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I. INTRODUCTION

An increasingly important aspect of present day technology
is the use of devices or systems to control automatically the operation
of other devices or systemé. Some of these automatic controllers are
designed to perform their regulatory functions according to preset
programs and operate independently of the actions of the controlled
systems. Such éontrollers are often called open-loop automatic control
systems. Other automatic controllers are designed to make their opera-
tions depend upon comparing information about the desired actions of
the controlled systems with information of the actual actions of the
systems being controlled. These latter controllers are called closed-
loop automatic control systems or servomechanisms, This study is con-
cerned with the action of a particular type of closed-loop automatic
control system.

Servomechanisms may be classified as linear or non-linear.
If the operation of a servo is satisfactorily described as a linear
process, it is a linear serwoj; otherwise, it is not. Desgeription of
linear servo action is often in the form of linear differential equa-
tions. A servo may be non-linear due to inherent non-linearities, to
non-linearities intentionally inserted to improve the response of the
servo, or both. The farticular type of system considered herein, the
contactor servo, is inherently ﬁon-linear.

The contactor-servo, variously called on-off servo, relay
servo, and bangfbang servo, is non-linear because the command signal

to the servomotor is a discontinuous function of a dependent variable

-1-



2.

or variables,

The commend signal of a contactor servo can be of only two
or three finite values. In the two-valued case, the servomotor is
directed to exert full forcing in one direction or in the opposite
direction., The three~valued case includes a zero. forcing signal in
addition. Zero forcing signals are also used to include in an analysis
the effects of the dead zone and of the finite contact spacing of a
physical relay. In the literature on contactor servos, it always has
been assumed that the action of the servo can be descriped by a linear
differential equation during the time a particular command signel is on,
The same differential equation would describe the servo action whenever
that pafticular value of commend signal came on again, Such systems
are sometimes called‘piece—wisé linear systems. This study considers
such & plece-wise linear contactor servo of the two~valued type.

Conslderable materisl has been written in the last quarter
century to describe the analysis of contactor servos. Hazen(l), in
1954,‘discussed the response of second order on-off servos to step and
ramp inputs of position with the switching of command signal between
-values dependent upon the sign of the error, the difference between
desired and actual positions of tﬁe system output. MacColl(z) analyzed
similar cases in 1945, using phase plane énalysis which has been used
in other non-linear mechanics problems by Minorsky(B), Andronow .and
Chatkin(®), and others. In 1949, Kahn'®) developed & method for de-
termining the responses .of such servos which used a series of Laplace

transforms. He also presented a method for determining stability from
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a velocity-time plot. In the same year, Weiss(é) published a paper

in which he concludes "an anticipatory signal to be the most promising
for control of torque application in a high performance relay servo-
mechanism.“

The determination of an appropriate anticipatory signal has
been analyzed in several papers since that time and is the subject of
this study. McDonald(7) in 1950, used phase plane analysis to solve the
problem for step and ramp inputs to a second order system with inertia
only:. He determined a boundary or switching curve which divided the
error, érror-rate plane into two regions of opposite forcing. The
location of the point in this plane representing the state of the system
prescribes the forcing value. prkin(B) evolved a similar boundary for
use when a saturating servo operates in its saturated mode of operatioﬁ.
Then, in 1951, McDonald(9) suggested the dual mode servo consisting of
a contactor mode using the switching curve approach to prescribe forcing
for large error or error-rate values and a linear mode to operate for
small error and error=-rate values. This arrangement would reduce
transient error faster than a linear servo and provide a smoother
steady state response than‘a contactor servo. The problem of determin-
ing criteria for switching the fofcing of second order contactor servos
with step inputs was treated in a general fashion by Bushaw(lo) in 1953
in a paper on discontinucusly-foreed differential equations. Ia Salle(ll)
added to Bushaw's work in 1953. Kazda(la) discussed errors in second
order systems in 1953.

Switching criteria for contactor servos of order higher than

two were first treated in 1953. Rose(l3) extended Bushaw's analysis to



-k

higher order servos whose differential equations have real character-
istic roots. He considered the case of a zero input signal, and he

showed that minimum transient time would be obtained by using n-1

th (1%)

changes of forcing for his n“* order servo. Also Bogner and Kazda
reported on an analysis carried out in a phase space with coordinates
of error and derivatives of error. Switch boundaries for step inputs
were generalized from the phase plane curve of the second order system
to surfaces and hypersurfaces in phase space for higher order systems.
Dependence of switching criteria on input signals was also shown.

