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Ahstract: A solution is proposed for the inner multiplicity problem associated with the five-dimensional 
quasispin description of shell-model statcs. A classification scheme, in terms of an orthonormal 
basis, leads to tractable results with definite symmetry properties under particle-hole conju- 
gation. Explicit constructions are given for the R(5~ irrcduciblc representations (o~t 1), (eJ~ :a), 
(t :-1, t) for which the inner multiplicities arc never greater than two. For states of seniority 
v = 2, reduced isospin t = 1, of a configuration j" general expressions are gixen for the matrix 
elements of an arbitrary two-body interaction, to determine their n, T dependence, and to 
isolate those featurc.s of the actual interaction among nucleons ~ hich are most effective in split- 
ting the isospin degeneracy of such states. 

1. Introduction 

For  configurat ions  o f  both neutrons  and pro tons  the f ive-dimensional  quasispin 

formal i sm t - 6) gives the best descr ipt ion of  tile isospin structure of  shell-model states 

in the seniori ty scheme. The  f ive-dimensional  quasispin formal ism also provides  a 

na tura l  tool for extract ing the n, T dependent  factors of  all nuclear  matr ix  elements 

(n = nucleon number ,  T = isospin)  7). By identifying the i rreducible tensor  charac ter  

o f  opera to rs  under  the quasispin g roup  R(5) and apply ing  the Wigner  Eckar t  theorem 

in quasispin  space, it is possible to give reduct ion formulae  which give matr ix  ele- 

ments  for  the states of  the conf igurat ion j "  in terms of  the cor responding  matr ix  

elements for the configurat ion j r .  Al though the explicit  n, T dependent  factors of  

nuclear  matr ix  elements have been derived by tiffs technique for se,fiorities t: and  

reduced isospin t cor responding  to the s impler  representa t ions  o f  R(5) [ref. 8)], 

no general  solut ion to this p rob lem has been found because of  the inner mult ipl ici ty  

p rob lem associated with the quasispin group  R(5). The f ive-dimensional  quasispin 

descr ip t ion  of  shel l-model  states is p lagued by the p rob lem of  a "miss ing"  quan tum 

number .  The i r reducible  representa t ion labels of  R(5) are  character ized by the se- 

niori ty number  v and reduced isospin t. Besides these, four  addi t iona l  quan tum 

numbers  are needed to comple te ly  specify a basis state o f  a given i r reducible  rep- 
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resentation. OF these four. the physically relevant or natural quantum numbers 
are n. K and Mr. Unfortunately no simple fourth operator exists which commutes 
with ~he number operator, the operators T 2 and 7"o, as well as with the Casimir 
invariants of R(5). For fixed n, 7/; Mr, therefore, there is in general some number, m, 
of' independent states in a given irreducible representation of R(5), corresponding 
to m different values of a fourth quantum number. Such states will be said to have a 
"'T-multiplicity of m". So far derivations of the n, T dependent factors of nuclear 
matrix elements in general algebraic form has been restricted to states with no such 
inner multiplicities 8), that is to states with "T-multiplicities of 1". Although these 
include some of the low-seniority states of  greatest physical interest, an extension 
to more complicated R(5) representations is needed to make it possible to give the 
n, 1" dependent factors for all matrix elements of actual practical interest in shell- 
model calculations based on the seniority scheme. 

A complete specification oF the states with T-multiplicities greater than one can be 
given in terms of arbitrary labeling schemes. One such scheme was first suggested by 
Racah 9). States of  a given v, t, n. F are built naturally from one group of t, nucleons 
entirely free of pairs coupled to angular momentum J = 0 which are coupled to re- 
duced isospin t; and another group of nucleons made up of p = ½(n-v)  pairs of 
nucleons, each coupled to J = 0, T = 1. These p pairs are coupled to isospin 7"p, 
where Tp = p, 0 - 2 ,  p - 4 , . . . ,  and where the total isospin is the result of the vector 
coupling T =  Tv+t.  Racah suggested that the labe] To, which has some physical 
significance, be used to distinguish the independent states of a given r. t, n, T. Since the 
labels rp are not related to the eigenvalues of a hermitean operator, however, two 
states with different values of Tp are in general not orthogonal to each other. Although 
there may be some merit in using a nonorthogonal basis, (see for example the remarks 
of Racah in ref. ~o)); it is difficult to apply the formalism of the irreducible tensor 
calculus in such a basis. For purposes of extracting the n, T dependent factors of 
nuclear matrix elements, therefore, it becomes important to find a useful orthogonal 
basis and a solution to the problem of the fourth operatoT. The analogous problem of 
a "missing" quantum number has been discussed in some detail by Racah ~o) 
for the group SU(3) restricted to the subgroup R(3) generated by the three-dimen- 
sional orbital ang,flar momentum operators. Racah shows that the missing operator 
can be expressed entirely in terms of two operators of degree three and four, respec- 
tively, in the infinitesimal operators whict- generate the ful! group in this case. How- 
ever, Racah was unable to lind a func:ion of these two operators with rational eigen- 
values. 

