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Abstract-An analysis is presented of the “facilitated” transport problem, involving steady diffusion 
through a finite membrane, accompanied by rapid and reversible, homogeneous chemical reaction. For 
the limit of infinitely fast reactions, the method of matched asymptotic expansions is used to analyze 
the asymptotic structure of the diffusion field, which is shown to consist of an “equilibrium core,” 
together with “boundary-layer” reaction zones at the membrane boundaries. Asymptotic expansions 
are derived, which would in principle allow one to compute both the first- and second-order effects of 
departure from reaction equilibrium on the net rates of diffusion mass transfer. Several examples are 
considered, one of which is a model of oxygen diffusion through hemoglobin solutions, and some 
comparisons with analytical and numerical solutions are given. 

1. INTRODUCTION 

IT IS GENERALLY acknowledged that chemical 
reactions can often have an important influence 
on the rates of diffusional transport. While there 
has been a long-standing interest, particularly on 
the part of chemists and chemical engineers, 
in the effects of homogeneous chemical reaction 
on rates of transport processes, many recent 
studies in this .area have been specifically 
oriented towards biological systems and the 
reactive “enhancement”, or “facilitation”, of 
diffusion as it occurs in membranes, cells, or 
liquid films. An example which figures promin- 
ently here is, quite naturally, the hemoglobin- 
oxygen system[9, 121. 

Since, more generally, there is known to exist 
a wide variety of both heat- and mass-transport 
processes in which the effects of chemical re- 
action may have practically interesting and, 
indeed, beneficial consequences, the important 
question arises as to the maximum effect that 
can be realized in a particular process. In the 
usual cases, one expects that this maximum will 
correspond to the theoretical limit of infinitely 
fast reaction, which in part accounts for the 
rather extensive literature dealing with the effects 
of rapid homogeneous reaction on diffusion [4,5, 
13, 15, 18,20,21]. For example, in one such 

work, directed mainly towards application to the 
classical “film” theories of convective mass 
transfer. Olander [ 151 has presented a rather 
extensive analysis of one-dimensional diffusion 
in the presence of homogeneous reactions, 
which were considered to be so rapid as to 
achieve the limit of reaction equilibrium every- 
where in the diffusion field. Also, Hirschfelder 
[ 131 has given an analysis of heat transfer in the 
presence of rapid homogeneous, as well as 
heterogeneous, reactions. 

In the present work we are concerned with a 
related problem, which deals with the steady- 
state diffusion of a chemical species through 
a medium of finite dimensions in which it reacts 
chemically with one or several “non-transfer- 
able” species that remain permanently entrapped 
within the medium. In particular, the present 
analysis will deal mainly with one-dimensional 
diffusion through films or membranes, and, to be 
consistent with our assumption of a steady state 
and the permanence of certain reactants, we will 
consider only reversible chemical reactions. This 
immediately distinguishes the type of analysis to 
be given here from those which involve possibly 
irreversible reactions, for example, such as the 
analysis of Olander [ 151 cited above. 

We are particularly concerned here with the 
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above-mentioned extreme of rapid chemical 
reaction, and the analysis employed will hope- 
fully prove to be useful in a number of important 
problems involving transport through diffusional 
barriers. One of the principal objectives of this 
work is to elucidate the asymptotic structure of 
the diffusion field in the limit of rapid, “near- 
equilibrium” reaction. In this regard, one should 
take care to distinguish between the concept of 
“near-equilibrium” reaction, as it is employed 
here, and that of equilibrium in the thermo- 
dynamic sense, as it applies to systems in which 
all driving forces or “alfinity” gradients are 
small[6,8, 161. 

It would appear that, aside from the works 
on diffusion with reaction, such as that of 
Friedlander and Keller[8], which are based on 
the latter concept of equilibrium and are there- 
fore valid only in the limit of small diffusional 
driving force, most of the previous theoretical 
treatments rest on some rather intuitive, ad hoc 
assumptions as to the precise asymptotic nature 
of the “near-equilibrium” state as it applies to 
rapid reactions. While the work of Hirschfelder 
[ 131 on the related heat-transfer problem clearly 
anticipates the “boundary-layer” structure of 
such systems, it does not appear to provide a 
generally applicable mathematical analysis. As 
will be shown here, the rather recently developed 
“method of matched asymptotic expansions” 
which has found numerous applications to other 
transport phenomena (and the rudiments of 
which are given in a recent, very readable 
account by Acrivos [ 11) affords us with a natural 
analysis of this type of system, which appears to 
have been suggested in a previous work of 
Murray[ 141 on a related problem. In addition 
to providing a satisfactorily rigorous definition 
of the near-equilibrium state, this technique also 
allows a rather straight-forward computation of 
terms to account for departure from this state. 

To illustrate the application of this method, a 
system has been chosen which is simple enough 
to allow some physical insight but which, at the 
same time, will permit the development of a 
formal method of attack that should be applicable 
to more complicated problems. 
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2. ONE-DIMENSIONAL DIFFUSION WITH 

RAPID ISOTHERMAL REACTION 

We now consider the steady molecular diffu- 
sion of a chemical species A through a membrane 
(or solution) in the form of a planar slab of thick- 
ness L located, say, in a region 0 < x < L. In the 
interior of the membrane the species A under- 
goes a reversible chemical reaction with a second 
diffusing species B, say, 

aA+bB * C (2.1) 

where C is a diffusing “product” or “carrier” 
species. To facilitate the discussion here, we 
postulate uniform temperature and we adopt the 
elementary form of “Fick’s law”, for dilute 
solutions with no bulk flow, no diffusive coupling, 
and with constant diffusivities. In this case, the 
transport equations for one-dimensional diffu- 
sion with chemical reaction assume their well- 
known form: 

DA d2C, D,@C,_ 
a dx2 

--- --=b dX2 
D d2Cc_ 

--r (2.2) 
’ dx2 

where a and b are the stoichiometric ratios of 
(2.1), the C’s and D’s denote, respectively, the 
molar concentrations and diffusivities of the 
various species, and, finally, r is the reaction 
rate, expressed as the molar-volumetric genera- 
tion rate of the product C. For the present pur- 
poses, the kinetic function r = r(CA, CR, C,) can 
be treated as an aribtrary function of the con- 
centrations, with the proviso that it admits of a 
family of equilibrium” concentrations, C(O), 
such that 

r(C, ((0, Cg(0), Cc(O)) = 0. 

Because of the applications contemplated 
here, we presume that only the species A is 
transferred, i.e. has a non-zero net flux, through 
the membrane, whereas the species B and C are 
considered to be “non-transferable”. Accord- 
ingly, at the faces of the membrane x = 0, L, 
which represent phase boundaries with the sur- 
roundings, the concentration of A is assumed to 
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be known while the diffusive fluxes of B and C 
must both vanish. Therefore, we have as 
boundary conditions that 

c,=c, S!!$=%=O, atx=O. 

and (2.3) 

where C and _C are specified constants of the 
problem. 

A full description of the diffusion process 
requires of course a solution to (2.2) subject to 
the conditions of (2.3). To complete the set of 
governing equations, we note that a simple 
integration of (2.2) yields 

L 

I 

dCc L 
rdx=-Dcx o 

DsdCR L =-- 
0 b dx ,, 

D, dC, L =-- 
a dx o 

= 0, (2.4) 

the last equality resulting from the zero-flux 
conditions of (2.3). Now, from (2.4) it follows 
that the net rate of reaction in the membrane is 
zero, and of course that the diffusive flux of the 
species-h is the same at either boundary. More- 
over, it can be seen by (2.4) that only three of the 
four flux conditions in (2.3) are independent. As 
a consequence, it is necessary (for the sake of 
uniqueness) to specify a further restriction on 
the solution to (2.2) which on physical grounds 
we take to be the stoichiometric constraint 

s ,” (Cc+Cs/b)dx = LC, (2.5) 

where Co is a specified molar concentration. This 
fixes the total amount of the non-transferable 
species B and C present in the membrane which 
is expressed here as molar equivalents of species 
C. 