Still in 1953, Kang and Fett(l5) developed a distance function to
metrize this phase space. Time rate of change of distance from the
origin of the error space was used to determine switch eriteria.

In late 1953, Bass(l6) brought out an extensive report
analyzing the effects of relay characteristics on contactor servo
operation. He presented a feedback technique to be used to eliminate
detrimental oscillation and chattering of a relay. A long critical
bibliography was included.

Higher order systems were investigated further by Silva(l7)
who, in 1954, described a switching method based on energy considera-
tions in which the response to a step input would consist of a forced
acceleration, a forced deceleration, and a zero forcing phase. Arbi-
trary inputs were to be handled by paralleling the contactor system
with an auxiliary system designated the forward feed system. Hagin(l8)
in 1956, also used such a forward-feed system to supplement a contactor
system acting on step-input switching criteria represented by surfaces

or hypersurfaces in an error phase space. By an approach similar to
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that Bushaw used on second order systems, Tajima<l9) has recently de-
veloped switching criteria for higher order contactor systems includ-
ing some whose differential quations have complex characteristic roots.
All of the aforemenﬁioned analyse§jlimited permissible input
‘signals to step and ramp types fqr switching criteria“determination.
With the input signals thus prescribed as functions of time, anticipatory
switching schemes were devised on the basis of knowing the future input
signal. Faced with an arbitrarily varying iﬁp&t signal, such switching
mechanisms would operate as if extrapolating the input signal into
future time at its instantane@ﬁs value or at its instantaneous wvalue
plus its instantaneous time rate of change multiplied by the increment
of future time. For slowly varying inputs, predict;on of this nature

may allow satisfactory servo ¢peration.

Statement of the Problem

The problem considered in this study is the development of a
method of determining,switching.criteria for oﬁtimizing the responses of
‘certain contactor servos to prescribed arbitrary input signals: The op-
timizing switching criteria. are used to reduce simultaneously transient
,error<and appropriate error derivatives to zero in minimum time when the
input signal is a known arbitrary function of time of class C®~l for an
n@h order servo. Use of such a switching method in conjundtionlwith a
scheme using more infbrmation than simply instantaneous input value and
time rate of change to predict the future input signal should improve

transient response over that of previous methods. It is also felt that

development of such switching criteria may provide a useful insight into the
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nature of the problem of how best to switch the forcing signal of a
contactor servomechanism. The report proceeds as follows:

In Chapter II, the phase space method of analysis is outlined.
Phase plane analyses of second order systems are used to introduce and
illustrate concepts which are extended to cover higher order systems.
McDonald's dual mode conecept is also presented.

Chapter III deals with the determination of switching eri-
teria for certain contactor servos with prescribed input signals.
The phase space analysis is used. The problem of predicting a future
input signal is briefly discussed also.

Chapter IV describes an analog computer study which was made
to check the theory of Chapter III. Second order systems were studied.

Chapter V gives the conclusions.



IT. PHASE SPACE ANALYSIS

A phase space may be defined as "an ideal, multidimensional
space in which the coordinates represent the variables required to
specify the state of a substance or of a system(goj.” The use of a
phase space is common in works in Classical MEchanics(al) in describing
the state of a system of n particles, each with three degrees of freedom,
as a point in a 6n dimensional space with coordinate§ representing gen-
eralized displacements and momenta of each particle. The state of a
system of only one particle with one degree of freedom is describable
as a point in a phase plane. As the state of the system changes, the
phase point describes a curve or trajectory in the phase space. The
collection of possible trajectories, which the phase point for a pér-
ticular system may trace, is termed a phase portrait of the system.
Analysis of such phase portraits may provide valuable insight into‘the
workings of systems under study. The phase plane portrait has proved
ﬁseful in the study of second-order single degree of freedom devices,
particularly non-linear d;vices for which the more common methods of
treating linear differential eqpafibns,have not sufficed.

Coordinates othef than displacement and velocity have been
found useful for describinglsystem action in some cases. In phase plane
analyses of secénd-order contactor servos, coordinates of error and
error rate, the time rate of change of error, have been common although

not universal. This phase plane will be used in the analysis which

follows.
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Second Ordér Contactor‘éervo with Inertia Only
The differential equations for a second order contactor

servo with inertia only may be written in terms of the system output as

2
8 - _
==, (2.1)
in which O = the output displacement,
T = the time variable,
and + 1 = the two normalized values of forcing with the choice of

—

sign dependent on a prescribed switching criterion. Although written
as a single equation, the expression represents the two equations of
motion describing the servo actlony, one for positive forcing and one
for negative forcing. This representation will be used throughout the
paper.

