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Abstract-Determination of mechanical properties of the constituents of the head is very 
essential for the construction of various theoretical and experimental head injury models. This 
paper represents a mathematical mode1 for the evaluation of viscoelastic behavior of in viva 
primate brain. From a theoretical mechanics point of view, the problem being considered is 
that of the steady state response characteristics of a solid sphere of linear viscoelastic material 
whose mating surface with the rigid container is free from shear stresses. The external load is 
taken to be a local radial harmonic excitation. First. the response of the elastic material is 
determined; later the elastic response solution is converted to viscoelastic response solution 
through the use of the correspondence principle applicable to steady state oscillations. The 
paper is concluded with a discussion ot a method which enables the determination of the 
complex dynamic shear modulus of in uiuo primate brain. 

1. INTRODUCTION 

VULNERABILITY of the human head and the 
resulting fatalities from various injuries to 
the head is a well-established fact. The 
gravity of the situation has attracted many 
investigators from both experimental and 
theoretical fields of physical sciences. Previous 
research to give a proper description of the 
head injury has been either on determination of 
mechanical properties of the constituents of 
the head or on analyses of various theoretical 
head injury models. While investigations on 
these two categories are numerous, only a 
few representative ones will be mentioned 
here. 

Among the numerous theories proposed 
for brain damage, the one mainly advocated 
by Holboum (1943) and supported by the 
mathematical analyses of Anzelius (I 943) 
and Giittinger (19.50) received the most 
attention. According to Holboum the main 
cause of brain damage is the shearing effect 
produced by the severe deformation or 
fracture of the skull at the vicinity of the 
impact or by rotations of the brain within 

“Received 2 1 July 1969. 

the skull. Anzelius and Giittinger considered 
the effect of a sudden impulsive load on a mass 
of inviscid fluid contained in a rigid closed 
spherical shell (or container). Their formula- 
tions are essentially identical and involve an 
axisymmetric solution of the wave equation 
in spherical coordinates. They concluded that 
an initial compression wave arises from the 
point of impact (coup), and due to the rigidity 
of the shell, a tension (rarefaction) wave is 
emitted instantaneously from the counterpole. 
both travelling towards the geometric center 
of the system. The collision (superposition) 
of the two waves at the center, which produces 
large pressure gradients, was considered to 
be the cause of brain damage. Hayashi (1968) 
treated a one-dimensional version of the 
Anzelius-Giittinger model. His mode1 con- 
sists of a rigid vessel (skull) containing 
inviscid fluid (brain). The vessel is attached 
to a linear spring, which represents the com- 
posite elastic properties of the skull, scalp, 
etc. Approximate solutions were obtained 
for the limiting cases of very soft and very hard 
impacts. Although this simple model has the 

283 



284 A. E. ENGiN and H.-C. WANG 

advantage of being easy to interpret, it has 
the similar shortcomings of the Anzelius- 
Giittinger model. Some of these shortcomings 
are: (a) due to rigidity and geometrical assump- 
tion, there is no way to determine the possible 
locations of skull fracture and (b) the effects 
of skull deformation on the intracranial pres- 
sure distribution can not be determined. 
Recently, Engin (1969) removed the major 
restrictions of previous models by obtaining 
analytical and numerical solutions for the 
dynamic response of a fluid-filled elastic 
spherical shell. His model consists of an 
elastic spherical shell filled with inviscid 
compressible fluid. The shell material and 
fluid are considered to be homogenous and 
isotropic. The loading pattern is taken to be 
local, radial, impulsive and axisymmetric. 
Since the load is applied locally the com- 
bined linear shell theory which includes 
membrane and bending effects of the shell 
has been used for the proper description of 
the wave propagation. The conclusions of his 
paper include the possible locations of brain 
damage and skull injury on the basis of the 
numerical computations. 