With the problem statement now complete, we 
can qualitatively anticipate as its solution a set of 
concentration and reaction-rate profiles such as 
those shown in Fig. 1, which refers to a situation 

oA+bB=C 

----No Reoctm 

0 L 

X- 

Fig. 1. Qualitative sketch of concentration and 
reaction rate profiles (CB not shown). 

where there is presumably a net flux of A from 
left (x = 0) to right (x = L), corresponding to a 
“driving force” C - _C > 0. Thus, at the left-hand 
boundary, the species A is absorbed at the con- 
centration level C, and the reaction (2.1) pro- 
ceeds to the right. Then, after diffusing in both 
the free (as A) and combined forms (as the 
“carrier” C), A is desorbed at the right-hand 
boundary, where conversely (2.1) proceeds to 
the left. 

In the final analysis, the quantity desired is the 
net molar flux of A, given by 

We are mainly concerned in the present work 
with the asymptotic flux in the limiting case 
where reaction rates become extremely large 
compared to diffusion rates. To formulate this 
condition in terms of the parameters of our 
problem, and also to facilitate the notation 
of the following analysis, it will be convenient to 
express Eqs. (2.2-2.4) in the dimensionless form 

E2 !!wL 
W 

Pi4 ~0, (i= 1,2,3) (2.6) 
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with 

(2.7) 

~l=l&~=+Lo 
dy ’ 

aty= 1, 

and 

where 

(2.8) 

D*C 
l 2 = $9 /LI = D*IDi,. ~2 = D*lDB, 

p3 = - D*lDc, $ = CIaC,,J, = ClaG (2.9) 

and 

4 =4J (hJI2&) = r(C.4rCsrG)l~*. 

led to anticipate the occurrence of two types of 
asymptotic solution to (2.6) each with different 
but overlapping regions of validity. Specifically, 
we postulate the existence of an “equilibrium 
core”, O(E) < y < 1 -O(e), where the condition 
of (2.10) is satisfied identically fore + 0, together 
with “reaction boundary layers” in the neighbor- 
hoods of the boundaries, 0 < y < O(E), 1 -O(E) 
< y =Z 1, where both reaction and diffusion rates 
are extremely rapid. In these latter regions, both 
the diffusion and reaction terms in (2.6) will 
presumably be of the same order of magnitude. 
(We might note here that our terminology 
“equilibrium core” follows the usage, “inviscid 
core”, of Batchelor [3] for an analogous problem 
in fluid mechanics. The one-dimensional prob- 
lem we consider here can be regarded, of course, 
as a special case of the more general mass-trans- 
fer problem in two or three spatial dimensions). 

Here, r* is a characteristic magnitude of the 
reaction rate r (its value, say, at some charac- 
teristic, but non-equilibrium set of concentra- 
tions) and D* is some typical diffisivity (for 
example, any one of the individual diffusivities 
DA,. . . .). 

With the preceding remarks in mind, we turn 
now to the actual formulation of suitable asymp- 
totic expansions for the present problem which, 
in addition to yielding the limiting form of mass 
transfer for E + 0, will permit a systematic 
derivation of correction terms, for small but 
non-zero E. 

The parameter E, defined by (2.9), provides us 
with a measure of the importance of diffusion 
relative to reaction, and thus we seek the asymp- 
totic solution to (2.6), (2.7), and (2.8) for E + 0, 
with all other parameters fixed. It can be recog- 
nized immediately from the form of (2.6) that 
this problem should almost certainly involve a 
“singular-perturbation”, or non-uniformily valid, 
asymptotic solution. Indeed, if the term in c2 is 
neglected from (2.6) we obtain, in the first 
approximation, a condition of reaction equilibrium 
everywhere: 

2.1 Formulation of the expansions 

Before writing down expansions in E for the 
concentration variables $J* of (2.9), it is expedient 
to derive certain integral relations from (2.6) 
which hold for any E and which consequently 
involve small-e expansions. The relations in 
question, which we shall call kinetic constraints, 
can be obtained simply by multiplying the differ- 
ential equation for qi in (2.6) by pj, forming the 
antisymmetric difference to eliminate the term in 
C#J. and integrating twice, which yields 

+(JllrlCI:!rlCl3) = 0, (2.10) Pilclj-P&i = %Y +Pijv (2.11) 

which in general will not admit solutions I/.J~ that where the constants of integration CY~, &, anti- 
satisfy all the boundary conditions of (2.7) and symmetric in the indices i, j, both satisfy equa- 
(2.8). tions of the form 

On the basis of these observations, and by 
analogy with the structure of other, markedly 
similar physical systems, we are quite naturally 

(Yij = -ffjivpkffij = piakj++jffik, for i,j,k = 1,2,3 
(2.12) 

J. D. GODDARD, J. S. SCHULTZ and R. J. BASSETT 
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For the number of species considered here 
there are, generally speaking, only three indepen- 
dent members in each of the sets a and ~3 but, 
owing to the boundary conditions (2.7) we must 
have for the (Y’S that 

a 23 =-a32 - - 0, (2.13) 

which leaves us, then, with five parameters (e.g. 
ff12* a13. p12, p13, pz3) of which only three are 
independent. 

One will observe that, by means of the integral 
relations (2.1 I), we could in principle eliminate 
any two of the functions & by expressing them in 
terms of the remaining function, in combination 
with the above constants of integration. This 
leads, however, to a rather cumbersome, unsym- 
metric formulation of the expansion problem and 
thus will not be done at this stage. Nevertheless. 
we shall make use of the relations (2.1 I)-(2.13), 
and hence we emphasize that the constants in 
(2.1 l), when regarded as quantities to be deter- 
mined, will depend on the parameter E. In fact, 
the quantity of interest here the mass flux of A, 
can be expressed in terms of a dimensionless 
flux ratio S (a Sherwood number), in the alter- 
nate forms 

LNA 1 s = DA(C_C) =- - ( > d+,(O) 
+--r, dy 

= 
a12 dys 

cL*(J;-JI) Pa 

L?(l) -1cI*@) + 1 

T-q 1 

9 
3(0)-$3(l) - 

= p3(;13$) = -; [ 
- 1 + 1 (2 14) 

JI-L ‘* 

which follow readily from the relations given 
above. The non-zero (Y’S are thus directly related 
to the desired flux and also to the boundary 
values on the non-transferred species. This 
stated, we consider the expansion problem 
beginning with: 

The core expansions. In the equilibrium core 
we postulate for the concentration fields a set of 
power-series expansion in E of the type 

+cII =~i’“‘+E*P’(y) +&W;*‘(y) +O(e3) (2.15) 

On membrane diision with near-equilibrium reaction 

where the qtp’(p = 0,1,2,. . ., i = 1,2,3) are 
independent of E. Taken together, (2.11) and 
(2.15) imply expansions such as 

cyij = ~~~‘+E(Y~~‘+E*~~~‘+O(E~) (2.16) 

for the non-zero (Y’S and p’s of (2.12). Then, with 
the assumption of a Taylor-series expansion for 
the kinetic function 4(+lrJlp,+3) of (2.9) in its 
arguments +i, we obtain by means of (2.15) an 
expansion for C$ of the form: 

4 = @ + l *j*j(l) + E*[@wj(*) + @qj(l)*j(l)] 

+O(e3), (2.17) 
where 

a’= (c#J),,., ,w= ($) 
J ly” 

are the values of the function C$ and its higher 
partial derivatives evaluated at & = *lo), 
which of course are the zeroth-order of equili- 
brium terms in (2.15). Also, for the sake of 
brevity, we have adopted, here, as in the follow- 
ing analysis, the “tensorial” summation conven- 
tion for the derivatives of 4 in (2.17) (whereby a 
term containing a repeated index, that appears as 
both superscript and subscript, indicates the sum 
of such terms over the entire range of indicial 
values, which here are ij,k, . . . = 1,2,3). 