The error is defined as

E=¢-6 (2.2)

in which f is the desired output position or input signal. The equa-

tions of motion may then be expressed as

€”= _F/r 3 ‘ (2‘3)

in which the top row of the sign on the forcing term still refers to
the case of positive foreing. These equations point up the expected
fact that error variation will, in general, depend on the input signal.
This dependence will be removed by limiting the input signals to con-
stant position and constant velocity. The equations of motion to be
treated then are

e’= 3| (2.4)
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These equations are easily solved to give the time relation-
ship

T-v, = ¥#(€-€)), (2.5)

and the equations of the phase plane trajectories

€ -eo = T‘[(el) ;(6;3] (2.6)

Zero subscripts are used to designate initial values of variahles.

Conventional uniqueness theorems for linear differential
equation422) can be used to show that only one trajectory for each
foreing sign passes through each point in the €,€' phase plane., In
general, similar uniqueness cannot be shown for solutions of Equa-
tions (2.3) due to the f  term. |

Figure 2.1 shows the €,€/ phase plane with fepresentative
trajectories. Arrowheads spow the direction of phase point motion on
the curves, and consideration of Equations (2.4) shows that the dashed
curves are for positive foreing, the solid curves for negative foreing.
Time is implicit on the curves, but as can be seen from Equations (2.5)
distance traveled in the €’ direction by the phase point is directly
proportional to the time for such travel. This is true only for the
“particular problem being studied, of course. Time may also be computed
for this particular phase plane by integrating the area between the €
axis and the | /€' curve corresponding to the trajectory being traveled.

That is,

' ' -
| 2, de = at (2.7)

[ VS S
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It is desired that the phase polnt representing the state of
the system be located at the origin of 6,6' coordinates, this indicating
attainment of the desired output response. For a phase point initially
displaced from the origin, there exists the problem of how best to cause
that phase point to move to the origin by choosing the appropriate
foreing.

McDonald's(7> solution for optimum forcing is illustrated in
Figure 2.2. The phase plane is divided into two reglons by a curve
formed by a positive arc terminating at the origin and a negative arc
terminating at the origin. To arrive at the origin, the phase point
must approach along one or the other of the two arcs. In the half-
plane to the right of the curve so formed, shown dashed on the figure,
positive forcing is applied causing the phase point to move toward the
dividing curve. Upon arrival at the curve, the forcing is switched
and the polnt moves on into the origin. The dividing curve is often

called a switching curve, and its equation can be shown to be

= 0 (2.8)

Had negative forcing been applied and held with the phase point to the
right of the switching curve, observation of Figure 2.1 shows that the
point could never arrive at the origin and would eventually diverge from
the origin. Consideration of distance traveled in the ¢' airection in
the 1light of Equations(2.5) shows that any program of switching the
forcing with the phase point in this right half plane other than that

of applying positive foreing until arrival at the switching curve will
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cause the travel time to be longer. Similar considerations show the area
to the left of the switching curve to be a region calling for negative
forcing. ©Sample trajectories using the switching curve are shown in
Figure 2.2.

It is worthwhile to point out that, for a constant input, reduc-
tion of initial error by a forcing program as outlined, makes use of
the maximum available foreing during the transient period with no re-
sulting overshoot of the steady state condition. Forecing would, of
course, have to be removed as the phase point arrives at the origin of
the €,6’ phase plane. Thus the transient would be reduced in minimum
time and, for this reason, such a response is often considered the
optimum step response.

Second Order Contactor Servo with
Inertia and Viscous Damping

The' differential equations” for'a second-order- contactor
servo with inertia and viscous damping may be written as
4’6 d6 . ¢

= 4+ q =

T dx (2.9)

in which Q. is the damping parameter, and other symbols are as previously

defined. In terms of € and f the equations are

€'+ e’ = £+ af 3 (2.10)

By allowing only constant inputs, the equations are simpli-

fied to

"
+1

" + ae { (2.11)
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Solving Equations(2.11) for the eqpations of the phase

plane trajectories gives

co - (Ea-€) » | (g_e_t__l_) (2.12)

= T e

Sample trajectories in the €,€' phase plane are shown in
Figure 2.3 for an A value of one. The switching curve is indicated by
the dashed curve. As can be seen from investigation of Equations(a.ll),
the half-plane to the right of the switching curve is shown as a region |
of positive foreing. The horizontal dashed lines represent the velocity
saturation of the system. Once the phase point enters the region be-
tween the two dashed lines,iit will remain in this region for all
future step inputs. |

