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Abstract: A solutionis proposed for theinner multiplicity problem associated with the five-dimensional
quasispin description of shell-model states. A classification scheme, in terms of an orthonormal
basis, leads to tractable results with definite symmetry propertics under particle-hole conju-
gation. Explicit constructions are given for tic R(5) irreducible representations (w, 1), (o, 3),
(¢ -1, 1) for which the inner multiplicitics arc never greater than two. For siates of seniority
¢ —= 2, reduced isospin r = 1, of a configuration j” gencral cxpressions are given for the matrix
elements of an arbitrary two-body interaction, to detcrmine their #, T dependence, and to
isolate those featurcs of the actual interaction among nuclcons which are most cffective in split-
ting the isospin degeneracy of such states.

1. Introduction

For configurations of both ncutrons and protons the five-dimensional quasispin
formalism '~ ©) gives the best description of the isospin structure of shell-model states
in the seniority scheme. The five-dimensional quasispin formalism also provides a
natural tool for extracting the n, T dependent factors of all nuclear matrix elements
{n = nucleon number, T = isospin) 7). By identifying the irreducible tensor character
of operators under the quasispin group R(3) und applying the Wigner Eckart theorem
in quasispin space, it is possible to give reduction formulae which give matrix ele-
ments for the slates of the configuration ;" in terms of the corresponding matrix
elcments for the configuration j°. Although the explicit #, 7 dependent factors of
nuclear matrix elements have been derived by this technique for seniorities ¢ and
reduced isospin ¢ corresponding to the simpler representations of R(3) [ref. ®)],
no general solution to this problem has becn found because of the inner multiplicity
problem associated with the quasispin group R(5). The five-dimensional quasispin
description of shell-model states is plagued by the problem of a ““missing” quantum
number. The irreducible representation labels off R(S) are characterized by the se-
niority number v and reduced isospin ¢. Besides ihese, four additional quantum
numbers are nceded to completely specify a basis state of a given irreducible rep-
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resentation. Of these four. the physically relevant or natural quantum numbers
are n, T. and M. Unfortunately no simple fourth operator exists which commutes
with the number operator. the operators T2 and T, as well as with the Casimir
invariants of R(5). For fixed n, 7, M, therefore, there is in general some number, s,
of independent states in a given irreducible representation of R(5), corresponding
to m different values of a fourth quantum number. Such states will be said to have a
“T-multiplicity of m’". So far derivations of the n, T dependent factors of nuclear
matrix elements in gencral algebraic form has been restricted to states with no such
inner multiplicitics #), that is 1o states with " T-multiplicitics of 1. Although these
include some of the low-seniority states of greatest physical interest, an cxtension
to more complicaied R(5) representations is needed to make it possible to give the
n, T dependent factors for all matrix elements of actual practical interest in shell-
model calculations based on the seniority scheme.

A complcte specification of the states with T-multiplicities greater than onc can be
given in terms of arbitrary labeling schemes. One such scheme was first suggested by
Racah °). States of a given ¢, ¢, n. T are built naturally from onc group of & nucleons
entirely free of pairs coupled to angular momentum J = 0 which are coupled to re-
duced isospin f; and another group of nucleons made up of p = (n—r) pairs of
nucleons, each coupled to J = 0, T = 1. These p pairs arc coupled to isospin T,
where T, = p, p—2, p—4. ..., and where the total isospin is the result of the vector
coupling T = T,+t. Racah suggested that the labei 7,, which has some physical
significance, be used to distinguish the indepcendent states of a given v, 1, 1, T. Since the
labels T, are not related to the eigenvalues of a hermitean operator, however, two
states with different values of T, are in general not orthogonal to each other. Although
there may be some merit in using a nonorthogonal basis, (see for example the remarks
of Racah in ref. '%)); it is difficult to apply the formalism of the irreducible tensor
calculus in such a basis. For purposes of extracting the »#, T dependent factors of
nuclear matrix elements. therefore, it becomes important to find a usefu! orthogonal
basis and a solution 1o the problem of the fourth operator. The analogous problem of
a “‘missing” quantum number has been discussed in some detail by Racah '°)
for ihe group SU(3) restricted to the subgroup R(3) generated by the three-dimen-
sional orbital angular momentum opcrators. Racah shows that the missing opcrator
can bc cxpressed entirely in terms of two operators of degree three and four, respec-
tively. in the infinitesimal operators which generate the full group in this case. How-
ever, Racah was unable to find a function of thesc two operators with rational eigen-
valucs.