By the usual logic of such analyses, the set 
(2.6), (2.15), (2.16). and (2.17) leads to the fol- 
lowing equations for the perturbation coeffi- 
cients q\IP), cxy and py: 

@ = C$(*, (o),yr,to),*Jo)) = 0, (2.18) 

@*k”’ = 0 9 (2.19) 

with kinetic constraints, 

/.L*T~P)-/Lj*\Ili(P’ = OZ’,p’y +p$‘, (2.21) 

for&j,... = 1,2,3,p=O,1,2 ,..., wheretheaCP’ 
and p(p) all satisfy relations like (2.12) and (2.13). 

Equations (2.18) and (2.2 1) (p = 0) govern the 
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equilibrium concentrations !P,t”) in the core, and 
the remaining relations are linear algebraic equa- 
tions for the successively higher-order correc- 
tion terms. The set of Eqs. (2.18)-(2.21) is not 
complete and, within the framework of the 
present treatment, the complete solution for the 
core function can be arrived at only by matching 
with corresponding terms in: 

The boundary-layer expansions. We first 
treat the left-hand boundary, y = 0, and, by 
analogy with other such boundary-layer prob- 
lems, we postulate expansions of the form 

I//* =Tt”‘(y> +E$l)(F) +&j@‘(J) +o(e3) 
(2.22) 

(i = 1,2,3) for the boundary-layer region, where 
the “strained” coordinate 

Y = Yh (2.23) 

is O(1). The functions $tp)( ji), which are 
independent of E, must be chosen to satisfy (2.6) 
as well as the conditions at y = 0 in (2.7). 

By a development parallel to that given above, 
we then obtain readily the following differential 
equations and boundary conditions 
and (2.7): 

d2@0’ 

L-p& = 0, 
dg2 

d2@’ 
dJ2 

/_&$k@” = 0, 

from (2.6) 

(2.24) 

(for i = 1,2,3) and 

&(O’ = ;1;, @P+l) = Lz$’ = ?$g = 0 (2.25) 

(for p=O,1,2,... .) where, in perfect analogy 
with (2.17), the quantities 4, $“, 6’” are the 
values of +(1#~~,+2,+3) and its derivatives evalu- 
ated, now, at I& =&(O)(J). One will also note 
that the differential Eqs. (2.24) for higher order 
terms Flp), p = 1,2, . . . , are all linear. 

At this point it would hardly be instructive to 
write down explicitly all the corresponding 
equations for the expansions at the right-hand 
boundary, y = 1. Suffice it to remark that these 
will involve a set of perturbation coefficients 
t@‘)(x), say, where 

_y= (1 -Y)k. (2.26) 

The relevant equations are readily obtained 
then from (2.22) (2.24), and (2.25), by merely 
replacing the overbars by underbars. 

In both the right- and left-hand boundary-layer 
expansions we must now place certain condi- 
tions on the ;3;i’p’ (or $;P’) for 4’ (or y) + w, condi- 
tions which are to beprovided by: - 

Matching of the boundary-layer and core 
expansions. According to the asymptotic- 
matching principle[l7] we now insist that the 
expansions (2.22) shall match exactly with the 
core expansions (2.15) in the sense that, for 
eithery+Oory+w, 

-Co) l/J* (y)+&)(F)+. . .+*t”‘(y) 

+e’l’Jl)( y) + . . . (2.27) 

to terms of any order, O(ep), p = 0,1,2, . . . , in E. 
Following a method similar to one used pre- 

viously[ lo], we next express the Taylor-series 
expansions in y for the core functions: 

*py y ) = *p(o) + yT (0) 

+ y’ d2’Ptp) 
2dy2(0)+..* 

in terms of the coordinate p of (2.23), which, 
upon matching like powers of E in (2.27) yields 
conditions of the form 

(2.28) 
+ O,forjj + 00, 

for p = 0,1,2,. . ., i = 1,2,3. The quantities &(P) 

J. D. GODDARD, J. S. SCHULTZ and R. J. BASSETT 
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are essentially the differences or “m&match” 
between terms of O(EP) in the core and the boun- 
dary-layer expansions, expressed as functions of 
y. The corresponding differences for the right- 
hand boundary are easily found to be 

gPyy) = p’“‘(J) - i Lgd*;;~-m)(*). 

m=o . 
(2.29) 

The matching requirements, i (or A) + 0 for 
y (or y) + ~4, will provide us with certain neces- 
sary side conditions for the differential Eqs. 
(2.24) (or for their equivalent at the right 
boundary), as well as for the algebraic relations 
(2.18-2.20). In addition, however, we must also 
take account of the restrictions imposed by the 
integral relation of (2.8). For this purpose, we 
note that an expansion of the form: 

‘I”i’O’(y) +&(O)(J) +Ai’“‘(y) +e[‘I’P(y) 

+&(l)(y) +Lp(y)] +. . . 

where the VII(P) are the core functions of (2.14) 
and the A’s are defined by (2.28)-(2.29). should 
provide uniformily valid approximations for the 
functions t+Gi on the entire interval 0 6 y G 1 to 
terms of any algebraic order in E. This follows 
from the fact, to be established below, that the 
functions Ai will be of an exponentially small 
order in E, for either y = O(1) or 1 -y = O(l), as 
E + 0. Hence, it is permissible to use expansions 
of the above type for I,!J* and Jig in the integrand of 
(2.8) and, thus, apart from terms of a negligibly 
small order in E, we obtain a set of integral 
stoichiometric constraints 

Ib’ [‘PJO’(y) +‘I’:“‘(y)]dy = 1, (2.30) 

and 

I : [‘I’J”‘(y) +‘I’\IpP)(y)]dy+A+l) = 0, 

forp= 1,2,...,where 

A(p) = Jom [&(P)(S) +~:“‘(s) +@p’(~) 

+ 6’“‘(S)]ds (2.3 1) 

On membrane diffusion with near-equilibrium reaction 

the ii(p) and &P) being the functions defined by 
(2.28) and (2.29). The interpretation of the rela- 
tions (2.30) is evident; the first indicates merely 
that the equilibrium-core solutions must satisfy 
the stoichiometric restriction on the amount of 
non-transferable species present, while the suc- 
ceeding relations for higher-order terms represent 
material balances between the core and the 
boundary-layer regions. Hence the A’s of (2.3 1) 
will be recognized as a type of “displacement 
thickness” common to other such boundary-layer 
analyses. With the conditions of (2.30) the 
formulation of the expansion problem is now 
essentially complete. 

2.2 Determination of the equilibrium core 
solutions and correction terms 

At this juncture we are able to propose a 
systematic technique for generating successively 
higher order terms in the boundary-layer and 
core expansions. As will be shown, the solution 
for these terms can be carried out implicitly in a 
rather general fashion and independently of the 
specific form of the kinetic function +(IJJ~,JI&) 
in (2.9). 