Alternate labeling schemes For the five-dimensional quasispEn group have been 
suggested on physical grounds. Since four particle correlations, involving alpha-like 
groupings off(mr nucleop.s coupled to J = 0, T = 0, are important in nuclei, Parikh 2) 
and Flowers and Szpikowski :~ ) suggested that the states with T-multiplicities greater 
than one be distinguished by their content of such "alpha-particle clusters". Flowers 
and Szpikowski, in particular, introduce an operator which "counts"  the number 
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of such four-particle clusters. It is an operator of degree four in the infinitesimal 
operators of R(5). Unfortunately its eigenvaluc structure is very complicated and its 
eigenvalues are in general not rational numbers. Goldberg 12) and Goshen and 
Lipkin 13) have also suggested a classification scheme based on the content of alpha- 
like clusters. Their scheme classifies states according to the number of  nucleons not 
members of J = 0, T = 0 quadruples. All these schemes, however, would lead to 
R(5) Wigner coefficients of  very complicated algebraic structure. They have an 
additional disadvantage, in that the states based on these schemes have no definite 
symmetry properties under particle-hole conjugation. 

For these reasons a new classification scheme based on a somewhat different 
approach to the problem of the fourth operator will be proposed, with the idea that a 
useful basis must satisfy the following criteria. 

(i) Its states must be members of  an orthonormal set. 

(it) l't must yield tractable results; that is, the eigenvalues of  the fourth operator 
must be rational numbers, and the operator must be chosen such that the algebraic 
structure of the R(5) Wigner coefficients is relatively simple. 

(iii) It must have definite symmetry properties under particle-hole conjugation. 
The search for such a basis applicable to all conceivable irreducible representations 

of  R(5) has not met with success. However, a much more limited approach will 
be sufficient for nuclear shell theory. Since only R(5) irreducible representations with 
rather low T-multiplicities are of practical importance for shell-model calculations, 
it will be sufficient to consider only such cases. The main result of this investigation 
will be a complete classification of the basis states of  all those R(Y) representations 
with T-multiplicities no greater than two according to a scheme which satislies the 
above criteria. For simple shells with ./ < }. (or for mixed configurations with 
D = Z ( j + } )  < 5), this includes ail possible R(.5) representations. Out of  the 28 
possible R(5) representations in a./ = :]- shell, for example, only one contains states 
with a T-multiplicity greater than two. Since it is feasible to apply the techniques 
developed in this work to special cases of representations containing states with 
T-multiplicities greater than two, ,he problem of tinding a tractable classification 
scheme can be considered as solved. 

The fourth operator needed for a complete classification of the states of  R(5) 
will commute with the operators, T-', and To, the number operator, and the Casimir 
invariants of R(5) if it is an isoscalar operator, which conserves nucleon number, and 
is built from the iniinitesimal operators which generate R(5). The latter include, 
besides the number operator and the isospin operators T, the operators which create 
and annihilate pairs of  nucleons coupled to J = 0, T = 1: 

m, m t 

A(:,,I,.) = (A'(M,))'. (I) 
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Tl-e fourth operator is to be built from the operators 

O2o = ( A  t ' A * )  and O-zo =(A'A), (2) 

where (A* • A*) and (A • A) arc scalar products (in isospin space) of the J = 0, T = 1 
pair creation and annihilation operators. The operators 020, O_ 20 have the property 
that they create or annihilate, respectively, four nucleons coupled to d = 0, T = 0. 
(The subscript notation Ozo, O-2o will become clear in sect. 3.) 