Alternate labeling schemes for the five-dimensional quasispin group have been
suggested on physical grounds. Since four particle correlations, invelving alpha-like
groupings of four nucleors coupledtoJ = 0, T = 0, are important in nuclei, Parikh %)
and Flowers and Szpikowski'!) suggested that the states with 7T-multiplicitics greater
than one be distinguished by their content of such “alpha-particle clusters™. Flowers
and Szpikowski, in particular, introduce an operator which “counts” the number
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of such four-particle clusters. It is an operator of degree four in the infinitesimal
operators of R(5). Unfortunately its eigenvalue structurc is very complicated and its
ecigenvalues are in general not rational numbers. Goldberg ’?) and Goshen and
Lipkin %) have also suggested a classification scheme based on the content of alpha-
like clusters. Their scheme classifies states according to the number of nucleons not
members of J = 0, T = 0 quadruples. All these schemes, however, would lead to
R(5) Wigner cocfficients of very complicated algcbraic siructure. They have an
additional disadvantage, in that the states based on these schemes have no definite
symmetry properties under particle-hole conjugation.

For these reasons a new classification scheme based on a somewhat different
approach to the problem of the fourth operator will be proposed, with the idea that a
useful basis must satisfy the following criteria.

(i) Its states must be members of an orthonormal set.

(ii) Tt must yield tractable results; that is, the eigenvalues of the fourth operator
must be rational numbers, and the operator must be chosen such that the algebraic
structure of the R{5) Wigner coefficients is relatively simple.

(iii) It must have definite symmeiry propertics under particle-hole conjugation.

The search for such a basis applicable to all conceivable irreducible representations
of R(5) has not met with success. However, a much more limited approach will
be sufficient for nuclear shell theory. Since only R{5) irreducible representations with
rather low T-multiplicities are of practical importance for shell-model calculations,
it will be sufficient to consider only such cascs. The main result of this investigation
will be a complete classification of the basis states of all those R(5) representations
with T-multiplicities no greater than two according to a schemc which satisiies the
above criteria. For simple shells with j < %. (or for mixed configurations with
Q = Z(j+1%) £ 5), this includes all possible R{5) representations. Out of the 28
possible R(5) represeniations in aj = 5~ shell, for example, only one contains states
with a T-multiplicity greater than two. Since it is feasible to apply the techniques
developed in this work 1o special cases of representations containing states with
T-multiplicities greater than two, the problem of finding a tractable classification
scheme can be considercd as solved.

The fourth operator needed for a complete classification of the states of R(5)
will commute with the operators, T2, and T, the number operator, and the Casimir
invariants of R(S) if’ it is an isoscalar operator, which conserves nucleon number, and
is built from the infinitesimal operators which gencrate R(S5). The latter include,
besides the number operator and the isospin operators 7T, the operators which create
and annihilate pairs of nucleons coupled to J =0, 7 = 1:

A?(A/[f) = ; Z <énxr%’”;“A/[1'>(_l)j_ma;mm, a}—mm',?

m, mg

A(My) = (4" (M) (1)
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The fourth operator is to be built from the operators
00 = (A"~ 4") and O0_, =(4-4), (2

where (A" - A%) and (4 - 4) arc scalar products (in isospin space) of the / = 0, T = 1
pair creation and annihilation operators. The operators O, O_,, have the property
that they create or annihilate, respectively, four nucleons coupled to J = 0, T = 0.
(The subscript notation 0,4, O_,4 will become clear in scct. 3.)