Beginning with the zeroth-order terms, we 
summarize the governing equations for the core 
function in the problem at hand, which are 
obtained from (2.18). (2.21) and (2.30): 

I o1 (‘I’\112(0)+‘I’\lo))dy = 1. 

The first equation, which of course represents 
the equilibrium condition, together with the 
second and third equations are strictly algebraic 
relations in the unknown functions q,CO)( y ) and 
the constants c#, p$T. pZ3 (O). When applied at the 
boundaries y = 0,l , these relations represent six 
equations in the nine unknown quantities *to’(O), 
VJO)(l) (i = 1 2 3) cyit) , pi?, pi?. One further equa- 
tion is provided by the integral of (2.32), and two 
more relations must be obtained from matching 
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conditions like (2.28): 

@O)(jj) * qt”)(0),forjj + a, (2.33) 

for i= 1,2,3, where the @O’(j?) are the zeroth- 
order terms in the (left-hand) boundary-layer 
expansions (2.22), which we recall must be 
chosen to satisfy the very first equations in (2.24) 
and (2.25). This latter requirement, together 
with the matching condition of (2.33), can be 
satisfied quite simply by taking the zeroth-order 
boundary-layer functions to be the following 
constants: 

Q”‘(J) E @J’(O) = JI = IjfI’O’((-J) 

(2.34) 
@O’(y) = ‘I’i’“‘(O),i= 2,3, 

with similar equations at the left-hand boundary, 
y = 1 (2 = 0). One may readily verify that, in 
addition to the boundary conditions in (2.29, the 
constants in (2.34) will identically satisfy the 
first set of differential equations in (2.2&, since 
the term $ appearing there becomes simply 

6 = dl (~~‘~‘(O),~,‘~‘(O),~,‘~‘(O)) = (@)#_O = 0 

with the last equality resulting from the equili- 
brium condition of (2.32). Mpreover, it is evident 
that the first equation of (2.34) and its equivalent 
at y = 1 provide us with the two boundary con- 
ditions desired, on the core concentration field, 
*l’o’(y),aty=Oandy= 1. 

To summarize, then, we have established the 
following result: The zero-order or equilibrium 
concentration fields in the core (*JO’) are to 
satisfy the equilibrium relation, the kinetic and 
stoichiometric constraints (2.32), together with 
the exact boundary conditions (2.7) on the con- 
centration field (JI1) of the transferred species 
(A). On the other hand, we state most emphati- 
cally that in general one must not impose the 
zero-flux conditions (2.7) on the equilibrium 
core concentrations of the non-transferable 
species (B and C), because in the limit E + 0, it 
will be shown that there is a net flux of these 
species to the core from the reaction boundary- 

layers, where, owing to local departure from 
chemical equilibrium, the reaction rates are 
0( 1 le) over a region of thickness O(E). 

In line with the above remarks, Fig. 2 provides 
a qualitative sketch of the anticipated boundary- 
layer structure, as determined by the higher- 
order terms in (2.22). Although one could 

h__ r 

0 _-__-- 

aA+bB= C 

- - - -Equillbrhm Core 
Rofiles,f~O 

Fig. 2. Qualitative sketch of (left-hand) 
boundary-layer profiles for near-equili- 

brium reaction. 

deduce asymptotic fluxes for l -+ 0 from the 
equilibrium-core solutions (which as in past 
treatments [ 13,20,2 l] could be done at this 
stage) the zeroth-order terms in (2.22) do not of 
course permit one to calculate mass transfer 

rates at the boundaries. Hence, we proceed with 
the derivation of some higher-order terms in the 
boundary-layer expansions. 

As pointed out above, the differential equa- 
tions of (2.24) for the higher-order terms in the 
boundary-layer expansion (2.22) are linear in the 
unknown function &@‘(jj) at any stage (p = 
1,2,3 , . . .) of the approximation. Also, a further 
simplification arises from the fact that the coeffi- 
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cients in these differential equations, namely 

qi = $ (&(O),J12(0)&0)) 

are all constants, simply because the zeroth- 
order terms in their arguments are all constants, 
as given by (2.34); these constants are known in 
principle, once the equilibrium core solutions 
q,t”) are determined. Since, moreover, the side 
conditions of (2.25) and (2.28) are also linear, it 
is a relatively easy matter to derive a formal 
solution to the differential equations for the 
coefficients$JP’(J) in (2.22). 

The details of the derivation are deferred to a 
brief treatment in the Appendix. Here, we 
merely cite the final results obtained from the 
general solution, for the first- and second-order 
coefficients in the boundary-layer expansion 
(2.22). 

First-order terms. The functions $i(l) in (2.22) 
are given by 

Jli”‘(J)= _~qy(0)e-~Y+yiy (o)+lpp'(()) 

(2.35) 

for i = 1,2,3, where 

A2 = &_&j(> O), (2.36) 

(2.37) 

and the *i(P), p = 0,l , refer of course to core 
expansion coefficients. One can readily verify 
that (2.35) satisfies the appropriate differential 
equations and boundary conditions of (2.24) and 
(2.25), provided the boundary value of the first- 
order term in the core expansion for the trans- 
ferred species (A) is chosen in accordance with 
(2.37). (This also follows from the general analy- 
sis in the Appendix.) Similar expressions hold 
for the right-hand boundary at y = 1, whence 

qI”‘(l) =&d%!!! (1) s _I!&%!? (I), (2.38) 
4~2 dy _&CLB dy 

where 

AZ= +'r_Lj(> 0)~ - (2.39) 

which are of course equivalent to (2.36) and 
(2.37). Finally, the first-order displacement 
thickness A(l) of (2.3 1) is given by 

The reader will note that we have required 
both the quantities ~~ defined by (2.36) and 
(2.39) to be non-negative. By imposing this 
restriction, which is essential to the mathematical 
analysis, we have in effect narrowed the hereto- 
fore somewhat abstract class of “kinetic func- 
tions” C#I to which the analysis can be considered 
directly applicable. In particular, one will 
recognize that this restriction follows from the 
so-called principle of “microscopic reversibility,” 
of the thermodynamics of irreversible processes, 
a principle which has been invoked frequently 
in other such problems involving chemical 
kinetics with diffusion [6]. 

With the above results in hand, one now can 
in principle calculate the first-order correction 
terms *I”’ in the core expansion (2.14). Next, 
we cite the corresponding results for the 

Second-order terms. Here we find 

3$2)( jj ) = CL i~$‘(“)@cpj ([ _.$2y(o) 

qkl’(o) +I !!F!z! 

2h dy (O)l-3p,h ] 
JQQ(l)(O) 

e-xC+--& t$fl(l)(()) e-26 _~*1(2)(0) e-Xi 

> 

+qfi’2’(0) +jj e&l! (0) +;cy (O), 

(2.40) 
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for the left-hand boundary, where 

and, from similar results at the right-hand 
boundary, 

(2.42) 

Again, one could use the boundary values at 
y = 0,l prescribed by (2.41) and (2.42) to effect 
the calculation of second-order terms qJ2) in the 
core expansion, and so forth for higher-order 
terms. 

From the analysis given in the Appendix it 
follows that one can obtain flux rates to terms 
O(cp) from 

+okp+‘) y=. 
1 p =- z[ m=o 

s!y! (0) _;B!&z (+R+O(((Dtll) 

E E *p+O(EP+l). (2 43) 
m=o i-h 

To provide some indication of the general utility 
and the limitations of this type of analysis, the 
present results will now be applied to some 
rather simple special cases. 

