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A microscopic calculation of the contribution of order-parameter fluctuations to the thermal conductivity 
of liquid helium I near T k is shown to give results in agreement with experiments and the dynamic scaling 
hypothesis. 

The anomalous  inc rease  in the the rmal  conduc- 
tivity [1,2] in helium I near  T~t has been s u c c e s s -  
fully analyzed in t e r m s  of the dynamic scal ing 
hypothesis  [3,4], mode-mode  coupling [5] and the 
genera l ized  Landau theory [6]. The above theor ies  
a r e  phenomenological  in nature.  

As lamazov and Larkin  [7] have calculated mi-  
c roscop ica l ly  the contribution of the o r d e r - p a r a m -  
e te r  f luctuations to the e lec t r ic  conductivity of a 
no rma l  metal  above the superconduct ing t ransi t ion 
in the c lass ica l  range.  Tsuzuki  [8] has  extended 
the calculat ion to the c r i t i ca l  range.  

The purpose  of  this le t ter ,  which is  the analog 
of refs .  7 and 8 for  the superfluid t ransi t ion,  is 
to r epo r t  a mic roscop ic  calculat ion of the contr i -  
bution of o r d e r - p a r a m e t e r  f luctuations to the 
t he rma l  conductivity of helium I near  T . 

Recent ly  the au thors  [9] have been able to r e -  
fo rmula te  the theory of Patashinski i  and Pokrov-  
skii [10] to descr ibe  consis tent ly the o r d e r - p a -  
r a m e t e r  f luctuations in the exper imental ly  acce s -  
s ible  t empera tu re  range near  T M The o rde r  pa-  
r a m e t e r  appropr ia te  to the superfluid t ransi t ion 
is the Bose field opera tor  @(r, t), and hence o r d e r -  
p a r a m e t e r  f luctuations a re  descr ibed  by the f luc-  
tuation propagator  G (ll ') = -i<T{q/(/) ~+(l ')}>, 
l = r l , t I. The Four i e r  t r a n s f o r m  can be wri t ten as  
G'l (k ,  co ± i0 +) = a~ - W(k, w) :F i½F(k, ~). The 
mic roscop ic  theory  gives the following re su l t s  for  
smal l  k and ¢0 near  Tk: 

A1 k2 + ~  0 < k < k  1 

W(k,oj) = W(k,0) ~ A0kl  + ~  k l < k < k o  (1) 

k2/2m+ ~ k 0 < k 
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anti F(k, ~!2= 70~. where A~ = (2/15n)(T~Vo) 2, 
A ] - - ( T x v 0 )  /432~ ~, ~ = } n v 0 7 ,  • = ( T - r x ) / T  x, 

VO = f drV(r), r(r) is  the in te rpar t ic le  potential,  
, 2 

the ~ o m e n t a  k0, k 1 sat isfy Aok(~ = k~/2m and 
A l k  ~ = ,40 kl~ respec t ive ly ,  and ~0 is  a constant.  
An essent ia l  feature  of the presen t  theory is  the 
damping r of the c r i t ica l  f luctuations,  which was 
ignored in ref.  10. Since the damping is of the 
same order  of magnitude as  the rea l  par t ,  it is 
misleading to r e f e r  to helium near  T~t as  behaving 
like an ideal  gas  of quas i -par t i c les .  

The the rmal  conductivity K can be found f r o m  
eq. (88b) in ref.  11 irt-terms of the auto cor re la t ion  
function of j '  = j q  + ~tg. We use the notation of 
ref.  11 and choose ~t = (p+  Ts)/nm, which gives 

J' = [rs(1)  - -~n(1) +p(1) -p +Ts]v(1) (2) 

If we ignore  the fluctuations of entropy and density,  
(2) reduces  to j '  = Tsv ,  and the contribution of 
o rder  pa r ame te r  fluctuations to g is 

K' = ½ s 2 1 i m [  l im (vx(l<,cO) Vx(-k,-w)>]. (3) 
¢~'0 -*0 

The cor re la t ion  function <v v), which has the 
s t ruc tu re  of a two-par t ic le  cor re la t ion  function, 
is fac tor ized into a product  of two fluctuation p ro -  
paga to r s  In analogy to refs .  7 and 8. The c o r r e -  
sponding integral  for  K' is 

~i E Q2 K' = } t3 n a (2rO,'r d_..~^2~. V (p, COn + iO +) V(p, con). 
(4) 