The anticommutator and the commutator of the operators O, and O_,, form
the potential building blocks for the fourth operator. The anticommutator of O,
and O_,, is an operator of degree four in the infinitesimal operators of R(5), while
the commutator reduces to the operator T- [4" x 4], (except for trivial functions of
T, and the number operator; see table 8 of ref. ®) or eq. (39¢) of ref. !3)); that is, it
is an operator of degree three in the infinitesimal operators. These two operators are
the analogues of the operators of degree three and four-discussed by Racah in his
search for the missing quantum number for the group chain SU(3) > R(3). In the
classification scheme to be used in this investigation the fourth operator is to be chosen
as

0, = (0200-2o+0—2o Ozo)+}’(0200—20—0—20020)’ (3)

where y is a function of the isospin and number operator, chosen such that the opera-
tor O, is invariant under particle-hole conjugation and that the resultant eigenstates
are simplc enough to be useful in practical cases. If the function 3 were replaced by the
number y = I, the operator O, would collapse to that proposed by Flowers and
Szpikowski ') as an operator which “counts” the number of four-particle clusters
coupled to J = 0, T = 0. However, since particle-hole conjugation is equivalent to
complex conjugation in the five-dimensional quasispin space, and since the anti-
commutator and commutator of 0,4 and O _, 4 have the symmetry property + and —,
respectively, under complex conjugation, tne function y must have the symmetry
property — under such conjugation,

In sect. 2 the isospin structure of the R(5) irreducible representations with 7-
multiplicities not greater than two is discussed. A very brief review of notation is also
given. In sect. 3 explicit constructions are given of (i) the operators O, of ¢q. (3),
and (ii) the full set of eigenstatcs for the representations of sect. 2. The techniques
used to calculate R(S) Wigner coefficients needed to extract the n, T, dependent
factors of nuclear matrix elements are the same as those described in ref. 8). The more
basic of thesc coefficients arc tabulated in gencral algebraic form in an appendix.
In sect. 4 some applications are given. In particular, matrix elcments are given in
general algebraic form for the v = 2 states of the pure configuration j* with a 7-
multiplicity of 2 for (i) the most general charge independent two-body interaction,
and (ii) the Coulomb interaction, in an attempt to study those features of the actual
interaction among nucleons which are most effective in splitting the isospin degen-
eracy of such states.
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2. The irreducibic representations with T-multiplicities of 2

The notation will follow that of ref. ) so that only a very bricl review will be
given. Table 1 shows the ten infinitcsimal operators which generate the quasispin
group R(5). The two commuting operators which label the weights of this rank 2
group are H, = 4N, —(j+1%) and H, = T,. Under complex conjugation, (particle-
hole conjugation), the definition of H, leads to the symmetry H cigen = — Hi cigen

TABIE 1
The gencrators of R(5)

Quasispin operators Standard form

ING—(rd) H,
To H,
AN Ery
A(1) E_ .
AN(=1) —Ei-,
A(-1) —E_1
A41(0) Eo
A(0) E_jo
T, 12 Eoy
T_ vi2Eo-

The irreducible representations are labeled by (w,®,), the maximal wcight valucs
based on the pair of operators H,, T,. These are related to the seniority number v
and reduced isospin ¢ by

o, = j+i—4%u, w, =1 4
(For mixed configurations the degencracy number j+ § is to be replaced by
Q=2(j+1))

The n, T structure of an arbitrary irreducible represcntation has been given by
several techniques > 7:'4). It can best be summarized by the following rules '#).
The allowed values of H, and T in (w,t) are given by the possible angular momen-
tum couplings T = T,+t, where

(i) T, has the possible values T, = p’, p'=2, p'—4,..., for H, = x|w,—p’|,
p =0,1,2,...(2 w,). The allowed states are subject to the following restrictions:

(i) T = w,.

(iii) If the possible couplings of T,+t lead to a state of specific T more than once,
a state of specific T occurs at most ¢ times, where ¢ = min (w0, —T+1, &, —1+ 1).
Straightforward application of these rules shows that the representations (w, 0),
(@, 1), and (#t) have no states with T-multiplicities greater than one. These represen-
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tations have becn discussed in detail in ref. ®). Tt can further be seen that the rep-
resentations (w, 1), (o, 3). and (r+1 1) have no states with 7-multiplicitics greater
than two. The {ull £/,, T structure of these representations is tlustrated in tables 2, 3

TABLE 2

H,, T structurc of representations (5 1) ?)