3. APPLICATION AND DISCUSSION 

OF THE RESULTS 

At this point, we shall treat two mathematical 
examples where the exact analytic solutions can 
also be obtained, and a third example for which 
some numerical solutions are available for com- 
parison. Another application to an interesting 

J. D. GODDARD, J. S. SCHULTZ and R. J. BASSETT 

physical system, is anticipated for a later pub- 
lication[2]. The following examples will pro- 
vide some basis for assessing the range of 
applicability andthe limitations ontheexpansions. 

3.1 Linear or pseudo-first-order kinetics 

Here we suppose that we have a single 
chemical reaction among an arbitrary number of 
diffusing species, for which the kinetic function 
corresponding to (2.6) has the (dimensionless) 
form 

4 = @Jij (3.1) 

where the @ are constants and the sum implied in 
(3.1) is taken over all species, j= 1,2,3,. . . 
Considering the case where only one species, 
corresponding, say, to j = 1, is transferred, we 
recover a problem which is mathematically 
similar to that considered previously by Fried- 
lander and Keller[8]. As pointed out by these 
authors, the assumption of linear kinetics is in 
general valid in the limit of small departures 
from equilibrium, where the driving force for 
mass transfer $-I& + 0. In this case, the 
governing differentid equations have generally 
a linear form, identical with that of the second 
equation in (2.24), and the boundary conditions 
are the same here as those in (2.7). 

By methods similar to those employed in the 
Appendix, one can readily derive the exact 
solution to the linear problem; omitting the 
details here, we merely cite the principal result, 
which gives the quantity S of (2.14) as 

1 
S = 1- (/.L#/A’)F (3.2) 

where 

F= F(A/E) = 1 (3.3) 

and 

A2 = (A)2 = /.q@. (3.4) 

Although the present analysis is slightly more 
general, the function F(A/e) in (3.3) is identical 
with the function introduced in the previous 
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analysis of Friedlander and Keller[8], as a “cor- 
rection factor for departure from chemical 
equilibrium” (which is displayed graphically as 
Fig. 2 of their paper). 

For E + 0, one has asymptotically that 

F- 1 -%/A 

and hence, by (3.2), that 

s - (*/&)++2[ (+I2 -l]$ (3.5) 

to terms 0 ( e-*jc), where 

Now, it is a relatively easy matter to show that 
the asymptotic series (2.43), generated by the 
analysis of Section 2, is equivalent to the 
“binomial” expansion of (3.5) for small E, an 
expansion with a finite radius of convergence em, 
say, which is given by 

em = 2[(&- l] * 

Thus, for the special case at hand we can 
state the range of validity of the asymptotic 
expansion (2.43) as E < E,,,, and, moreover, we 
can easily assess its accuracy within this range. 
For example, one concludes that the first three 
terms of (2.43) will provide an approximation 
which differs from the exact result of (3.2) by 
less than one percent whenever E < O-2 min 
(A&. In the more general case of a non-linear 
kinetic function we should not expect to obtain 
any such simple criteria and, to illustrate this we 
turn to the second example. 

3.2 Second-order kinetics with two species 
Let us now apply the results of Section 2 to an 

elementary reaction between the transferred and 
carrier species: 

2A * 2C 

in which both the forward and reverse reactions 
are assumed to be second-order. To employ the 

formalism of Section 2 we merely eliminate the 
species B in (2.1) and let the subscript “2” refer 
now to the carrier species C. Also, since there 
are now no redundant flux conditions in (2.4), 
the integral constraint (2.5) and its successors 
are no longer in effect. Therefore, the kinetic 
function can be written in the (dimensionless) 
form 

$J = ($I)‘_ (1/K)(J12)2 (3.6) 

(where K(> 0) is an “equilibrium constant”). 
Thus, the partial derivatives, of the type occur- 
ring in (2.17), are given for arbitrary I,/J~ by 

4’ = W,, 4” = -f$2, 

(3.7) 
411 = 1,422 = - l/K, 412 E @I= 0, 

with all higher derivatives vanishing, of course. 
One easily deduces then that the core Eqs., 
(2.18)-(2.20), become simply 

VP(y) = W”‘(y)dK, 

for p = 0,1,2,. . ., and accordingly 
qi(,)( y ) are the linear functions: 

(3.8) 

that the 

(3.9) 

as given by (2.2 1). Hence, the constants (Y, p are 
simply related to the boundary values of WI@‘) ( y ) 

by 

/3%‘= (p271hwhwL 

and (3.10) 

a\<)= (~2-~I~/K)[~\I11(=)(1)-~~=)(0)], 

while the constants A2 of (2.36) and (2.39) are 
given by 

x2/$ =A’/+ = ~(&K-/_L~) (3.11) -- 

(which, we recall, are non-negative quantities). 

675 



J. D. GODDARD. J. S. SCHULTZ and R. J. BASSETT 

It is a straight-forward procedure to apply the 
boundary conditions (2.34), (2.37), (2.38), (2.41) 
and (2.42), and to thereby effect a sequential 
solution of (3.9) and (3.10), which, with (2.43), 
finally yields for the quantity S of (2.14) 

S= (l+p){l+s”‘~+s’~‘~~+o(~~)}, (3.12) 

where 

p’=-p ;+; ) ( > - 
p= [p]2+ L.& (JI-$) 

( _) 

with 

p,-&. 
P2 

(3.13) 

For the special case p = 1 in (3.13) it is also 
possible to derive an exact solution for the 
problem at hand, since the appropriate integral 
relation of (2.11) can then be expressed as 

cL2+1-f&2 = p2 
( 

,1+& -Ic12) = a21y +p21; 

hence, the kinetic function of (3.6) reduces to 

4 = (a21Y+P21)(~l-~)/P2> 

and, by (2.6), one obtains a linear differential 
equation 

E 
2dvJ 34 

dy2- 2 (P21+~2lY)$= 0, 

for the function 

9 = S1-~~.. 
The general solution to this differential equation, 
which is related to the so-called Airy equation, 
can be expressed in terms of modified Bessel 
functions[f 11 of the type Ze1,3. With the appro- 

priate boundary conditions from (2.7), this leads 
to a pair of implicit, transcendental equations 
for the constants a21 and pzl. Without writing 
down these rather complex relations here, we 
merely note that for E + 0 they can be solved 
asymptotically, by means of well-known, “semi- 
convergent” asymptotic expansions [ 191 (for 
large arguments) of the relevant Bessel function, 
I,, K,, to yield asymptotic expansion for (y21 and 
pzl. The resulting expansion for S is found to 
agree, to terms O(e2), with our expansions of 
(3.13) whenp = 1 there. 

Although the above comparison provides a 
partial confirmation of our expansion (and also 
shows that it is a semi-convergent series for the 
present example), we must exclude the excep- 
tional case when either of the boundary values $ 
or + of (2.7) vanishes. For then the asymptotic 
expansion, as derived from the exact solution, 
changes its character radically, and for 7 > Ilr = 0 
we obtain instead of (3.12) 

I 

s = 2 1 0*866. . .E213 
* - (4$&)1’3 -* 

+g (04.~~~);;“~E”‘+O(~3’3)}, 

where, incidentially, the number OG6 
root z of the equation 

zAi’( z) +Ai( z) = 0, 

(3.14) 

is the 

with Ai and Ai’ denoting, respectively, the Airy 
function and its derivatives [ 111. 