The equation of the switch curve can be shown to be

Q€ +€ = T%/E’T n(QIET +1) (2.13)

Principal Coordinates

The phase portrait of Figure 2.3 was developed by determin-
ing system phase point motion in'theEI and € directions. The same
portrait could have been developed by determining phase point motion
along any other two directions in the phase plane. In particular, in
two directions which pass through the origin of 656’ coordinates, the
phase plane principal directions of the system, the description of the
motion is somewhat simplified and in a form more useful to the develop-

ments of Chapter ITII. Phase point motion for the second order contactor
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servo with inertia and viscous damping will be described using prin-
cipal directions.

For a detalled description of the principal direction con-
cept, the reader is referred to Reference 23 of the Bibliography.
Here the concept will be used to transform the equations of motion in
terms of € and €' to equations of motion in terms of coordinates along
the principal directions. The new set of equations will then be solved

to determine the phase portrait.

Let

w =€ (2.14)
and

w, = € (2.15)

Equations(E.ll) may then be replaced by the first order
equations

W = Wz (2.16)

w, = -0, *| (2.17)

Equations (2.16) and (2.17) are written in vector-matrix
form as

' /e o)
e E (2.18)
le_ O 'O.‘ U.;_ l

Equations (2.18) may be expressed in terms of principal co-

ordinates W, and W, measured along the phase space principal directions
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of the system. The necessary transformations are

and

Thus

and

plane as shown in Figure 2.4 for A.=1. These are the phase plane

o) /0.

) [
el s

The transformed equations are

RN AR

aE +¢€

Ha -l/a“

<

i

ae .

W

The W, and W, directions may be drawn on the €, e’

pr‘incipai directions of the system.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

phase
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We ¢

Figure 2.4 Phase Plane Principal Directions for Q=1

In terms of W, and W, the equations of motion are

+

W, o= 3 (2.2h)

0

Wy = AW, ¥ Q (2.25)
Solving Equations(2,2l4) gives
Ty s 3 M) (2.26)

Thus, change in phase point displacement in the ‘W, direction
is directly proportional to the time needed to make the change. This
displacement time relationship will be used in Chapter III. Such a

relationship did not hold for either the € or €' direction for this

Servo.
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Solving Equations(2.25) gives

WS —;(\A/zo :t)e’aﬁcqf’) (2.27)
Elixpinating?: between Equations (2.26) and (2.27) gives
VWl = (W EDexp [£A0W, W, )], (2.28)

the equations of the phase plane trajectories in terms of W, and W,
measured slong the principal directions, Equations(2.28) transform
into Equations(2.12) by substituting for W, and W, from Equations
(2,22) and (2.23).

As may be seen from Equations(2.21), the elements on the
diagonal of the diagonal matrix are the roots of the characteristic
equation

P(P+Q) = O (2.29)

formed from the differential Equations(2.11), In the vector-matrix
Equations(2.18) they are the characteristic roots of the square matrix

which are found by solving

o-® ‘ l = P(P+Q) = O (2.30)

o -a-P

for P . Thus, in the differential equations of phase point motion
expressed in terms of motions in the principal directions, the dis-
placement terms have these characteristic roots as coefficients. For
the system with no forcing, phase point velocity along a principal

direction is equal to its displacement from the origin along the same

S VR W
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principal direction times the appropriate characteristic root. This
simple velocity-displacement relation holds along the principal direc-
tions only.

The developments of Chapter III are worked in terms of co-
ordinates measured along the phase space principal directions of a
system. It is convenient to think of these principal coordinates as
the coordinates of a new phase space rather than as coordinates along
certain directions of an original phase spaée. For the contactor servo
with inertia and viscous damping, a W , W, phase plane portrait is
shown in Figure 2.5 for A.=1. The switching curve is a dashed line,
and the half plane to the right of the curve is a region of positive
forcing. The horizontal dashed lines again represent the velocity
saturation level of the system. In this plane these lines are always
at Wh = 1| independent of the value of &. It may also be noted that
in this plane the families of trajectories for positive forcing show
mirror symmetry about the W, =-| line. A similar symmetry is shown
for the negatively forced trajectories and the W, = t| line. As
mentioned above, the change of phase point displacement in the W,
direction is directly proportional to the time for such movement.