H. ‘ T
Wy \ e
w1 0y o 202y
w, -2 | Ko 20 3
0, -3 'Oy Loy 20,2 3o 4w
|
2 | © {0y =2), (0= 1),
1 ' ot ((01_2)(21.2)(60;—1)(0)(‘01)(2)
0 . c (@ =2 (02— 1), 2(@))0)
-1 l o (0)1_2)(21,2)(w1_1)(0)(w1)(2)
-2 i o (@ 2)) (1),
l
—(@=3) 10y, Lo 202 30 4o
—(w,~2) i 1<21,2) 20y 32
~(@i=1) {0y Lo 2y
—w, i 12,

") The superscripts arc the T-multiplicity. The subscripts are the possible values of the label §.

and 4. Explicit constructions are given in sect. 3 for the full sct of eigenstates for these
three types of R(5) represcntations. The R(5) Wigner coefficients involving these
represcntations are calculated, making it possible to give the n, T dependent factors
of nuclear matrix elements for all cases with ¢ < J or v, = t+1.



TABLE 3

Ify, T structure of represcntations (w, £) ?)

N N R

o NG tu—

~(w;-3)
—-((1),—2) |
—(w,-1) |
|
]

—w,

T
32y
(5)(1) (%)("2) (%)(2)
(3)- 1 ('%)(ZL.Z) ($)-2) (;)(2)
( (32 De-2y By

')(I) (%)(2—1.—2)

(0:=2)-2y {21 —1)

(o, ‘2)(21,2) (@, _1)(—2) (wl)(Z)
(=201, -0, =112y (0))-2
(0)1 "2)(21.2) ((01—1)(2—1,—2)(“’1)(2)
(wl—z)(z—l.—Z)(“)l_i)(Z) (©)-2
(o, —2)2 (0, — l)(—2)

(é)(* 1) (%)(21, 2) (%)(2—1, ~2) (%)(2) (%)(—2)
Dy i -n G (De-2
(;,)(—l) (%)(2) (%)(—2)

(-2

*) The supersceripts are the T-multiplicity. The subscripts are the possible values of the label .

1744

LHD3H "L "X ANV ¥YIONINIH ‘4 "4
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TABLE 4
H,, T structure of representations (141, 7) * ®)

H, | T
t+1 . ey
t } (=D,  ty (t+1)g
t—1 (t—=2)qy (t—1)q, ’(21,2) (t+1)q)
1=2 I (1=3)1y (1=2)qy (=112 18,2 (+1)e
|
|
|
2 | ](l) 2(1)
1 | O oy 2(.2
0 ‘ G2 20,2
—1 0y 1gy  2hm
|
|
—(t-2) ‘ (t=3)1y (1=2)yy =112y 2y 1+ 1)
—-(=1 1=y (=D, 2 (t+1),
-t | =Dy tey  (t+De,
—(t+1) | Ly

) t may be integer or half-odd integer. In the latter case both 7 and H; arc of course also hali-
odd integer so that the H,, T structute will diffcr slightly from what is shown in the left central
portion of the above table. The precise structure in any case can be found by using the thrce rules
stated in sect. 2.

®) The superscripts arc the T-multiplicity. The subscripts are the possible valucs of the iabel .

3. Explicit construction of T-multiplicity 2 states

Basis states of irreducible representations of R(5) require six labels, two of which
are the representation labels. These states will be written |(w,¢}8H,TM¢) where 8
is the label replacing the fourth or “missing” quantum number. Only representations
having states with 7-multiplicity 2 but no states with T-multiplicitics greatcr than 2
are to be considered. Thus if w,, t, H,. T, and M are fixed, f can take no more
than two valucs.
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The cxplicit consiruction is to be carried oui by the use of step-operators built from
the infinitesimal generators, E,,. The full set of basis states for a given (w,1) is then
obtained by successive application of thesc step-operators (o one of the statcs of
maximal weight. The maximal weighi states which have led to the simplest construc-
tion are the so-called “corner states™. The normalized *“*corner state’ for an irreducible
representation (1) is defined by

lest) =((w, ) =2,H, =14, T =My =w). (5)

(Note its location in one of the corners of tables 2, 3, 4.) This is always a state of 7-
muliiplicity 1 so that there are no other valucs of § corresponding to these vaiues of
f1, and T. The relevant operators for the construction of statcs are,

O,1-, = E(Z,_zE,l—EO_lElo(2T0+l)—E,_1To(ZTo—i-l).
0—1—1 = Eg—1E—ll_EO—lE~1o(2T0+l)_E—1—1T0(2T0+1)=
Oio = —Eo- E\+Eo(To+1)—E,_Eg,,
O_10=—EgE_\ +E_\o(To+1)~E_,_, Eqoy,
030 = 2E,_, E,, +Ei,,
O_y0 =2E_,_E_j,,+E%,. (6)

Here the E,, are the group gencrators in standard form (see table 1). The first sub-
script is the change in the eigenvalue H, resulting from operating on an R(5) state.
The second is the change in the eigenvalue M. The operators O, ¢, O 10 are iso-
scalars so that they leave T unchanged, O, . _, on the other hand when operating on
a state with My = T decrease both 7 and M, by unity.