The anticommutator and the commutator of the opcrators 020 and 0_20 form 
the potential building blocks for the fourth operator. The anticommutator of 020 
and 0-2o is an operator of degree four in the infinitesimal operators of R(5), while 
the commutator reduces to the operator T. [At x A], (except for trivial functions of 
To and the number operator; see table 8 of re['. 8) or eq. (39e) of ref .  13)); that is, it 
is an operator of degree three in the infinitesimal operators. These two operators are 
the analogues of the operators of degree three and four-discussed by Racah in his 
search for the missing quantum number for the group chain SU(3) ~ R(3). In the 
classitication scheme to be used in this investigation the fourth operator is to be chosen 
a s  

o,, = (O2oO- 2o +O-  2oO2o)+ y(O2oO_ 2o-O_ 2oO2o), (3) 

where y is a function of the isospin and number operator, chosen such that the opera- 
tor Oy is invariant under particle-hole conjugation and that the resultant eigenstates 
are simple enough to be useful in practical cases. If the function), were replaced by the 
number y = 1, the operator O r would collapse to that proposed by Flowers and 
Szpikowski 11) as an operator which "counts" the number of four-particle clusters 
coupled to J = 0, T = 0. However, since particle-hole conjugation is equivalent to 
complex conjugation in the five-dimensional quasispin space, and since the anti- 
commutator and commutator of 020 and O_ 2o have the symmetry property + a n d - ,  
respectively, under complex conjugation, the function y must have the symmetry 
property - under such conjugation. 

In sect. 2 the isospin structure of the R(5) irreducible representations with T- 
multiplicities not greater than two is discussed. A very brief review of notation is also 
given. In sect. 3 explicit constructions are given of (i) the operators Oy of eq. (3), 
and (ii) the full set of eigenstates for the representations of sect. 2. The techniques 
used to calculate R(5) Wigner coefficients needed to extract the n, T, dependent 
factors of nuclear matrix elements are the same as those described in ref. 8). The more 
basic of these coefficients are tabulated in general algebraic form in an appendix. 
In sect. 4 some applications are given. In particular, matrix elements are given in 
general algebraic form for the v = 2 states of the pure configuration j"  with a T- 
multiplicity of 2 for (i) the most general charge independent two-body interaction, 
and (ii) the Coulomb interaction, in an attempt to study those features of the actual 
interaction among nucleons which are most effective in splitting the isospin degen- 
eracy of such states. 
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2. The irreducible representations with T-multiplicities of 2 

The notation will follow that of ref. s) so that only a very brief review will be 
given. Table I shows the ten infinitesimal operators which generate the quasispin 
group R(5). The two commttting operators which label the v,,eights of  this rank 2 
group are Ha = ½Nop-  ( j +  ~) and [I z = To. Under complex conjugation, (particle- 
hole conjugation), the definition of H 1 leads to the symmetry Hi ~:~, --* - H ~  ~g,,. 

TABLE ] 

The generators of R(5) 

Quasispin operators Standard form 

~N,,p - ( j '  i-& ) H1 

To H2 

A~(1 ) El t 

A(I) E-1 -1  

A~( -1 )  - - E l - i  

A ( - 1 )  --E-11 

A ~ (0) E~ o 
A(0) E-lo 
T+ v"2" Eo l 

T_ v 2  Eo- i  

The irreducible representations are labeled by (wlw2), the maximal weight values 
based on the pair of operators Ha, To. These are related to the seniority number v 

and reduced isospin t by 

wl = j+~- -½v ,  09 2 --- t. (4) 

(For mixed configurations the degeneracy number . /+  I,- is to be replaced by 
a = s ( j +  

The n, T structure of  an arbitrary irreducible representation has been given by 
several techniques 5,7,14). It can best be summarized by the following rules ~'*). 

The allowed values of H1 and T in (wit) are given by the possible angular momen- 
tum couplings T =  Tp+t, v, here 

(i) Tp has the possible values Tp = p', p ' - 2 ,  p ' - 4  . . . . .  for H~ = -Y_lwl-p'[, 
p'  = 0, 1, 2 . . . .  ( <  wl). The allowed states are subject to the following restrictions: 

(ii) T < 091. 

(iii) If  the possible couplings of Tp+ t lead to a state of specilic T more than once, 
a state of specific T occurs at most q times, where q = mill ( c o t - T + I ,  o h - t + l ) .  
Straightforward application of these t'ttles shows that the representations (wt 0), 
(c,. h ~,), and (t t)  have no states with T-multiplicities greater than one. These represen- 
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tations have been discussed in detail in ref. s). It can further be seen that the rep- 
resentations (~ot 1), (o)~ {). and ( t + l  t) have no states with T-multiplicities greater 
thaq two. The full 1I.. T structure of these representations is illustrated in tables 2, 3 

]'ABLE 2 

t I , ,  T structure of  representations (oh 1) a) 

H. 