Further extensions of Engin’s model is 
possible if one knows the viscoelastic proper- 
ties of brain; with this knowledge one can 
replace the inviscid fluid occupying the 
interior space of the shell with a viscoelastic 
material. In literature, there are only four 
papers on the mechanical properties of brain. 
Franke (1954) determined the coefficient of 
shear viscosity from impedance measure- 
ments of glass sphere vibrating within fresh 
pig brain. Creep experiments were performed 
by Dodgson (1962) and Koeneman (1966) 
who also studied dynamic cyclic properties 
from rabbits, rats, and pigs. Recently, Fallen- 
stein, et al. (1969) developed an electro- 
mechanical device with a small driving point 
impedance probe which was placed in direct 
contact with the pia-arachnoid through a hole 
(diameter is approximately Sin.) in the skull. 
By means of this apparatus in viva as well as 
in vitro tests on Rhesus monkeys were 

performed. In this paper, we will give the 
theoretical analysis of such a test conducted 
on the brain. The theoretical model for the 
mathematical analysis is shown in Fig. 1. 
From a mechanics point of view, the problem 
being considered is that of the steady state 
response characteristics of a solid sphere of 
linear viscoelastic material whose mating 
surface with the rigid container is free from 
the tangential shear stresses. In particular, 
we will be interested in the response of the 
viscoelastic material to a local radial harmonic 
excitation. First, the response of the elastic 
material will be determined; later elastic 
response solutions will be converted to visco- 
elastic response solutions through the use of 
the elastic-viscoelastic correspondence 
principle applicable to steady state oscilla- 
tions. We will conclude this paper with a 
discussion of a method which enables the 
determination of the linear viscoelastic- 
parameters of the brain. 

2. THEORETICAL ANALYSES 

As mentioned in the Introduction, the 
theoretical analyses of the model in con- 
sideration will be given in two parts, namely, 
(a) Elastic response, and (b) Viscoelastic 
response. We shall use the same model. Fig. 
1, for both parts; the only difference will be 
in the type of material which occupies the 
rigid spherical shell. 

(a) Elastic response 
The linear equations of motion of an elastic 

medium. in vector form, are given by Fung 
(1965) 

(*+2G)V(V.a)-22LiV~&=p$ (1) 

where a and 0 represent the displacement and 
rotation vectors respectively, p is the mass 
density of medium, A and G are the elastic 
material constants. These equations can 
be expressed in spherical coordinates, r, 8, #, 
and introduction of axisymmetry and pre- 
cluding torsional displacements mean 
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motion the components of a from equation (7) 
are found to be 

placement components, equations (12) and 
(13) into equations (5) and (6). The resulting 
equations are 

where J, is the component of 9 along 8- 
direction. 

Since the excitation is harmonic and applied 
locally on the spherical surface, the following 
expansions are considered for @ and $: 

@ = i an(r)P,(cos $)eiat 
n=o 

(10) 

*= i *,(r)PA(cos 4)eiot 
7l=l 

(11) 

where P,(cos 4) are Legendre polynomials 
of the first order, first kind. In view of the 
fact that the second solutions of the Legendre 
equations are singular at the poles they are 
not included in the expansions (10) and (11). 
In equations (10) and (11) o and t are the 
frequency of harmonic excitation and time 
respectively. Next, let us substitute equations 
(10) and (11) into equations (8) and (9) and 
defining dP,/d+ = P,, etc. and with the 
relation Pk(cos c#a) = pn(cos 4) we obtain the 
following 

+ + (cot f#+, + P, ) II eiat (12) 

.=I 2 I ( @n-+n-rF P’, > I eiwt. (13) 
n=1 

For brevity the arguments of the Legendre 
polynomials in equations (12) (13) and in 
the subsequent equations are not shown. The 
equations of motion (3) and (4) contain terms 
like A, cubical dilatation, and oe. We evaluate 
these by substituting the expressions of dis- 

(14) 

- $, (cot +iL’, + Pn ) II eiwt. (15) 
Here we make a note that the Legendre poly- 
nomials satisfy the following differential 
equation 

P,+P,cot++A,P,=O 

where A, = n(n+ 1). 