The equation of the switch curve in the W, , W, plane is

|+ Iwg] = exp(QW, W4/ IWel), (2.31)

or

- Wa .
W, = mln (!\z\/zl'H) (2.32)
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Higher Order Contactor Servos

As mentioned in Chapter I, several investigators have consid-
ered the problem of determining switching eriteria for contactor servos
of order greater than two. The approach used by Bogner and Kazda(lk>
and Hagin(lB) will be outlined here. Again, only constant input signﬁls
are allowed which eliminates the input signal dependence of the switch-
ing criteria.

For the higher order cases the error, error-rate portrait
does not suffice to describe system action. In the second order case
only one traJjectory for each sign of the forcing goes through each point
of the €,€/'plane. However, in a third order system, for example, an
infinity of trajectories for each sign of the forcing goes through each
point in the €,€/ plane; each trajectory corresponding to a different
value of error acceleration or second time defivative of error. So a
third dimension is added to the phase space which then has coordinates
of €, €' and G” . In this space only one trajectory goes through
each point of the space for each sign of the foreing of a third order

servo. An n dimensional space is used for an nth

order servo with
coordinates of error and the first n-l time derivatives of error. The
analysis is often facilitated by working in a phase space whese co-
ordinates correspond to displacements along the system principal
directions in the error phase space.

As mentioned in Chapter I, Rose(13§.analyzed servos whose
differential equations have real characteristic roots. He showed that,

to cause the phase point to move to the origin from an initial dis-

placement away from the origin, n-1 switches of forcing are needed for
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his n™ order contactor servos. The one switch for a second order servo
is evident in Figures 2.2, 2.3 and 2.5.

/ The phase plane switching curves of second order systems
generalize to switching surfaces and hypersurfaces for the higher
order cases, A helpful method of visualizing such a surface for a
third order system is illustrated in Figure 2.6. Bogner(lh) and
Hagin<18) have described this method. The space shown has dimensions
Wi, W and ‘W; corresponding to the system principal coordinates in
the error phase space. One trajectory for each sign of forcing goes
through the origin. Therefore, the phase point must approach the origin
along one or the other of these "zero trajectories.” Naturally, only
the portion of a zero trajectory on which the phase point moves toward
the origin is of interest. Consider the zero trajectory into the origin
from the bottom of the figure which is shown as a positively forced
type. Trajectories for negative forcing are shown terminating on the
positive zero trajectory. Such negative trajectories drawn to every
polnt on the positive zero trajectory will describe the surface in the
space on which the phase point must move in order to arrive at the
positive zero trajectory. This surface and a similar surface described
by positive trajectories drawn to every point on the negative zero
tra jectory divide the phase space into two regions of opposite foreing.

A sample trajectory is shown which pictures positive forcing

until the phase point reaches the switching surface. Then negative
forcing is imposed and the phase point moves along the switching sur-
face until it hits the zero trajectory. The zero trajectory acts as a

switching curve in the two dimensional surface, so the forcing is re-

turned to its positive value, and the phase point moves to the origin.
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Figure 2.6 Switching Bounduries, Third Order Contactor Servo.
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This idea of tracing trajectories backwards in time:may be
extended to higher order systems to get a concept.of.switching bound. -

aries in many-dimensional phase spaces.

The Dual Mode Concept

In the previous examples of switching criteria determination
it was assumed that, as the system phase point arrived at a switching
boundary, the forcing was instantaneously switched. Thus the phase
point moved directly into the origin of the space along a zero tra-
jectory. In actuality, switching cannot be done instantaneously, and
S0 ﬁhe phase point will overshoot the switching boundary before forcing
is reversed. Examination of Figure 2.2 shows that, in this case, the
phase polnt will never arrive at the origin but will instead approach
a limit cycle formed of a positive and a negative arc encircling the
origin. The steady state response of the servo will then be rather
jerky. For some servo uses, a certain amount of error may be acceptable.
Then, a region of no forcing might be defined about the phase space
origin large enough to include the 1limit cycle. Foreing would be
turned off upon entry of the phase point into this region.

However, for less steady state error combined with a smoother
steady state response, MacDonald(9) introduced his concept of a dual
mode servo. The idea 1s illustrated in Figure 2.7 using the phase
plane for the second order contactor servo with inertia only. As long
as the system phase point is displaced a considerable distance from
the origin, the servo would operate as a contactor servo utilizing

full forcing. When the phase point enters a small region about the
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origin the controller is switched to a linear mode of operation, and
the servo then has the smoother response of a linear servo near its
steady state condition. The idea 1s easily extended to the higher
order cases.