091 

o.)1-I 

~Ol - 2  

o)1 - 3  

2 

l 

0 

- I  

" 3  

- ( c o , - 3 )  

- ( ~ 1 - 2 )  
-(o~,-l) 

--(D 1 

. 

](2) 

0(1) I(o) 2(2) 

12 ( i ,2 )  2(0) 3(2) 

0(1) 1 ( o )  2~1,2)  3(0) 4(2) 

( e h - 2 ) ( o )  (~o, - 1)(2) 

--)(I, 2)(0")i --  I)(o)(C°1)(2) (Ol --9 2 

- )(,, ~)(~o,)(o) (o~:-2)(o) (o~, i 2 

(o , , -  2)~,, 2>(~,-  l)to)(~,)(:> 
(coi-2)~o) ( o ) i -  I)(2) 

2 0(~) 1 (0 )  2(,.z) 3(0) 

l l t .z  ) 2~o) 3(2) 

0(t) 1(o) 2(2) 

1(2) 

4(2) 

• ' )  The superscripts are the T-multiplicity. The subscripts are the possible values o f  the label {]. 

and 4. Explicit constructions are given in sect. 3 for the full set of eigenstates for these 
three types of R(5) representations. The R(5) Wigner coefficients involving these 
representations are calculated, making it possible to give the a, T dependent factors 
of  nuclear matrix elements for all cases with t =< 2 3 or c), = t +  1. 



TaBL~ 3 

l i t ,  T s t ruc ture  o f  representa t ions  (~,~ ~) ") 
.Ix 

Ht T 

CO I 

o~,-1 

co~ - 2  

(o~ - -  3 

3 

J_ 
2 

__ ! 
2 

_ 3  
2 

-(~o,-3) (½),_,~ (~)~,.=~ (1)~_,._=~ (~)~,~ 
2 - ( , , , , -2)  ("),,j (2)~-,.-..~ ('~)~ (1),-~.~ 

- ~ ,  (~)~-, 

(~,~-2)[,.~) (~, , - I ) ,_~ (~',)c~ 
¢..01 2 _ -2),_,. ~(~,,-I)~,.~ (~,,)~_~ 

(~,, -2)~,. (,o, l)~_, ~ - . _ ~ ( ~ o , ) ~  

(o,,-  2)~_ ,. _~(,o,- i)~2j (~,)~__., 
(~o, - 2 ) ~  ( ~ -  I)c_ 2~ 

") The superscripts are the T-multipllcity. The subscripts are the possible valucs o f  the labcl ~. 
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TABLE 4. 
H~, T structure of representations (t-- l, t) ~' b) 

475 

Hx I T 

t + l  

t 

t - 1  

t - 2  

2 

1 

0 

- 1  

- -2  

1(~) 20) 

0(1) l(t) 22 (1.2) 
22 1~1, 2) (x,2) 

2 0(1) 10) 20,2~ 

l(t) 2o) 

t(D 

( t -1 ) (~ )  t ( ,  ( t+ l ) (~)  

2 (t + 1)(2) ( t -2 ) (1 )  ( t -  1)(~) t(l, 2) 

( I - 3 ) ( i )  (t--2)(1) ( t -  1)(,,2)z t(1,2)" ( t+l ) (2)  

- - ( t - -2 )  (t--3)(x) (t--2)(1) (t--1)~t,/)  t~1,2 ) ( t + l ) o )  

- ( l - l )  ( / -2) (1)  ( t - - l ) ( , )  t~l.z) ( t + l ) ( : )  

- - t  ( t - - l ) ( , )  t(:) ( t + l ) ( z )  

- - ( t + l )  t(,) 

a) t may be integer or half-odd integer. In thc latter case both T and H1 arc of course also half- 
odd integer so that the H1, T structure will differ slightly from xvhat is shown in the left central 
portion of the above table. The precise structure in any case can be found by using the three rules 
stated in sect. 2. 

b) The superscripts arc the T-multiplicity. The subscripts are the possible values of the label ft. 