(16) 

Substitution of equations (12)-( 15) into the 
first of the equations of motion, namely, 
equation (3) and repeated use of equation 
(16) in various places, after rather lengthy 
manipulation, yields the following expression 

(17) 

Similarly the second equation of motion, 
equation (4), can be expressed as 
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One can easily see that equation (17) is 
satisfied if the solutions of the following 
differential equations are found 

(1) 

n= 1.2,3 ,.... (20) 

The solutions of these two equations also 
satisfy equation (18). Thus, we can state that 
equations (19) and (20) are the two sets of 
differential equations that have to be solved. 

Equations (19) and (20) can also be rewritten 
as 

d”@ r2$+2r$$+ (k,‘r’-A,)@, =o 
n = 0. 1,2.. . . 

where 
n= 1,2.3.... 

PW’ 
k,’ = h + 2G 

and k,&!& ‘z G’ 

(21) 

(22) 

The finite solutions of the above differential 
equations are the spherical Bessel function 
of the first kind 

an = a&(k,r) n=0,1.2,... 

$n=bnjn(k,r) n= 1,2,3,... 

where j, (k,v) and j,(k,v) are the spherical 
Bessel functions with arguments kIr and k2r 
respectively; u, and b, are the constants to 
be determined later. 

Substitution of the solutions a,, and I/J,, into 
equations ( 1 O)-( 13) yields 

~‘=(ook~j;(klr) +E [a,k,jL(k,r) 
It=1 

->b,,ji(kg) P, eiwf 1 I 
u = -!i [a,J,(k,r) -b&(kg) 

i n=1 

- rb,k,jA (kg)] Ibn eiot (23) 

where (‘) denotes differentiation with respect 
to argument. 

The coefficients a, and b, are determined by 
utilizing the following appropriate boundary 
conditions 

(1) Vanishing of the shear stress at the inter- 
face of elastic (or viscoelastic) material and 
the rigid boundary, i.e. 7,+(u, 4,) = 0. 

(2) Local application of the radial displace- 
ment, i.e. 

~(a,$) = W($)eiwr, inparticular, 

where W. is the maximum amplitude of 
excitation. 

From the first boundary condition we obtain 

l?!?!_U+aU 
ra+ r ar )I rs,2 = 

0. (24) 

Substitution of displacement components from 
equation (23) into equation (24) yields 

j (ku) k,jA(k,a) -y 
I 

-b, Jm+kzzaj::(k,u) p, =0 
U II 

for each n 3 1 

B.M. Vol. 3 No. 3 -13 
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The second boundary condition in the view 
of equation (23) give the following relation 

Before proceeding further we expand the 
function W(4) in a series of Legendre poly- 
nomials of the form 

W($) = i c,P,(cos 4) (27) 
n=o 

where the coefficients c, are found, by the 
usual methods. to be 

c, = ?l~oIp,-,(coscbo) -pn+l(cos#oo)l 
n=0.1.2.... (28) 

Here we note that second derivative of 
spherica Bessel function appearing in equa- 
tions (30) and (31) can be eliminated by 
utilization of the differential equation whose 
solutions are the spherical Bessel functions. 

Having determined the coefficients a, and 
b, we can now obtain displacement com- 
ponents w and u from equation (23). For an 
isotropic elastic material, the stress, oij, and 
strain, l tf, tensors are related in the following 
manner 

gu= &jij+2Geti, ati r ’ fori=j 
-0 fori#j (32) 

where A = G(E-2G)/(3G --E), E and G are 
modulus of elasticity and shear modulus 
respectively. Substituting equation (23) into 
equation (5) yields the cubical dilatation. A. 
for the axisymmetric motion of the material 

it being realized. of course, that P_,(cos +o) = 1. 
Substituting equations (25) and (27) into 
equation (26) yields 

A=-k,* i a,&(k,r)P,(cos~)e’O’. 
n=o 

Since we are interested in the normal stress 
in the radial direction E,, is obtained from 

2An [hajkka) -jn(k~a)ljn(k2a) -- 
a (A,- 2) j, (kza) + k,2azj;(k,a) I 

x P,(cos+) = 2 c,P,(cosf#J). 
n=o 

E,, = - ar = E a, 
i F n=o 

Comparison of coefficients in the previous 
+ $ ,,b.[jq 

7l=l 
equation give the following 
forn=O 

CO 

-kti’~‘)]Pn(cos+)}etit. (34) 

ao= k,jA(k,a) (29) Thus. from equations (32) and (34) the final 
andforn 3 1 form of the normal stress. (T,,, is 