3.3 Second-order boundary layers 
In the special case considered above, one sees 

immediately that the expansion of (3.12) becomes 
singular whenever A (i.e. h or h) vanishes. 
Furthermore, the entire analysis of Section 2, 
where we merely stipulated X2 > 0, will always 
fail in the limiting case A = 0. This is due to the 
fact that, among the set of admissible “equili- 
brium” concentrations, we can have a subset 
where one or more of the concentrations are 
zero and where, consequently, the kinetic 
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function 4 as well as its first derivatives @vanish. 
We may expect to encounter this difficulty for 

certain reactions whenever one boundary con- 
centration, say, v, at the right-hand boundary, is 
fixed and we achieve the maximum “driving 
force”, in the limit JI + 0 at the other boundary. 
In this limit, we would simultaneously achieve a 
state of chemical equilibrium at the right-hand 
boundary, irrespective of the magnitude of our 
perturbation parameter E. As a consequence 
there would obtain, in the limit E + 0, a “weak” 
reaction zone at the right-hand boundary with a 
type of “second-order” boundary layer, such 
that the analysis of Section 2 is no longer applic- 
able there and must be modified. Thus, if we 
suppose that for IJ = 0, the second derivatives 
+‘I are not all zero, then we must conclude that 
the right-hand boundary layer will be of a 
thickness O(E~/~) for E * 0. Therefore, instead of 
the expansions postulated in Section 2, one has 
to consider now a core expansion of the form 

JI = *to’ ( y ) + E2’3*(2) ( y ) + @If@“3 ( y ) + 0 (8’“) 
(3.15) 

which for ‘P,(o0(l) = 9 = 0, will match with a 
right-hand boundary-layer expansion of the 
form. 

JI = E~‘~~(~)(_Y) +EI$~‘(~) +O(E~‘~) (3.16) 

where 

1-Y 
Y’E2/3. _ 

In this way, a perturbation analysis similar to 
that of Section 2, leads now to the non-linear 
differential equation 

@,&i(2) 
(3.17) 

for the lowest-order term in (3.16). Although the 
left-hand boundary-layer expansion is still the 
same as in (2.2), the difficulties inherent in solv- 
ing (3.17), and subsequent higher-order equa- 
tions, would appear to preclude the kind of 
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analytic treatment we have been able to give in 
Section 2. 

3.4 Equal diffusivities of the non-transferable 
species 

Whenever the diffusivities of the species B and 
C in (2.1) are equal, i.e. when 

Dc = DB, (3.18) 

some important simplifications arise in the 
analysis of Section 2. In particular, we may 
take 

D*=DA,~l= ~,/L~=-/.J~=D~/D~=D,,JD~, 
(3.19) 

in (2.9), and, by virtue of (2.13) and the kinetic 
constraint (2.11) on B and C, the stoichometric 
constraint of (2.8) yields 

&3/,&? = $3 + $3 = 1, for 0 s y G 1. (3.20) 

By the same reasoning, applied to core ex- 
pansions of the type (2.14) and (2.15), one finds 
that 

(3.21) 

for 0 < y c 1, and, therefore, that the “dis- 
placement thickness” Acp) of (2.3 1) vanishes for 
p= 1,2,... That is, the equilibrium terms *2(O), 
W3’O’. satisfy exactly the original kinetic and 
stoichiometric constraints, and the succeeding 
terms q2(p), V3(p) p = 1 2 . . ., make no further 
contributions in the equations of constraint. This 
introduces a considerable simplification into the 
analysis, since the integral constraints of (2.30) 
are now satisfied automatically at any stage of 
the perturbation, p = 1,2, . . . 

Moreover, the relations (3.21) lead to several 
simplifications in the equations for the core 
functions, which permits us to derive some 
rather explicit formulae for the determination of 
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both the zeroth- and first-order terms for mass evaluating the right-hand side of (3.24) at the 
flux. In particular, the Eqs. (2.32) for the boundaries and by equating it to (3.25), we find 
equilibrium terms reduce to the remarkably simple relation 

with 

5’. !??I 
h tx2_4lj h th2_411 . (3.26) 

I -- - 

which, when applied at the boundaries y = O,l, 
together with the respective boundary values 
IL,+ for ql(0), provide two equations for p$?j 
and, the quantity of primary interest, a\?. 

Furthermore, the Eqs. (2.19) and (2.21) 
for the first-order terms reduce now to 

Hence once the form of the kinetic function 4 is 
specified, permitting one to solve the equili- 
brium relations of (3.22) at y = 0,l for Q$Y and -- 
also to determine the quantities A,@, . . ., we 
see by (2.43) and (3.26) that the first-order cor- 
rection for mass flux immediately follows. In 
fact, if we let S(O) denote the value of the Sherwood 
number of (2.14) for l = 0, we have that 

q,(l) = -_qr3Cl) 7 

cghpj(l) = cppl(l)+ (@2-l$3)qr2(1) = 0 

yr,cl) = /_&2*1(l) + a;:‘y + p:q i3.23) 

which can easily be solved for ql(‘), to yield 

S/S(O) = 1 + (a::‘/~&+ +O(e2) (3.27) 

where ai:‘/a\$) is of course given directly by (3.26). 

3.5 Comparison with a numerical solution 

As an illustrative example for the case of 
equal diffusivities considered in the preceding 
paragraphs, we apply the results to a model for 
the diffusion of oxygen through hemoglobin 
solutions. Experimental measurements on this 
system have been made by Scholander and 
Hemmingsen [ 121 and some numerical solutions 
of the relevant differential equations have 
recently been performed by Kutchai, Jacquez, 
and Mathers?. 

(a::‘~ +P::‘), (3.24) 

where the function A, defined by, 

takes on, at y = O,l, the respective values X2, 
X2, given by (2.36) and (2.39). 

We can now obtain a fairly explicit expression 
for the constants a\:’ in (3.24) by application of 
(3.24) at y = 0,l. Thus, by first making use of the 
boundary values (2.37) and (2.38), and the 
equilibrium relations (3.22) (more precisely, of 
their y-derivatives), we find that 

and 

*l”‘(o) = -&X:$)/h3j.&2 

(3.25) 

Wl”‘( 1) =t&4Q3p2, 

where sl#, the boundary values of a”, are of 
course the differential coefficients (for i = 1) of 
the type introduced in Eqs. (2.24). Next, by 

The reaction of interest can be represented by 
equation (2. I), with a = b = 1, and with A repre- 
senting oxygen, B, hemoglobin and C, oxyhemo- 
globin, the “carrier”. The reaction kinetics, 
although complex, can be reasonably well 
represented by 

r = klCaCs - k2Cc, 

or, in the notation (2.6)-(2.9) of 
work, by 

4 = JIl4J2 - 93/KO 

(3.28) 

the present 

(3.29) 

Wnpublished manuscript of a paper. Non-Equilibrium 
Facilitated Oxygen Transport in Hemoglobin Solutions, to 
appear, which the present authors gratefully acknowledge. 
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if one takes 

r* = kICo2, Ko = k,Co/k,. 

If we further adopt (3.19), then the analysis of 
the preceding section is directly applicable, and, 
in particular, it is a straight-forward matter to 
solve the equilibrium relation (3.22) for the 
special form (3.29) of the kinetic function. This 
leads to some elementary quadratic equations 
for the equilibrium-core solutions *i(O), which we 
shall not trouble to reproduce here. Rather 
more interesting is the solution for ai?, which is 
obtained by application of (3.22) at y = O,l, and 
which can be expressed as 

(Y:vp* = (IL -9 1 [ (l+K$l+g+l ’ (3-30) 1 
where 

K = K,i$ = k,tf’Jk,,K = Ko$ = k,-Ch, 

and (3.31) 

u2 = (m)2 = Ko/p2 = klCODB/k2DA. 