3. Explicit construction of  T-multiplicity 2 states 

Basis states of  irreducible representations of  R(5) require six labels, two of  which 
are the representation labels. These states will be written I(o~lt)[3H1TMr) where fl 
is the label replacing the fourth or "missing" quantum number.  Only representations 
having states with / '-multiplicity 2 but no states with T-multiplicities greater than 2 
are to be considered. Thus if (ol, t, H1. T, and M r  are fixed, fl can take no more 
than two values. 
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The explicit construction is to be carried Otlt by the use of  step-operators built from 
the infinitesimal generators, E~b. The full set of  basis states for a given (<o~t) is then 

obtained by successive application o f  these step-operators to one o f  the states o f  
maximal ~,~eight. The maximal weight states wifich have led to the sirnplest construc- 
tion are the so-called "corner  states". The normalized "corner  state" for a,a irreducible 
representation (c'-)l t ) i s  defined by 

I c . s t . )  = I(a~, t)b' = 2 ,  H~ = t, T = :'~/r = o ~ , ) .  ( 5 )  

(Note  its location in one of  the corners of  tables 2, 3, 4.) This is always a state of  T- 
multiplicity 1 so that there are no other values of  fl corresponding to these values o f  
I l j  and T. The re!eva;:t operators for the construction of  states are, 

O+t-, = EoZ_~ E,t - E o - ,  E,o(2To+ 1 ) - E , - t  To(2To + l), 

O - , - t  = E 2 - , E - t t - E o _ I E _ ~ o ( 2 T o + I ) - E _ , _ I T o ( 2 T o + I ) ,  

01o = - - E o - i  El I+E1o(To+ 1 ) - E  I_l  Eol , 

O_to -'- - E o - 1  E - t 1  + E _ , o ( T o +  1 ) - E - l _  t Eot , 

Ozo = 2 E t - 1 E l l  +E~o, 

0 -2o  = 2E-1-~ E - j l + E 2 - t o  • (6) 

Here the E,b are the group generators in s tandard form (see table i). The first sub- 
script is thc change in the eigeqvalue H~ resulting from opcrating on an R(.5) state. 
The second is the change in the eigcnvah:e Mr.  The operators O_. lo, O_. 2o are iso- 
scalars so that they leave Tunchanged,  O+ ~, _ t on the other hand when operating on 
a state with M r  = Tdccrease  both T a n d  M r  by unity. 

3.1. TH'E REPRESENTATION (¢'axl) 

There are two essentially different classes of  basis states in this representation. 
(i) Those states with ¢o I - T - H t  = even integer have a / '-multiplicity of  I and 

will be labeled/3 = 0 (see table 2). These states were constructed in ref. s) where the 
labei x = 0 was used. 

(ii) Those states with oJ 1 - T - l i  t = odd integer include all lhe T-multiplicity 2 
states and are labeled 3 = 1, 2. Two independent basis states must be constructed for 
each H~ and T. One way of  doing this is to put, 

[a; pq> -- O P t - t  O ~ L  lie.st.), 

{b; pq)  = 0£~ ~_ : OL ~ _, O_:olC.St.). 

Here, H, = p - q ,  and T = <,o, - 1 - p - - q .  l-he effect of  the operator  Oy (eq. (3)) on 
these states can be discovered by commut ing  it through to the corner state. Diago- 
nalizing O>. in this 2 x 2 system gives, 

Or{la; pq>+~-:lb; pq>} --= ).±{la; pq>+rr±lb; pq>}, 
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where, 

2 ( p +  1)(2091 + 1 - 2 p +  2y)~r± -- - {3' +(P-q  -y)(209, + 3)(2co t - 1 - 2 p - 2 q ) }  

+ {[y + ( p -  q -y)(209t  + 3 ) (2oJ t -  1-2p-2q)]  2 

+ 4(p + 1)(q + 0(209, + I - 2q - 2)0(2o ' + 1 - 2p + 2j.,)} I, (7) 

with eigenvalues, 

:.± -- 1 + 2 ( p +  1)(q+ 1)(209, + 1-2q)(209t  + 1 - 2 p )  

+ [ ( p -  q)y - l ][(209, + 3)(209, - 1 - 2p - 2q) + 8(p + l)(q + 1)] 

+_ {[y+(p-q-y)(2091 +3)(209, - 1 - 2 p - 2 q ) ]  2 

+ 4 ( p +  1)(q+ 1)(209, + 1 - 2 q  -23,)(209 ' +1 - 2 p  + 2y)} ~. (8) 

A choice of  3, which leads to rational ¢± and preserves particle-hole symmetry 
(see the introduction) is 