3.1. THE REPRESENTATION (w,1)

There arc two essentially different classes of basis states in this representation.

(i) Thosc states with &, —T—H, = even integer have a T-multiplicity of ! and
will be labeled = 0 (sce table 2). These states were constructed in ref, ) where the
labei k = 0 was uscd.

(ii) Those states with w, —T—11, = odd integer include all the T-muitiplicity 2
states and are labeled # = 1, 2. Two indepandent basis states must be constructed for
each H, and T. One way of doing this is to put,

la; pg> = 0%, _, OX L lcst.),

[b;pg> = 0271, 0%, -, 0_jolcst.).
Here, H; = p—g, and T = @, —1 —p--¢. The effect of the operator O, (eq. (3)) on
these states can be discovered by commuting it through to the corner state. Diago-

nalizing O, in this 2 x 2 system gives,

Ola; pgy+o.1b; pgd} = /.{la; pgd +a.\b; pgd},
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where,

2(p+ 12w, +1-2p+2y)5. = —{y+(p—q—y)(2w, +3)(2w, —1-2p—2q)}
+{[y+(p—g—y)(2w, +3)20, —1-2p-29)]
+4(p+1)(g+ 12w, +1-29-2y)2w, +1=2p+2y)}*, )

with eigenvalues,
= 1+2(p+ g+ (2w, + 1 —2¢)2w, +1-2p)
+L(p—a)y 11020, +3)(20, =1 ~2p—29)+8(p+ 1)(g +1)]
H{r+(p—a-y)(2w, +3)20, ~1-2p—29)]*
+4(p+1)(g+ DQ2w, +1-29-2y)2w, +1=2p+2y)}*. (8)

A choice of 3 which leads to rational ¢, and prescrves particle-hole symmetry
(see the introduction) is

WH,T) = H, 2{}' (= —y(=H,T)). ©)

The normalized eigenstates of O, with this choice for y are
o, ) =1,H, =p=—q, T =Mr=0,-1-p—q> = N\(pg)l ~la; pg>+1b; pg>],
(0, )8 =2,H, =p=q, T =My =w,—1-p—q)

= Ny(pa) lw, + (@ =P= @R+ pm @) H(pa)w ~ 1= pa)]

l (q+ 120, +1—p—q) la; pa>
(0, —p—q)2w +1-p—g)—(p—g¥w,—1-p—g)]
+(w, +1) (ot U0 +1=p=1) b; pq)} (10)
where
Ny(pg) = (—1)"*1
o (pADgNQo tl-p-q) 3!
1 <as palb; pa¥e, +1) '
x[(w—p—a)Q2w,+1-p—q)p+q+2)+(w,—1—p—q)p—q)*]

Ni(pq) = N(pg)
o (p+1)(g+1)20, +1-p—g)* ]*

l(_wwal)(_w.+2)(w1—1~p )@, — p—q)(2w, +1—2p) 20, +1—-2¢) * (10a)
{a; pqlb; pg>
(D))o + D)@, —p) e - )0, +1-p—q)
2274 28% 1 (o, + 1-2p) (20, +1—29)!
x(w,—1-p—q)(w,— p—q)(2w; +1-2p—-2¢)!
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3.2. THE REPRESENTATIONS (v, )

There arc two classes of states in this representation which are essentially different,
cach of which contains states of T-multiplicity 2. Under particle-hole conjugation
cach state in one class goes into a corresponding state in the other.