Thus, the equilibrium Sherwood number, 
corresponding to E = 0, can be expressed 
compactly as 

where (3.32) 
Z=a/(l+K),~=(T/(l+_K). 

To obtain the first-order term in E we note 
that, for the case at hand, the derivatives in 
(2.17) are 

which, with the appropriate boundary values of 
*i(O), give 

@ = l/(l+K),q2=&j3 =-l/K,, (3.33) 

and, hence, 

X”= q*/Lj = (1+P)/crZ, (3.34) 

On membrane diffusion with near-equilibrium reaction 

together with a similar expression for h2 in terms 
of z. Thus, we find readily by (3.26) and (3.27) 
that 

S/S(O) = 1- [G(Z) +G(Z)]C+~E+O(C~), 
(3.35) 

where 

G(Z) = Y!(Z5/(l+Z2)), 

E = d ( DJL2kJO), 

and Z, Z, and u are defined by (3.3 1) and (3.32). 
As mentioned above, Kutchai et al. have 

obtained numerical solutions for the differential 
equations of the problem at hand and the table 
shown here provides a comparison of some of 
their numerical results to those obtained from 
the first-order asymptotic expansion of (3.35). 
The comparison is based on their values of the 
“facilitation” f, which is defined as fractional 
increase in oxygen tlux due to the presence of 
chemical reaction and which, therefore, can be 
expressed as 

f=S-1 (3.36) 

As indicated in the Table, the given values off 
correspond to three different membrane thick- 
nesses L and two levels of oxygen concentration 
_C at one boundary, with all other parameters 
fixed. For smaller values of L than those shown 
in the Table the first-order expansion of (3.35) 
becomes progressively more inaccurate, as one 
would expect from the expression for the 
parameter E in (3.35). 

Also, one can immediately see by (3.35) that, 
as in the previous examples, the formal expan- 
sion parameter E is not the sole criterion for 
departure from equilibrium. Rather, one con- 
cludes from the form of the first-order correction 
term in (3.35), that it cannot be small relative to 
unity if the equilibrium flux ratio S(O), as given by 
(3.32), is large. Indeed, this is borne out by a 
comparison with other numerical examples of 
Kutchai et al. where, for large f, the two-term 
expansion (3.35), is wholly inapplicable. In such 
cases, the first-order term in (3.35) serves mainly 
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Table 1. Comparison of the first-order asymptotic expansion (3.35) to 
a numerical solution, for the facilitation of oxygen diffusion by hemo- 
globin. The parameters are: (A: oxygen, B: hemoglobin, C: oxyhemo- 
globin) Diffusivities (cm*/sec): DA = 6 X lOWE, DB = DC = 5 X lo+‘. 
Rate Constants in (3.28): kl = 1.8 x lo9 cmYmole set, k2 = 67.3 set-I. 
Concentrations (moles/cm3): C, = 2 x 1O-5, C = 1.7 X IO-‘, Case I: 

_C = 0, Case II: C = 6.8 X 1OmB 

Faci1itation.f 

Membrane thickness Case I Case II 

LW Eq. (3.35) Exact Eq. (3.35) Exact 

: 0.322 0.610 0.500 0646 0.191 0.247 0.234 0.263 
25 0.764 O-769 0.277 0.280 

m (equilibrium) 0.803 6.285 

as a criterion for indicating the departure from 
reaction equilibrium. In general, one might 
expect a quantity such as E(Y$/@, as given by 
(3.26), to provide a reasonable estimate of the 
departure from reaction equilibrium even 
though it was derived for the special case of 
equal diffusivities of the non-transferred species. 

3.4 Conclusions 

The asymptotic expansion of the present 
analysis (2.43) would in general permit one to 
compute membrane-diffusion rates, to terms of 
the second-order in the kinetic parameter E, for 
rapid reversible reactions, where E 4 1. The 
limiting diffusion rate for E + 0 is completely 
determined by the equilibrium-core concentra- 
tions, which satisfy the reaction equilibrium, the 
kinetic and stoichiometric constraints, (2.32), 
and the exact boundary conditions on the trans- 
ferred species, (2.7). Higher-order corrections in 
E could in principle be computed from the solu- 
tions for corresponding terms in the core- 
concentration fields which are governed by 
(2.19)-(2.21), (2.30), and (2.37)-(2.42). It will be 
recalled that the solution to these equations 
would mainly involve algebraic operations and 
quadratures. 

In closing, it might be noted that there are 
some perhaps obvious, but potentially quite 
useful extensions of the present analysis to 

more complex problems, involving kinetic 
coupling of diffusion, chemical reaction, and 
heat flux. 

Within the framework of this type of analysis, 
the value of linear kinetic models [ 161 becomes 
apparent, as they apply exactly to departures 
from equilibrium in reaction boundary layers. 
There are, however, exceptions to this, as 
represented by the special case of “second- 
order” boundary layers discussed above. In 
this regard, it should be emphasized that, as 
indicated by the examples considered above, the 
convergence of the “near-equilibrium” expan- 
sions will in general depend crucially on both 
the form of the reaction kinetics and the relative 
magnitudes of other parameters in the problem. 
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NOTATION 

A,B,C chemical species in reaction (2.1) (A is 
the transferred species) 

a,b stoichiometric ratios in (2.1) 
C concentration variables, moleslvol. 
D molecular diiusivity, area/time 
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F 

f 
K 

L 
N 

r 

S 

x 

y = x/L 
y,y 

Friedlander-Keller factor in (3.2) and 
(3.3) 

facilitation, Eq. (3.36) 
dimensionless equilibrium constants 

in (3.6), (3.29), and (3.31) 
membrane thickness, length 
molar flux, moles/area-time 
rate of reaction (2.1), production of 

carrier C, moles/vol.-time 
dimensionless flux ratio (or Sherwood 

number) of (2.14) 
distance coordinate through the 

membrane, length 
dimensionless distance 
strained coordinates defined in (2.23) 

and (2.26) 

Greek symbols 
a,/3 constants in the kinetic constraints 

(2.11) 
A boundary-layer parameters defined in 

(2.28), (2.29), and (2.31) 
perturbation parameter of (2.9) 

~, boundary-layer parameters defined in 
(2.36) and (2.37) 

(r parameter defined by (3.31) 
~b dimensionless kinetic function, defined 

in (2.9) 

~pti l/2(02qb/O~iOd~j) 

cI,,(I,*,¢ U the values of (k,6i,(k ° evaluated at 
¢t  = ~ i  (°) 

dimensionless concentrations, defined 
in (2.9) 

core expansion coefficients in (2.15) 

Subscripts 
i j k  . . . .  (A,B,C)  refer to the 

1,2,3 . . . .  (A,B,C) as in (2.9) 
species 

Superscripts 

such as p etc., in parentheses on sym- 
bols such as qJ(p), etc., refer to the 
order p = 0,1,2,. .  of term in per- 
turbation series like (2.15), (2.16) 
and (2.22) 

i ,j ,k on ~bi,~b ~, etc., refer to derivatives, 
as above. (The summation conven- 
tion for repeated indices is explained 
immediately after (2.17)) 

Overbars 

on quantities like C, ~b, ~b, h refer in 
general to left-hand (y = 0) boun- 
dary values or expansions, and 

Underbars 

refer to the corresponding right-hand 
(y = 1 ) values 
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APPENDIX 

GENERAL SOLUTIONS 
FOR THE BOUNDARY-LAYERS 

Here we present a brief outline of the general solution for 
the boundary-layer expansion coefficients $,(p’(f) in (2.22), 
which is equally applicable to both the right-hand and 
left-hand boundary-layer expansions. 