2 T + l  
> ' (H , r )  = H ,  5 " + ~  ( =  - 3 ' ( - H ' T ) ) "  (9) 

The normalized eigenstates of  Oy with this choice for 3, are 

[(09, 1)/3 = 1, Ht = p - q ,  T = Mr=09t - - l - -p - -q )  = N,(pq)[-]a; pq)+]b; pq)], 

[(09~ l)fl = 2, H,  = p - q ,  T = M. r = o , - I - p - q )  

((09, + 1) [(09'--P--- q_)(2__~ t +1 - P2 q_) +_( P.-_ q )_( 092 -1  - p  -q)_] 
N2(Pq) la Pq) t (q+ l)(2o), + l - p - q )  

+(09, + I ) [ _ ( o J , - p - q ) ( 2 ~ t  +1 -_p-q)_-(_p-q)(p,_-l_-_p-y)_] Ib; pq)},  (10) 
(p + 1)(2o2, + 1 - p - q) 

where 

Nz(pq) = ( - 1 )  p+q 

{ -  - -  (P+I)(q_+I)(2°)~_+_I-p--o)_--- - -  ; ;  5 q ) 2 i }  t 
x (,a; pqlb; pq)(09, + 1) 

x[(09t-p-q)(209t + l - p - q ) ( p + q + 2 ) + ( 0 9 ~ - l -  ( 

N2(pq) = N,(pq) 

x I (p + l)(q_+ . . . . .  t 
t(~t) I + 1)(co, +2)~-o7-- 1 --p-q)(og,--p-q)(209 1 + 1 -2p)(2o2, +1  ~22q).1 ' (10a) 

( a ;  pq]b; pq) 
( p +  l)!(q + 1)![(2(.o, + 1)!]3(091 -p)!(09~ -q)!(2o), +1 - p - q )  

2 2~+2q+ '¢0,(209, + l -- 2p)!(209t + 1 --2q)! 
x(09 1 -- 1 --p--q)!(09,- p-- q)!(2091 + I -- 2p-- 2q)! 
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3.2.  T H E  R E P R E S E N T A T I O N S  (~ol ~) 

There arc two classes of states in this representation which are essentially different, 
each of which contains states of T-multiplicity 2. Under particle-hole conjugation 
each state in one class goes into a corresponding state in the other. 

(i) For those states with o ) , + ~ - T - H ,  = even integer the labels fl = I, 2 will 
be used (see table 3). For given H D T define the two independent states, 

la(+); pq> = O $, _, o G k , l c . s t . ) ,  

Ibm+); pq) = OP++~ ~ , 0~ , - 1 0 -  zolC.St.), (11) 

where H, = p - q + , ~ ,  T = e ) t - l - p - q ;  Oy is again to be diagonalized in this 
2 x 2 system. A choice of) ,  which makes the eigenstates of  Oy simple is, 

y(+)(H, T) = (H,-½)[(202, + 3 ) ( 2 T + l ) - 4 T ] - ( 2 0 2 , + l ) ( 0 2 , + l - T )  (12) 

(202, + 3) (2T+ 1)+4(o91 - T) 

The resulting normalized eigenstates are, 

l(02,~)fl = 1, H,  = p - q + ½ ,  T = Mr = o g , - 1 - p - q )  

= N(~+)(pq)[-la~+); pq)+lb{+); pq)], 

1(021"~)fl = 2, H, = p - q + ½ ,  T = Mr = 0 2 , - l - p - q )  = 202t+1 
2(202, + 1 - p - q )  

[[(w, - 1 - p -  q)(202, + 5 ) - ( q  + 1)(202, - 3  - 2p-- 2q)] 
N~+)(pq) [at+); Pq) X 

| 
q + l  

+ [ (¢o , -p -q) (202 ,  + 5 ) - ( p +  1)(2o2,-3 - 2 p - 2 q ) ]  ]bt+); pq)} ,  (13) 
3(p+1) 

N~+)(pq) = (-- 1) p+q 

( 6 ( p + l ) ( q + l ) ( 2 c o , + l - p - q )  }~, 
x - (a t+) ;  pq[b~+); pq)(202x+l)  

× [(202, + 5)(02 1 - p -  q)(p + q + 2) + (p + 1)(202, - 3 - 2 p -  2q)(2a h + 1 -- 4q)] 

N~z+ )(pq) = N~+ ~(pq) 

' 12(p+ 1)(q + 1)(2o9, + 1 - p -  q)Z i• 
× + 5)(2---;7,5--3--£p---2q)(2,o, + 1 - 2 p - 2 q ) l  ' 

(a(+);  pqlbC+); pq) 

3(202 t + 1)(202, - 1 - p - q)(p + 1)!(q + I)!(2co, + 2)! 
x (2co,)!(2~, - 4)!(021 - ~ 2 -  p)!(02, + ½ - q ) !  