(i) For those states with o, +%—7T—H, = cven integer the labels § = 1,2 will
be used (sce table 3). For given H,, T define the two independent states,
[a'*); pay = 0% _, O L Jest.),
16075 pgy = 051, 0% -, 0_plest.), (11)

where H, = p—q+%, T =w,—1—p—gq; O, is again to be diagonalized in this
2x 2 system. A choicc of y which makes the eigenstates of O, simple is,

(H, = PCo, + )T +1)-4T] Qo+ o, +1=T) 1y

y(+)(H1 T) =
Qw, +3)2T+1)+4(w, —-T)

The resulting normalized eigenstates are,
(w3 =1L, H =p—q+}, T =Mr=o0,~1-p—q)
= N (pg)[ —1a"™; pad+16'"); pad],
2w, +1
220, +1—p—q)

~P= 920, +5)~(g+ )20, =3-2p—29)] | (),

(w3 =2,H, =p—q+4 T=Mr=w,~1-p—q) =

N5 (pg) (L2 P4y
{ g+1
[(wl p—q9)2w,+5)— (17'*'1)(2601 3 217 29)] b+, pq)} (13)
3(p+1)
N{(pg) = (—1)P**

_ 6(p+1)(q-+1)(20, +1=p—q) 4
<a'™; pqlb™; pgd(20, +1) }
x [(20, + 5)(w, — p—@)(p+ g9 +2)+(p+ 1) 20, —3-2p—29)(2w, +1—~4q)]

N (pq) = N{*)(pq)

* o

. 12(p+1)(g+1)(2w,+1-p—gq)° }4,
—p)w; +1—9)2w, + 1)(2w, +5)20, —3-2p—29)(2w, +1—-2p—2q)

a5 pg|b'™; pg>
32w, + 2w, —1—-p—g)p+1){g+1)'(2w, +2)!
_ x (20,)!(20, —4)Yw, ~3~p) (@, +1—9)!
2o, -1)2°**7 2w, ~2-2p—29) (@, ~ 4~ p—g)! '
x (0, +3—p—q)'(2w, ~2p)!(2w, +2-—2q)!




FIVE-DIMENSIONAL QUASISPIN 479

(i1) For those states with w,+3—7—H, = odd integer the labels § = —1, —2
will be used (see table 3). Here define

- /2
1a'™; pg)y = 2_(‘1:—*?) O%iL10%-10_150_yfcst.),
-~ 1 0
- 2
1675 pgy = Zu\/+1 0%,-,0%_,0_ ,lcst.y, (14)
1

where Hy = p—qg—3%, T = o, —1—p—g, y for this case is completely determined by
(12) and the requirement of simple particle-hole conjugation symmetry. Thus,

y(—)(Hl ) T) = —‘y(+)(—H1 > T)'
With this choice the normalized eigenstates become
wi3)B=—-1L,H, =p—qg—4T =M =0,-1-p—q)
= N{(pg)la' "5 pay—1647; pad],

(20, + 1)NS(pq)
22w, +1—p—q)

N {[(wrl—p—q)(?-w,+5)—(p+1)(2w1—3—2p—2q)] lat™)
p+1

l(wxg)ﬂ =-2,H =p—q-}3T=My=w,—-1-p—q) =

; Pa>

. [o—p—9)(20, +5)—(g+1)(20, —3-2p—2g)] b, pq>} , (13"
3(g+1)
where
N{(pg) = N{"(qp),
N (pq) = N5"(qp).

3.3. THE REPRESENTATION (¢+1, 1)

All states of this representation are labeled § = 1, 2.
For those states with T—H, = odd integer define

b m+1
la; mn) = ]a;}-]I T> — (t_+_:)2_
(2m+2)!
x[2(m+1)0T\L,07,56—-0%, 10735304, - Jlcst.),
2m+l
bymn)=1|b;H, T) = —
| 7= I HL T (2m+2)!

x [2(t+1D)(m+1)0T L, 07 o~ (1—2m)0%, -, 073550+, -1 ]lcst.>, (15a)

where H, = t—1-2m—n, T = t—n.



480 R. P. HEMENGER AND X. T. HECHT

For those states with T—H, = even integer define,

2m+l
la; H, T = —
(2m+3)'
x[— 2("1""')0"1—10"’200 10+0% -, 07504 ,-,0_0]lcst.),
.’2,,,4
(b; H) T) = — —-
10 (t+2)(2m +3)! (15b)

X[=2(t+2)(m+ 10" |07 300 _ 1o+ (t—1-2m)0" | _, 07430, -, O _ollcst.),

with Hy = t=2-2m—n, T = t—n.