~[(A,-2)j,(~a)+k,~a~~(k,a)]c, 
a,= k,ajL(k,a)[(A,-2)j,(k,a) +kz2a2j::(k2a)] -2A,[k,aj~(k,a) -j,(k,a)]j,(k,a) 

(30) 

also from equations (25) and (30) for n 2 1 

2a[k,ajh(k,a) -j,(k,a)]c, 
b”~k,aj~(k~u)~(A,,-2)j,(k2a)+k22a2j.”(k2a)l-2A,[k,uj~(k,o)-j,(k,a)]j.(k2a)~ 

(31) 
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- hk,2j, (kg-) - 2G %j,(k,r) 

xP,(cos~)eiw~+2G~ A,b, j, (k2r) y2 
n=, 

_ k2A(k2r) 
r I P, (cos 4 ) eiWf. 

This completes the elastic solution. 

(35) 

(b) Viscoelastic response 

The elastic solutions obtained in the part (a) 
can be converted to viscoelastic response 
solutions through the use of the elastic- 
viscoelastic correspondence principle appli- 
cable to steady state oscillations as discussed 
by Bland ( 1960). According to this principle 
the two independent elastic constants such 
as the elastic shear modulus. G. and the 
modulus of elasticity. E. are replaced by 
the complex shear modulus G :: = G’ + iG” 
and complex modulus of elasticity. E‘:’ = E’+ 
iE” respectively. Both real and imaginary 
parts of G’:’ and E‘:’ are. in general. functions 
of frequency. 

Since G and E are replaced by G ‘:’ and E’:‘. 
k, . k, and A should be replaced by k;‘. k,:: 
and A‘:. They are defined to be 

A ‘? = 

G ‘:: (E‘:: _ 2G I:: ) 

_iG’“_Ee 

(36) 

The coefficients a, and b, which were defined 
in the preceding sections now become com- 
plex functions. a: and ba’. of kc, k;‘: and 
spherical Bessel functions of complex argu- 
ments. In view of this the normal stress. a,.,. 
will take the following form 

x P,(cos~)eiw?-2G"'~ A,b;;’ 
n=o 

j, (k3) k;jA (ki’r) ( cos Q,) eio’ 
r2 

P 
r 1 n 

(37) 

The procedure of separating the complex 
stress. err. into the real and imaginary parts 
are shown. in some detail, in the Appendix. 
Having performed this we obtain the following 
expression for the radial normal stress 

+ iZ,, (r) ] P, ( cos 4 ) eiml 

= [Z,(r.+)+iZ,(r.$)]e’“’ 

= 1 Drrl ei(ot+8) 
(38) 

where 

Z,(r.$) = 2 Zn,(r)Pn(cos+) 
n=o 

Z,(r.4) = 2 Z,,tr)P,(cos$) 
n=o 

Ic,,/ = lZ,*(r.+) +Z~‘(r.~)l”* 

The definitions of Z,, and Z,, are given in 
the appendix. In equation (38) 6 is the phase 
angle between the variation of stress and the 
variation of strain. 

The radial normal force under the probe is 
given by 

&=T @,,(a. 4. f) U 
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where dA = 2ra2 sin 4 d+ In view of equation 3. DISCUSSION 

(3 8) above integral can be written as As shown schematically in Fig. 1 the test 
apparatus has an acceleration transducer 1 

F, = 2aa2 7 [IZ,(a,4) 
and force transducer 2 which measures a com- 

0 
posite signal consisting of the force caused by 
the acceleration of the probe mass and the 

fiZz(a.+)] sin+d4eiU’. (39) force transferred to the test object. By a proper 

0 O-05 o-10 O-15 0.20 0.25 

STATIC DEFORMATION, in. 