(2oJ , -  1)23P+ 3 q - ' ( 2 ~ -  2 - 2 p - 2 q ) ! ( 0 2 ~ - i . - p - q ) !  
x(o), + ½-p -q ) ! (2co , -2p ) ! (2021+2- -2q ) !  
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(ii) For  those states with C O l + k - T - H  ~ = odd integer the labels fl = 
will be used (see table 3). Here define 

[a(-~; pq> x/2 s,+~l q 
- O+l O - i -  l O - i o  O-2olc.st.>, 

3(¢o I + 1) 

[b(-); pq> _ x / 2 0 ~ l _ , O L + k ~ O _ , o l C . S t . > ,  
COl+l 

--1, - 2  

(14) 

where H I = p - q - } ,  T = o21 - I - p - q ,  y for this case is completely determined by 
(12) and the requirement o f  simple particle-hole conjugat ion symmetry.  Thus, 

y(-~(/41, T) = -y(+~(-nl, T). 

With this choice the normalized eigenstates become 

I(col})fl = - 1 ,  H1 = p - q - z } ,  T = M r = c o l - 1 - - p - q )  

= N]-)(pq)[la(-);  p q ) - l b ( - ) ;  pq>], 

](col½)fl = - 2 ,  H 1 = P - q - k ,  T = M r = c o x - l - p - q >  = (2col + l)N~-)(Pq) 
2(2o2 x + 1 - p -  q) 

× {[-(col-1 - p - q ) ( 2 c o  I + 5 ) - ( p +  l ) ( 2 c o 1 - 3 - 2 p - 2 q ) ]  [at_); pq> 

p + l  

+ [ ( c o l - P - q ) ( 2 c o l  + 5 ) - ( q + l ) ( 2 c o l - 3 - 2 p - 2 q ) ]  ]bt-) ;  pq>}, (13') 

3 ( q + 1 )  

where 

N]-)(pq) = N~+)(qp), 

N~-)(pq) = N~+)(qp). 

3.3. THE REPRESENTATION (t+ 1, t) 

All sta:es o f  this representation are labeled fl = 1, 2. 
For  those states with T - H ,  = odd integer define 

la; mn)  = la; Hi  T )  -- ( t+2)2"+1  
(2m + 2) ! 

x [ 2 ( m +  l~t~,+l c~,, c~, c~m+ 1 el ~ jv_  1 _ 1 ,-,_ 2o-,- ,  _ 1_ 1 ,-, _ 2o,., + 1_ 1]lc.st.>, 

2m+ i 
Ib; ran> = [b; H1 T> - 

(2in + 2) ! 

x [ 20  + 1)(m + 1)OG" i O~_~o-(t-2m)Oti_ a , . + '  x ,---2o O+,  = i][c.st.>, (15a) 

where HI = t - l - 2 m - - n ,  T = t - n .  
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For  those states with T-Ha = even integer define, 

v '2  2 "+ ' 
la; H i  T )  = 

(2m + 3) ! 

x [ _ 2 ( m  + i~t3,,+ l -, ,, ~. ,+J • . . . . _ , - , O _ 2 o O _ , o + O _ ~ - ~ . . . _ 2 o O + , - ~ O - , o ] l C . S t . > ,  

x 22,n+ 
[b; H~ T> = 

(t +2) (2m +3) !  (15b) 

x[-2(t+2)(m+l)O"-+~,O"-2o 0 _ ,o+(t-l-2m)O"_,_ , ,-" - 2o 'q" + ' O + , _ ,  O _, o]]C.St.), 

with Ha = t - 2 - 2 m - n ,  T = t - n .  
For  both cases, in order  to guarantee  simple conjugation properties,  y must  be 

chosen to be odd. A choice o f ) '  which makes  the eigenstates simple is 

y ( H ,  T) = H t ( 2 T +  1) .  (15c) 
2 ( t + 2 + T )  