For both cases, in order to guarantee simple conjugation properties, 3 must be
choscen to be odd. A choice of 3 which makes the eigenstates simple is
H,(2T +1)

Ar+24T) (13)

yH,T) =

Then for all H,, T the normalized eigenstates are,
e+, ) =1H,, T =M;>= —N{(H, T)la; H T,
W+, 08 =2,H,, T = M;)

_ f H,(t+1D(2T+1) ) i
Na(H, )lT(T+1)(t+2+T)+112(t+1—T)la’HIT> lb’H1T>}’ (16)
NL(H,T) = » H,(¢+1)(2T +1) ]'*
e Cas Hy Tibs H, TY[T(T+1)(t+2+ T) + H2(t+1-T)]
Nz(HlT)=[ CH QT+ D[T(T+ D +2+ T+ Hi(t+1-7)]  \*

\Cas H, TIb: I, TY(+1~T)(t+2+ T T2 = HHU(T +1)* —H?Y)’
Ca; H,T|b; H, T

(t+1)3(z+2)(21+3) (2r*—t+2)H, (T+2-H )2t =)t =T){2t+3+H, —T)'
22“”‘”(2T) (t+2+T)(t+H)!

4. Applications

From the constructions given in sect. 3 it is possible to calculate the matrix ele-
ments of the infinitesimal gencrators of R(5), (see tables A.1-3), and from these the
R(S) Wigner cocflicients which give the n, 7" dependent factors of one-particle frac-
tional parentage cocflicients (tables A.4-7). Although these are sufficient to determine
the n, T dependence of all matrix clements of interest in nuclear physics, it will be
morc convenient to find the #, T dependence of the matrix elements of the nucleon-
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nuclcon interaction directly. It will be of particular interest 1o see under what con-
ditions the degeneracy is removed for states of T multiplicity 2, that is states with
the same s, 7, and spatial characteristics, but diffcrent § labels, and to isolate those
features of the actual interaction among nuclcons which are most effective in splitting
the degencracy of such isospin doublets. The most important states with 7T maulti-
plicities of 2 arc states with scniority v = 2 and reduced isospin 1 = 1; (v = 2 is
the lowest seniority for which 7 multiplicitics of 2 can occur). These are the states of
the irreducible representation (w,1) with w, —T—H, = 2j+1~T—4n—4tv = odd
integer. The matrix elements for such states are calculated in this scction for (1)
the most general charge independent (isoscalar) two-body interaction, and (ii) the
Coulomb interaction, in a pure configuration ;.

The decomposition of the two-body interaction into its R(5) irreducible tensor
components is given in ref. ®). These include the irreducible representations (w,¢t) =
(22}, (20), and (10). The necded R(5) Wigner coefficients for the coupling with these
representations are tabulated in ref. ! *), while the neccssary reduced matrix elements
for states with ¢ = 2, t = 1 are given in ref. *), With these, the matrix elements of a
two-body interaction can be expressed in terms of the two-particle matrix eicments

Vir = {J5 IMTM |V ,| 3 IMT M), (17)

and in terms of weighted averages over these. It is convenicnt to define

V= Vi r=0> J odd
TV oy, Jeven,
Y Vin(2J+1) Y Vio(2J+1)

even J _ oddJ

J2i+1) e+

S 1
Vc\‘cnU = - V 2J+l U JJ:; ii s
( n) j(sz)ev;J 124+ D)UJjT 25 i)

— 1 L
(Voud UJ;) = m+-5 OE,J Vio(2J + I)U(Jj]-lzx.lj)- (18)

even

The results for the isoscalar and Coulomb cascs will be given separately.
4.1. THE ISOSCALAR TWO-BODY INTERACTION
The matrix element which is off-diagonal in 8 is
E (V) =<K% DB = L, H TMp; J, My|IVI(j—14, DB =2, H TM:J, M)
Hy  (TTHDIG+3+TY IR+ - Tf_—gﬂ}*
3f(H, T) | (+DU+d

T2 e gl (19)
(2 -3)2-3)
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The diagonal matrix elements are, with § = 1, 2

Eﬂﬂ H] {3] Veven+(.]+ 1) dd} + 23 (2.] 3) V0+2(6] + 1) Vc\cn+4j( cven UJz)+4V:Iz}
+%{2(.]+ I)ZVodd_(j+ 1)(Vodd U.Iz)}