Fig. 2. Experimental probe force amplitude vs. static deformation (amplitude of dynamic 
probe displacement is kept constant). 
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calibration of these two transducers the 
shape and magnitudes of force and displace- 
ment quantities can be obtained. 

Before the test. due to the irregular surface 
condition of the brain. application of a certain 
amount of static deformation on the pia- 
arachnoid is necessary. In Fig. 2 the least 
square fit of an experimental data is shown. 
On this figure. the static deformation corre- 
sponding to the starting point of solid curve 
is assumed to be the minimum static deforma- 
tion for meaningful test results. Projection of 
this curve (dotted line) gives the probe force 
corresponding to zero static deformation. the 
knowledge of which is essential for the 
theoretical analysis. A typical test supplies 
two sets of information: namely. phase 
relations between the force and displacement 
and the magnitude of force. Since the brain 
is essentially incompressible. we can assume 
that the viscoelastic material contained in 

I.00 

30 F 
0’: 20 psi. 

.I)0 - 
0’: IO pd. 

the rigid spherical shell is incompressible. 
For an incompressible viscoelastic material 
3G” = E+. thus the knowledge of the two 
material constants (or functions if one seeks 
frequency dependent relations) is sufficient. 
Let us choose G’ and G” to be determined 
from a combined relationship of theoretical 
analysis and experimental data. For this task 
we carry on the following steps: 

(a) From equation (39) obtain the numerical 
value of the complex force that the material 
exerts on the probe. For a viscoelastic 
material. mathematical analysis will give a 
complex force. the real part of which is in 
phase with displacement and the imaginary 
part 90” out of phase. Hence. the ratio of 
the imaginary part of the force to the real 
part will be the tangent of the phase angle 
between displacement and force. 

(b) Plot the theoretically obtained phase 
angles vs. G” for various values of G’. Here 

G’= I6 psi. 

.60 - G’= 14 PSI 

G’: I2 psi. 

G’= IO ps,. 

01 I I I I I I 

0,02 0.03 0.04 0.05 0.06 0.07 0.06 

DYNAMIC LOSS MODULUS, G”, psi. 

Fig. 3. Tangent of the theoretically obtained phase angle vs. dynamic loss modulus. 
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the values of G’ and G” can be initially chosen (c) Using these pairs of G’ and G” the 
arbitrarily. This plot is in the form of a family numerical values of theoretical force are 
of curves as shown in Fig. 3. On this plot a obtained and these force values vs. G’ are 
line drawn passing through the experimental plotted. This plot will be only a single curve 
value of the phase angle and parallel to G” as shown on Fig. 4. The value of the experi- 
axis will intersect the family of curves at mental force corresponding to zero static 
various points which define pairs of values for deformation determines a point marked with 
G’andG”. 

SC 

-4s 

-40 

.3 5 

.3 0 

-2 5 

.2 c 

a small circle on this curve. G’ and G” 

.I2 .I4 .I6 .I6 .20 

DYNAMIC ELASTIC SHEAR MODULUS, G’, psi, 

Fig. 4. Theoretical probe force amplitude (at zero static deformation) 
vs. dynamic elastic shear modulus. 
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defined by this point are the proper material 
constants for the corresponding frequency. 

Utilizing the method outlined above one 
can obtain the real and imaginary parts of 
G” for various frequencies. The knowledge 
of G” as a function of frequency is very 
essential for the construction of transient 
response of the viscoelastic material. 
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APPENDIX 
For the viscoelastic material the complex 

defined to be 

G’: = G’+ iG” 

E’ = E’ + ir. 

Also Lame’s constant. A. in viscoelastic 
the form of 

A~ = G”(E”-2G”) 
3G”_E” 

moduli are 

(Al) 

case takes 

(A?) 