Then for all Ha, T the normalized eigenstates are, 

](t+ l, t ) f l  = 1, H t ,  T = M r >  = - N I ( I - I  l T)]a; H t T > ,  

I(t+l, t ) f l  = 2, I l  1 , T = M r )  

= Nz(H t T) ]_ _H'(t-b_l_)(ZT+ 1) la; n,  T ) - lb ;  n ,  T)} ,  (16) 
I T(T+I)(t+a+T)+H~(t+I--T) 

. , ( t  + 1)(2r + 1) NI(tll T) 
k (a; U., T]b; HI T>[7'(T + l ) ( t + 2 +  T)+ If~(t+ 1 - T) ] t  ' 

• = I H,(t+2)(2T+I)[T(T+I)(t+2+T)+H](t+I-T)] I ¢ 
N2(H1 T) t<a; HI T~.,}t, T - ) ~ +  ~ T ) ( ; ~  T ) ( T  2 ~H-H~)[(T+ 1)2- H~;]~ ' 

( a ;  H~ Tlb; H~ T) 

_ (t+ l)3(t+2)(2t+3)z(2tz-t+2)Hj(T+2-tll)(2t - 1 ) ! ( t -  T)!(2t+3+tl l -T)!  
2 2(' + '  - ">(2T)!(t + 2 + T)!( t  + HI ) !  

4. Applications 

From the coqstruct ions given in sect. 3 it is possible to calculate the matrix ele- 
ments of  the infinitesimal generators  of  R(5), (see tables A . l -3 ) ,  and f rom these the 
R(5) Wigner coefficients which give the n, 7" dependent  factors of  one-particle frac- 
tional parentage coefficients (tables A.4-7).  Al though these are sufficient to determine 
the n, 7" dependence of  all matrix elements of  interest in nuclear physics, it will be 
more  convenient  to find the n, T dependence of  the matrix elements of  the nucleon- 
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nucleon interaction directly, it will be of  particular interest to see under what  con- 
ditions the degeneracy is removed for states of  T multiplicity 2, that  is states with 
the same n, T, and spatial characteristics, but different fl labels, and to isolate those 
features of  the actual interaction a lnong nucleons which are most  effective in splitting 
the degeneracy of  such isospin doublets.  The most impor tant  states with T multi-  
plicities o f  2 arc states with seniority v = 2 and reduced isospin t = I; (v = 2 is 
the lowest seniority for which T multiplicities of  2 can occur).  These are the states of  
the irreducible representat ion (o)~ 17 with 021 - T - H t  = 2 j+  I - T-½n--½v = odd 
integer. The  matrix elements for such states are calculated in this section for ( I )  
the most  general charge independent  (isoscalar) two-body interaction, and (ii) the 
C o u l o m b  interaction, in a pure configuration j". 

The  decomposi t ion  of  the two-body interaction into its R(5) irreducible tensor 
componen t s  is givcn in ref. 8). "I hese include the irreducible representat ions (co 1 t) = 
(22), (20), and (10). I he needed R(5) Wigner coefficients for the coupling with these 
representat ions are tabulated in re£ ~ 5), while the necessary reduced matrix elements 
for states with v = 2, t = 1 are given in tee  8). With these, the matrix elements of  a 
two-body interaction can be expressed in terms of  the two-part icle matrix demen t s  

Vs r = ( j2 ;  JMTMr] Vt2]j2; JMTMr) ,  (17) 

and in terms of  weighted averages over these. It is convenient  to define 

T =  1 ~ ,] even, 

Z Vs,(2S+i) Z Vao(2J+l) 
Vo = °"°"'- Vo Y e n  ) d d  ~ " ) 

j ( 2 j +  1) ( j +  l ) (2 j+  1) 

- 1 
j (2 j  + 1) ,vo, y ' ,  VjI(2J+I)U(JjJJ2;•)' 

(Void - * Z V,o(2J+ 1)u(JjjJ2;jj). 
(j+ l)(2j+ l)oaas " 

The results for the isoscalar and C o u l o m b  cases will be given separately. 

(18) 

4.1. THE ISOSCALAR TWO-BODY INTERACTION 

The matrix element which is oil-diagonal in [3 is 

Etz (Vt  ) = ( ( j - ½ - ,  1)fl' = 1, II~ ZMr; J2 MsIVI(j-½, I)fl = 2, H~ TM.,. ; J2 3"Is) 

Ht IT(T+I)[( j+'}+T)2--11~][(j+~-T)2-Ht]} "~ 

× 

(2j - 3)(2j - 5) / 