_(+HU+3)=2T(T+1)-4H} {.9/_ _(U+dE _}

32— 1) 2i(j—)i—%)
LUHDG+H=ST(T+Y+SHY [, 0 6 } __ ¥
60(j +1) | 2G+1G+3 30(+1)
(= ‘ ¢’ ﬂﬁ?ﬁ}
iQ+D)\G+3) (G-dU-%
TV i 2 2HI(j+3(+3)2T+1)
X {(1+%+T)(J+£ T)+H; FHLT) }
o BUHDU+D+ T(T+1)(j=$)—(j+ HHI=3(— Vf(H, T)} 20)
| 6(j~3)(j—$)i(2i+1)

Here f(H,T) is the function which appears in Wigner coefficients involving the
representations (w,1)

SH\TY = (T+1)(j+3+T)(j+4—T)+THT. (21)
Also,
= 2[2jVevea~ Vol
' = jVeient Vot 3(j+1)Vouq,
= 22 Ven= Vol (2= D2 (Veren Us)— Vi1,
€ = jVeent —z<;+1>[1<vmU';;)+vh]+3<;+1) Veaa= 60+ 1)*(Vaaa Us). (22)

It is of interest to find the conditions under which the degeneracy of the isospin
doublet (# = 1, 2) is rctained; that is the conditions on V, for which € = ¢’ = 0,
and consequently £,, = 0, E,, = E,,. This condition is certainly satisfied for an
intcraction which is invariant in the five-dimensional quasispin space, that is an inter-
action built from odd (isoscalar) multipole moments only. For such an interaction

Vip =Y e{~1)T"! U[(zjju’ SJ—) with ¢, arbitrary. (23)
kodd

With such values of V,; it can be seen that 4 = €’ = 0. Another simple interaction
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which satisfies this condition is
VA, = Vo J(J+1DV',  for J #£0,
Vide = Vi+J(J+ D)V,
V! = arbitrary, (24)
V,, V,, V' = arbitrary constants,

V(l) —

that is, an interaction built from a combination of the following simple two-body
operators: (a) Vi = 1, (b) Vi =J; ju (€) Vi = t,- 1, (d) V;, = isoscalar pairing
interaction = Y ,, A'(M7)4(M7). The eigenvalues of this simple intcraction are a
function of the quantum numbers ¢, ¢, n, T, and J only and cannot remove the
degeneracies associated with 7 multiplicities in any irreducible representation of
R(5). However, this interaction is of some interest since it has many features in
common with actual effective interactions which have been uscd to fit nuclear spectra
in many regions of the periodic table. To illustratc this point the interaction ¥V
is compared with a realistic effective interaction for the 1f; shell in table 5. The

TABLE 5
Comparison of ¥ with realistic two-particle cnergies (McV) for the f; shell

Vo Vi— Vo Vi—Vo VamVo Ve—Vo Ve-Vo Ve=Vo V5=V,
Real®) —3.09 0.69 1.51 1.98 2.76 2.32 3.53 0.55
yw —3.09 0.90 1.5 1.75 2.7 3.25 4.5 5.5

“) As an example of a realistic ¢ffective interaction, set A of Dieperink and Brussaard *€) has been
chosen. The simplc intcraction V9 of cq. (24) has been cvaluated with Vo — --3.09, 7, = 0.75,

7, = 1.0, ¥’ = 0.083 McV.

fit of the V{V to the real two-particle encrgies is reasonably good with one very im-
portant exception: the two-body interaction in the state with J = 2j. {The real two-
body intcraction in the state with J = 2j is almost as attractive as the interaction in
the statc with J = 0, whereas the model interaction V1) is repulsive in a state with
J = 2j.) This suggests that a modified intcraction based on ¥V may serve as a
relatively good model interaction provided an additional attractive term is added for
the statc with J = 2j. Tt appears that it is this term which is largzly responsibie for
the removal of the degeneracy associated with states of 7 multipiicitics greater than
onre. If a modified model interaction is introduccd for which

2 - e =
VJ( Y= yVyv 04, 2js (23)

the energy splitting of states with the same n, T, M, but different 4th quantum num-
ber is given entirely by the parameter ¥, For the isospin doublets with v = 2,