NOMENCLATURE 

E modulus of elasticity 
E* complex modulus of elasticity, E’ + iE” 

E’, E” real and imaginary parts of E* respectively 
F, radial force 

G* complex shear modulus, G’ + iG” 

Substitution of (Al) into (A2) and rationalizing the 
resulting equation gives 

A* = Re(A”)+ilm(A”) (A3) 

where 

Rr(A*) = [G’(E’-2G’)-GG”(E”-2G”)](3G’-E’)+[G”(E’-2G’)+G’(E”-2G”)](3G”-E”) 
(3G’-E’)Z+ (3G”-E”)’ 

,m(A*) = [G”(E’-2G’)+G’(E”-2G”)](3G’-E’)-[G’(E’-2G’)-G”(E”-2G”)](3G”-E”) 
(3G’-E’)*+ (3G”-E”)* 

G’, G” real and imaginary parts of G * respectively Note that Re( ) and /m( ) denote the real and the 
P,(cos 4) Legendre polynomials of the first kind imaginary parts of the complex function inside of the 
P:(cos#J) associated Legendre polynomials of the paranthesis respectively. 

first kind and first order The arguments of the spherical Bessel functions contain 



294 A. E. ENGiN and H.-C. WANG 

k, and kz which involve A* and G ‘; hence k, and k, become Now (A6) can be written as 
complex and they are 

kf = (A)“‘= Re(kf) +ilm(k:) 
,,* = ReW,) +ilm(X,,) * 
’ Re(Y,,) +i/m(Y,,) a’ 

and 

= Re(k$) +i/m(kT) (A4) 
=[Re(?)+ilm(?)]a: (A7) 

where 

Re(k.::) = qPZ[(G’2+G”2)1’2+G’]1’2 
2 [2G’*+ 2G”*]“* 

,m(k.h) = cq”*[ (G’2+G”2)1’2-G’]1’2 
2 [2G’2+2G”Z]“2 . (A5) 

To obtain (A5) the following relation has been used 

where 

For the viscoelastic material the relationship between 
a, and b, becomes complex in the following manner 

let 

(A6) 

x n = 2 [ k*j’(k*a) _jn(kTa) IIt I a 1 
= RP(X,) +i/m(X,) 

b-2. 
Y,, = a -J,,(kfa) + ki”aji:(k:a) 

= Re(Y,,) +i,m(Y,,) 
where 

ReCX,) = ZRe(kt)Re[A(k:a)] 
-2,m(k:‘),m[.~~t(k~a)]-2Re[j,,(k~a)]/a 

,m(X,) = 2,m(kf)Re[j~(k~a)] 
+2Re(k:),m[j~(kfa)]-2,m[j,(k,*a)]/a 

Re(Y,) = 
[ 

v-aRe(k$‘)]Re[jn(k$a)] 

+a/m(k~‘)/m[j,(k~a)] 
-2Re(kz)Re[jk(k.fa)] 
-2,m(k$)fm[j~(k.fa)] 

,rn(Y”) = v-aRe(k:‘)]/m[j.(k$a)] 

-a,m(k~‘)Re[j,(k$a)] 
-2,m(k;)Re[~(k$a)] 
+2Re(k$)/m[jA(kza)]. 

J 

= ReW,)Re(Y,) +fm(X,)fm(Y,) 
[Re(Y,)]‘+ [,m(Y.)]” 

,m & = ,m(X.)Re(Y.) -Re(X,),mW,) 
( 1 YII [ReCY,)]‘+ [,m(YJ] 

From equation (26) 

a,*kfjh(k:a) + i [a.*kfj6(kta) 
It=, 

r 

-~b,:j,(kfa)]P,, = x c,P, 

n=o 

and 

a,* = Cli 

kfA(kTa) -%$fj,Itkza) 1 
n= 1,2,3,... 

or 

n= 1,2.3 , . . . (A81 

where 

A,=Re(k:)Re[A(k:a)] 

-/m(kf)/m[~(k:a)] 

Ai= ,m(kT)Re[j~(k:‘a)]+Re(kf),m[j~(kfa)] 

Re($j.)=${Re($)Re[j,(k$a)] 

-Im($-‘)~mLL(k~u)l} 

,m(~j.)=~{/m($)Re[j,(k,*a)] 

+Re(~)fm[j.(kfa)l] 

equation (A8) now becomes 

a,*=Re(a,*)+i/m(a,f) n=1,2,3,... CA9) 
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where 