The ver tex function q is  de te rmined  by the Ward 
identity 

kQ = - m  v k C  -1 (k,O)  = 2 m , 4 1 k .  (5) 
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In tegra l s  s i m i l a r  to (4) a re  pe r fo rmed  in refs .  
7 and 8, and we find 

(32~)- 1 s/n)2 70 (~A1)- ~ ' g' = (T  h cc T -T. (6) 

It i s  seen that the contr ibut ion of o r d e r - p a r a m -  
e te r  f luctuat ions to g d iverges  as ~"] cons is ten t  
with the phenomenological  theor ies  [3-6] except 
for the absence  of logar i thmic  fac tors .  The ex- 
tended dynamica l  sca l ing  [4] and mode-mode  3. 
coupling [5] theor ies  give a c r i t i ca l  t .emperature 4. 

' -4- _ I 
dependence for K' propor t ional  to r -~ C~/C~ ~. 
where C ;  and Cp is  the specif ic  heat at con~stant 5. 6. 
p r e s s u r e  above and below T~ re spec t ive ly* .  7. 
The fac tors  of C~ a r i s e  in ref.  5 f rom the no r -  
mal iza t ion  of t h~en t ropy  f luctuat ions which have 8. 
been neglected here .  The or ig in  of Cp fac tors  in 9. 
the other theor ies  can also be cons idered  as 10. 
a r i s i n g  f rom the entropy f luctuat ions.  The p ro -  11. 

_ ±  _ l  

* Refs. 3 and 6 obtain ~" 'Cp = 
* * *  * * 

blem of including the contr ibut ion of entropy f luc-  
tuat ions to the t he rma l  conductivity into a con- 
s i s ten t ,  microscopic  theory is  d i scussed  in ref.  9. 
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Relative sharing times of a valence electron are used ~o calculate particular dielectric constant and polar- 
izabilities of the constituent atoms from optical effective charges and dielectric constants of the compound. 

The rea l  chemical  bond in III-V compounts  is  
usual ly  desc r ibed  as  a superpos i t ion  of an ionic 

3+ s t r uc tu r e  AII I B~- (probal i l i ty  w) and a covalent  
s t ruc tu re  AI~ B~ + (probabil i ty  l -w) .  For  both 
the e l ec t rons  in one of the four t e t r aed r i ca l  
bonds follows: 

~2 (1,2) = w. ~i2on(1,2)+ (1-w).~2cov(1,2). (1) 

Dis rega rd ing  over lap (for the values  of over lap 
in t eg ra l s  of III-V compounds see ref .  1 we put 
¢cov(1 ,2)  = ½ ~/2(~iii(1). ~ ( 2 )  + ~II(2)~V(1))  
for  the covalent  s t ruc tu re  and ~ ion(1 ,2 )  = 
= @V(1) @V(2) for the ionic s t ruc tu re ,  r esp . ,  
( ~ l I , ~  v - n o r m a l i z e d  e lec t ron ic  wave funct ions 
of the III- and the V-a tom,  r e sp . ,  in the c rys ta l . ) .  

In tegra t ing  (1) over  va r i ab le s  of one e lec t ron  
we see that a valence e lec t ron  spends ½(l~=w) of 
i t s  t ime in  the wave function of the m - a t o m  and 
the V-atom,  resp .  (These shar ing  t imes  can be 

used for lending weight to a tomic r e l a t iv i s t i c  ef- 
fects of const i tuents  to predic t  the same  effects 
of the compounds [1].) This  means ,  the net num-  
be r  of valence e lec t rons  is  8(l:Fw)/2 at the III- 
a tomic si te  and the V-atomic  si te,  r esp . ,  in the 
c rys ta l .  For  w = 1/4 the a toms posses  their  
na tu ra l  number  of valence e lec t rons ;  the bond is  
neutral (co i uration 

Introducing di f ferent  ~pt ica l  d ie lec t r i c  con- 
s tants  ~IH and ~V for the m - a t o m s  and V-a toms ,  
resp . ,  in the c rys ta l  [2], one can deduce "macro -  
scopic" charges  eIIl/V = 8(l:FW)/2 ~ IIVV f rom the 
"microscopic"  net charges  ment ioned above. 
The i r  dif ference produces  the effective charge e c 
defined by Callen [3], which spl i t s  the longitudinal  
and t r a n s v e r s e  optical  f requencies .  

* 
ec = ( 4  - e u) • 1 / 2  (2) 

The sum of the "macroscopic" charges per bond 
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