. By induction. starting with the zero 

cokernel, it is seen that the images of all the cokernels in K,,(X) and, therefore, [;+‘“-I is in 

the image of C#J. Hence, [%ti-] = x (- I)‘[S,-] + (- I)“‘[N-1 is also in the image of 4. 

PROPOSITION 2.3. Let & be an+v locally-j>ee 9,-module. Suppose that k is the masimrmz 

rank of any fiber. There exists the following TN exact sequence of’s(&) modules. 

0 -A,(G)@ S(6)(-k) +“’ -+ A,(E) 0 S(6)( - 1) -+ A”(S) 0 (8) --t 0. 

We first note the obvious corollary. 

COROLLARY 2.4. #J (ZjZ: (-l)i[Ai(@]~i) = 0. 

The above sequence is obtained by the construction of a differential graded algebra and 

showing that the differential is exact. Let Cp be as in the proposition. .9(a) is the graded 

algebra defined by letting .9’,,(E) = S,(E) and Y,,+,(d) = 0. A(&) is the standard exterior 

algebra of 8 over G,. D(8) is the graded @,-algebra A(&) @ ,Y(&). Since A,(&‘) and S,(J) = 

Y,(8) are canonically identified with Cp and since fIr(&) = A,(C) there is a map of D,(8) to 

D,(8). This is 6,. pi is defined to be zero on A,(&‘) @ .9’&&) for all i. These maps can then be 

extended to a differential on the algebra, since the elements of Di(&) can be expressed as the 

sums of products of elements of lower degree where by induction the differential has been 

defined. 

The rules Z(d, + d,) = ?(d,) + 2(d2) and d(d,d,) = d(d,)d, + (- l)d’g dl 5(d2) where 

d, and d, are homogeneous elements of D(8) therefore proscribe d on elements of DJS). 

In order to show that d is exact it suffices to check the local case, i.e. when 6 is a free 

module over a ring R of rank r. In this case, however, D(B) is the tensor product of r copies 

of D(R), and it suffices to show that D(R) has a contracting homotopy. A(R) is R[x]/(x’) and 

S(R) is R[y]. Therefore D2,(R) is the free R-module with basis I @ y’, DIi+,(R) is the free 

R-module with basis x @ yi, and ?(x @ y’) = 1 @ y”’ and Z(1 0,~‘) = 0. The contracting 

homotopy is obvious. 

Returning to the original situation we have that 2 restricts to a homomorphism from 

A,(&) 0 S,,(a) to A,_,(B) @ S,+,(b) such that the sequence 

0 4 R,(g) 0 S,(8) -+ . . . + A,(B) 0 S,(E) + 0 

is exact for n > 0. Therefore d defines a homomorphism of degree zero 

A,(J) 0 S(B)(-q) to A,-,(G) 0 S(b)(-rl + 1) 

such that the sequence 

O--+A,(CP)@S(tP)(-k)+~~~-rA,(&‘)@S(tlD)+O 

is TN exact, since A,(b) = 0 for 11 > k. 
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53. Ko(P(6)) AYD THE SPLITTJSG PRIXCIPLE 

We define a: K,,( Y)[T]:‘1+ K,(X) to be the homomorphism induced by 4. In the 

original proof of these theorems the inverse of @ was constructed using the concept of a 

modified Hilbert characteristic polynomial. That proof required a stronger assumption on Y. 

I am indebted to the referee for the following much simpler argument which yields a stronger 

result. 

Definition 3.1. Let t be an indeterminate. Define P = {c? I u, t” 1 u, E K,(Y) and for 

1 a, E &(Y) and n < 0 a, = 0 except for a finite number of values of n} and Q = {c: uc a,, t” 

a, = 0 except for a finite number of values of n}. 

The elements of P, Z[S,(&)]t” and c (- I)” [A,(&)] t”, are denoted 

;.(8, t ), respectively. 

by a(&, f ) and 

DeJinition 3.2. 2’ is defined to be the function LX to P, Q defined by 

x’(z) = CnZny Cr,WW mod Q, 

where nB is large enough so that T,(Y) is locally free of finite type as an B,-module, as in 

Proposition 1.6. 