Substituting equation (A9) into equation (A7) we get 

where 
hz = Re(bz) +ifm(b,*) 

Putting all the above equations (Al )-(A9) into the equa- 
tion (37) we get the following expressions for the complex 
normal stress 

u,,=,.,(-, Re(h”)+ifm(h*)][Re(k:‘) 

+ z 2A,z(G’+iG”). [Re(b:)+ifm(b,T)] 
,i=o 

x Re[j,(k:r)]+ifm[j,(kzr)] 

( 

_[Re(kf)+ifmrikf)] 
r 

X {Re[jk(kfr)J +ifm[j:(k2*r)]})P,(cosg)e’“‘. 
(AlO) 

Next. let us define the following expressions: 

q,=Re(A*)Re(kF’)-fm(h*)fm(k:‘) 
q,=Re(h*)fm(kT’)+fm(A*)Re(kf’) 
9:, = G’Re(kt) -G”/m(k:) 
y,=G’fm(kT)+G!‘Re(k:) 
ys = G’Re(kT’) -G”im(k:‘) 
q, = G’fm(k:‘) +G”Re(k:‘) 
q, = { [Re(k:‘)]“+ [fm(k:z)]‘}F 
qH = G’Re(b:) -G”fm(b,*) 
yy = G’fm(b,T) + G”Re(b,*) 

qlo=Re(k:)Re[j&(k::r)]-fm(k$)fm[jh(k$r)] 
q~~=Re(k?)fm[jh(k~r)]+fm(kf)Re[j~(kfr)] (All) 

Equation (AlO) in view of expressions defined by equation 
(A I I ) can be written as 

-2(q5+iq6) [q7-AllRe(k?‘)]Re[j,,(kTr)] 

47 

A,,fm(k:“)fm[j,,(k?r)] 

(Ii 

+i [q,-A,,Re(Lr’)]fm[j,,(k~r)] 

Yi 

+iA,Sfm(kF’)Re[j,,(k:r)] 

47 

z 

X f’,(cos +)eiw’ + c 2A,, 

n=o 

X (i ‘lx 
Re[j,tkyr)] -.rq,, 

).z 
~q, ~m[jn(k~r)l-wlI 

9 f2 

-t i ‘lx 
ReEj,,(k,*r)] - rq,,, 

rJ 

X P,, (COS 4 ) e’“‘. (A12) 

After separating the real and imaginary parts of equa- 
tion (Al2) in ( ). it can be written as 

crrr=c [Re(a:)+ifm(a,T)](Q,+iQr)P,(coscb)elwf 
t,=0 

+ c 2x,, (Q:l+iQ,)P,,(cos~)e’“’ (Ai3) 
,,=I, r- 

where 

QI =--41Re[j,(k:r)]+q,fm[j,,(k~r)] 

~~~q,~q,,--y,~q,,)-~{~:,ReIj~,(k;”r)] 

-~JmLC,(k~r)lI 

Q2 = q,fm[j,,(kFr)] -qzRe[j,,(kTr)] -Z(~,q,,+q,q,:~) 

~{rr.Cmlj:,(kTr)]+ylRp[j:ik~r!]) 

YU= {[q7-A,,Re(kTZ)]Re[j.(k~r)] 

----A,,fm[jn(kr*r)]fm(k:“)}/q, 

qI1 = {[q7- A,Re(kT’)]fm[j,,(kTr)] 

+A,,Re[j,(k:r)]fm(k:‘)}/y, 
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P3 = %{Re[j,(k?r)l -rq,,}-qq,{~m[j,(k~r)l ---rq,,) where 

Q4=q811m[j,(kz*r)l-rq,,J+qs{Re[j,(k:r)l-rq,,}. Z,, =Re(a,*) ~Q,---lm(a~)Q2+2h,Q3/i 

Finally, the normal stress can he expressed as Z.Z=Re(a:).Q,+Im(a.*)Q,+2A,Ql/i. 
m 

u,.,(r,d,t) = ,~~[Z,,(~)+iZ~~(r)]P,(cos~)e’“’ (A141 Equation (A 14) is the desired expression to be shown 