For any given order of the perturbation, p = 1,2,. . ., the 
Eqs. (2.24). (2.25). and (2.28) have the following general 
form: 

,,(pL~=~=o, aty=o, 

dy (A.1) 

where we have simply dropped the underbars and overbars 
on 4,~ et cetera, which would otherwise distinguish between 
the right-hand and left-hand boundaries. In (A.l) the func- 
tions aiP’(y) represent “non-homogeneous” terms of the 
type appearing in the differential Eqs. (2.24). involving pre- 
sumably known, lower-order perturbations, while the OiP’(y) 
are polynomials of degree p. of the kind occurring either in 
(2.28) or in (2.29). 

By standard techniques of linear algebra one can solve 
(A. l), most conveniently in terms of the ditTerence&‘P’ -0,(p), 
to yield formally 

(y-y*) +@ sinhh (y-y*) ** 
1 

(y*) +~J~kO:P’(y*)]dy* 

64.2) 
where 

hP= +'/‘I(> 0). (A.3) 

@P’, n”’ are constants, and the symbol 62 denotes a “Kro- 
necker delta” (62 = 1 for i = j, f$ = 0 otherwise, and, in 
accordance with our textual convention all the terms in 
(A.l-3) that involve the repeated indices j, k are to be 
summed over j, k = 1,2,3). 

The constants t(P) and n(P) must be chosen to satisfy the 
side conditions at y = 0 and y = m in (A. 1). In particular, 
since both the integral in (A.2) and its first y-derivative 
vanish at y = 0, the boundary conditions at y = 0 give 

and 
\yI’P’(O) +ILI(@P)+q(P)) = 0 

(A.4) 

dy;;-l’ (0) +hp*(q ‘p)-t’p’) = 0, for i = 2,3, 

where we have made use of the fact that the values of the 
polynomial 01(P) and its y-derivative at y = 0 are equal to 
those of the core functions Yip), ,:P-*), respectively. (The 
equations have been written for the left boundary only). 
Also, one will note that the last equation in (A.4) is com- 
patible with the integral relation of (2.2 1). 

Now we observe that, at a given order p of the perturba- 
tion, the quantity t:*‘(O) in the first equation of (A.4) is 
unknown. Indeed, it must be determined from the boundary- 
layer calculation at hand, which is accomplished via the last 
condition in (A.1). at y = m. This latter step requires, how- 
ever. some further consideration of the integral in (A.2). 

First of all we note that the second factor in brackets [] in 
the integrand of (A.2) will not involve any residual algebraic 
or constant terms for y* + -, but, rather, only exponentially 
small terms, emAY*, y*e-Q* ,. . .,e-%y*, . . . . For the low- 
order perturbations considered here, p = 1,2, this can be 
verified directly by inspection of the non-homogeneous 
terms in (2.24)(&P’) andby means of the definition-of Oi(P), 
the polynomials in (2.28) or (2.29). Thus, one finds that the 
coefficients of any purely algebraic terms of the type (y*)“, 
n = 0,1,2,. ., which appear in the integrand of (A.2), can be 
identified directly with the core Eos. (2.1%(2.20) or the 
higher y-derivatives of these equations evaluated at ; = 0; in 
other words, with the values of 

a’ e! %. . . ,WY JbY 
’ dy’dy2 

. . . 
*‘dy k’ ’ 

at y = 0, which are identically zero by (2.18)-(2.20). (Al- 
though the same kind of result would doubtless hold for 
higher-order terms p = 3.4.. ., we have not actually gone to 
the lengths of a rigorous verification for terms beyond those 
of direct concern here). 

By means of the considerations of the preceding paragraph 
one can show readily that, as it stands, the function $:P) in 
(A.2) behaves like 

- d28j’P’ (Y*) + CLj+PeP(P)(y* )]dy *] , for y -P 30. 
dy2 

Hence, to satisfy the condition at y = m of (A.1). we must 
have 

11 
CP) 4’ - = - I [ 2h3 o 

e-Ay* mp'(y*) - !%!$y*) 

+pJ+kelL(P)(Y*) dY*. 
1 

(A.5) 

Equations (A.5) and (A.4) suffice to determine completely 
the constants c(p’. q(P), as well as the boundary-value at y = 0 
for the core-expansion function, VI(P)(O). By similar con- 
siderations one-can also obtain the right-hand boundary 
value Pcp’( 1). 

To summarize, then, the boundary-layer analysis at any 
order p = 1,2,. _ . gives us the boundary-layer coefficients 
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I&(~‘@) in (2.22) in addition to the boundary value \u,(p)(O) on 
the pth core-expansion coefficient ‘u,Cp’(y) at y = 0 (as well 
as JI,‘@(y) and ~,‘P’( I), at the right-hand boundary). In this 

= d’f”1”’ (o) _k “%I” (o) (‘4.6) 

cotiirection, and as a final remark, we note that the flux of the 
transferred species is determined to terms O(@‘-r) relative to 
the leading term by the derivative (at the left boundary, say). 

_ d%;-” (o) ; d%;-” (o), 

Aig (0) = !!2$.2 (0) + @, (p) _ f”‘) 
the last two equalities following from (A.4). 

RbsumC- Ici on presente une analyse du probltme de l’augmentation (((facilitation))) de la diffusion 
massique permanente, a travers une membrane d’eppaiseur finie, g&e h la presence d’une &action 
chimique, homogene, rapide, et reversible. Dans le cas limite d’une reaction infiniment rapide, on se 
set? de la methode dite ((method of matched asymptotic expansions)) pour mettre en evidence la 
structure asymptote du champs de diffusion, lequel on demontre est compose d’une r&ion centrale 
(un (( noyau))) d’equilibre bomee par des couches limites de reaction sit&es aux deux extremids de la 
membrane. Et alors par cette mtthode on developpe, jusqu’au terme du deuxikme ordre, une shies 
d’approximations successives pour rep&enter I’Cffet de I’tcart d’equilibre sur le flux massique. 
Plusieurs exemples, parmi lesquels le systeme oxygene-hemoglobine, sont trait& par la mtthode, et 
des comparaisons sont faits avec d’autres solutions, analytiques aussi bien que numeriques. 

Zusammenfassung - Es wird iiber eine Analyse des “gefiirderten” Transportproblems berichtet, in 
welchem stetige Diffusion durch eine begrenzte Membran, begleitet von einer rapiden und rever- 
siblen, homogenen chemischen Reaktion stattfindet. Als Grenz unendhch schneller Reaktionen 
wurde das Verfahren der angepassten asymptotischen Expansionen verwendet, urn die asymptotische 
Gestahung des Diffusionsfeldes zu analysieren, welche sich als aus einem “Gleichgewichtskern” 
zusammen mit “Grenzschicht” Reaktionzonen an den Membrangrenzen bestehend erweist. Es 
werden asymptotische Expansionen abgeleitet, die es grundsltzlich ermoglichen sollten die Wir- 
kungen sowohl erster als such zweiter Ordnung einer Abweichung vom Reaktionsgleichgewicht auf 
die Restgeschwindigkeiten der Stoffdbertragung durch Diffusion zu berechnen. Es werden ver- 
schiedene Beispiele erortert, von welchen eines ein Model1 der Sauerstoffdiffusion durch Hlmoglobin- 
lijsungen darstellt, und es werden Vergleiche zweichen analytischen und numerischen Losungen 
angegeben. 
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