PROPOSITION 3.3. ,y' dejiines a fltnction, x: K,,(X) + P/Q. 

;c[0’,(i)] E t -ia(&, t) mod Q. 

Proof. The fact that 1 induces a function on K,,(X) follows immediately from Propo- 

sition 1.7 and the definition of Q. By [4, Proposition 2.1.15, p. 991, r,{@,(i)) z S,+,(8). 

Therefore x[O,(i)] E x[S,+i(tP)]t; z t-‘a(&, t) mod Q. 

LEMMA 3.4. a(&‘, t) 1(&, t) = 1. 

Proof. This equation follows immediately from the long exact sequence that arose in 

the proof of Proposition 2.1. 

THEOREM 3.5. Let Y be a quasi-compact scheme. Let tp be a locally free Oi,-module of 

finite type. Then there is an injective ring homomorphism @ : K,( Y)[T]/Z + K,(P(b)) where T 

is indeterminate and I is the ideal of K,( Y)[T] generated by the polynomial 

I( - l)‘[Ai(&)]Ti. 

If Y is Noetherian, @ is an isomorphism. 

Proof. Corollary 2.4 shows I is contained in the kernel of 4, so 4 induces a homomor- 

phism Q, on K,,( Y)[T]iZ. If Y is Noetherian, @ is onto by Proposition 2.2. It remains to show 

that @ is a monomorphism. 

Y is the finite union of disjoint open sets on each of which d has constant rank. Hence, 

we can assume that d has constant rank k; and, therefore, [A,(&)] is of constant rank 1 and a 

unit in K,,(Y). Any element of K”( Y)[T]/f can be written as the image of a polynomial of 

degree less than k since [Al(E)] is a unit. Let I::$ ai T’ E K”( Y)[T] such that @ sends its 

image mod I to zero in K,(X), i.e. ~~~~ ai[O,(- i)] =O. Applying z we get I::,’ Ui t’a(8, t)zO 

mod Q. Multiplying by ;.(a, t) and using Lemma 3.4, we get 1::; ait’ E I.(&, r)Q. If 
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Zf_‘d ait’ = 0 in P we are finished. If not then x:z,,r a, t’ = i.(&, t) I’, ci 1’ where c,, # 0, 

cq # 0, and p 5 q. The minimal degree of a non-zero coefficient of the product is p and the 

maximal degree is q + e, so 0 I p and q + e < e - 1. This implies q < p which is a contradic- 

tion. Therefore CZ~ = 0 for all i. 

The splitting principle follows from this theorem with the help of the following lemma. 

LEMMA 3.6. Let Y be a prescheme, & be any quasi-coherent 0,-module, X = P(E), and 

p: X -+ Y be the structure morphism. Then there is a homomorphism rl * : p*(8) -+ O,y( 1) 

rb+ich is surjectice. 

Proof: xl * come functorially from the homomorphism 8 0 S(B) + S(6)( 1). Since E 

generates S(8) the homomorphism is surjective [3, Proposition 4.1.6, p. 721. 

COROLLARY 3.7, Let Y be a quasi-compact scheme ocer an afine scheme. Let 6,, . , 8, 

be lotally free @,-modules offinite type. There exists a scheme X and a projectire morphism 

p: A’+ Ysuch that: 

(1) p* : K,(Y) --) K,(X) is a monomorphism. 

(2) Each p*(gi) has afinite.filtrarion ivhose quotients are locally free of rank less than or 

equal to one. 

ProoJ Let X, be P(b,) and pl: X, -P Y be the structure morphism. By Theorem 3.5 
pI* is a monomorphism. Let 8, ’ be the kernel of z1 *, the quotient is S,,( 1). Let X, = P(cP,‘) 

and pz: X2 -+ X,. Since XI is quasi-compact, we can again apply Theorem 3.5. p2*(G,,(1)) 
still has rank 1. One can continue this process until pk* . . . pl*(bl) has a filtration of the 

proscribed form and then do the other modules. Since the composite of monomorphisms is 
manic, one constructs an X such that both (1) and (2) are satisfied. 
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