Hopkin(g) and Howe and Rauch(gu) have described servos which
act with full forcing except for a narrow region of unsaturated opera-
tion along the switching curve. This unsaturated region thus encloses
the origin alsoy, and the resulting servo action is similar to that of

a dusl mode servo.

LINEAR REGION

Figure 2.7 Phase Plane Portrait, Dual Mode Servo



ITTI. SWEPT LOCUS SWITCHING

Switching Criteria for Known Inputs

In the previous chapter, analyses were shown which illustrated
the phase space switching boundary approach for the determination of an
appropriate anticipatory signal to control the application of forcing
in a econtactor servo. Describing the control signal as anticipatory
indicates that knowledge of the future behavior of the input signal is
used to control the forcing. This knowledge may be available or assumed.
For constant position and constant velocity, as considered in Chapter II,
the knowledge is available. If a contactor servo is forced with an
input signal whose future values can be reasonably approximated by a
constant position or constant velocity extrapolation from instantaneous
values, switching criteria based on such inputs may give satisfactory
servo operation. The extrapolation into the future, or prediction,
would have to give a reasonably accurate approximation of the input at
least during the time needed for reducing transient error and error
derivatives to acceptable values.

For arbitrary inﬁut signals switching criteria based on constant
position or velocity inputs may not suffice. It was mentioned in Chap-
ter T that Silva(l7) and Hagin(lB) developed servos 1n which contactor-
type controllers were paralleled with continuous-type controllers to
provide composite forcing for the arbitrary input case. The contactor
controllers worked on step input switching criteria and the continuous
controllers, or forward feed systems, were to compensate for non-constant
behavior of the input signals during the transient period. Such com-

posite servos are no longer mere contactor servos, and they lose the

-27-



-28-

feature of the bang-bang principle stated by Bushaw, that of smashing
the transient error to zero in minimum time for a limited forecing
capaﬁility. In this study input signals more general than steps or
ramps are considered on the basis of detefminimg mdre general switching
'criterié for the contactor servo itself.

The point of view taken here is that the problem may be split
into two parts, prediction of the future values of arbitrary inputs and
détermination of switching criteria for inputs known as functions of
time. The second part is the principal concern of this study and will
be discﬁssed in the main body of this chapter. The prediction problem
will be discussed briefly in fhe last section of the chapter.

The phase space switching boundary analyses previously shown
were developed in phase spaces of error and errdr derivatives. Due to
the restriction of the types of input signals, system phase point tra-
Jectories in such spaces did not depend on input signals. This simpli-
fied the analyses, For more general input signais the simplification is
lost. However, observation of Equations (2.1) and (2.10) shows that, in
a phase space with coordinates of system output position and its deriva-
tives, the system phase point trajectories will always be independent
of the input signals. An input signal, which may be considered as
representing the desired condition of the output, can be shown as a
phase point in this space also. It will move on a trajec£ory determined
by the variation of the input signal and its derivatives as functions
of time.

These ideas are illustrated in Figure 3.1 using the position-

velocity phase plane of a second order contactor servo. A point
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representing the condition of the system output, the output phase point,
is shown in the fourth quadrant of the phase plane. Two arcs passﬁ
through this point to indicate that the output phase point moves about
the phase plane only on members of the two families of arcs correspond-
ing to positive and negative forcing. Another point, the input phaée
point, is shown in several positions on a trajectory which describes the
variation of the input signal. If the output phase point, constrained to
move on arcs of positive and negative forcing, can be caused to inter-
cept the input phase point, the desired condition of simultaneous zero
error and error rate will be obtained. Interception, of course, means
that the output and input phase points are at the same point in the
plane at the same time.

Error, error-rate axes are drawn through each of the input
phase points. System phase point movement in the error, error-rate
phase plane is merely the relative motion of the output phase point
with respect to the translating axes. This relative motion is, then,
the difference between the output phase point movement with respect to
the position, velocity axes and the input phase point movement with
respect to the same axes. This merely restates the fact that error
variation, in general, depends on the input signal. Removal of this
dependence for the cases studied in Chapter II is easily seen.

The ideas described above in a phase plane can be carried
over into phase spaces of more dimensions for higher order servos.

Also, in some cases, it will be found convenient to work in phase
spaces whose coordinates are the principal coordinates of the original

spaces of output position and its derivatives.
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For the output phase point to intercept the input phase point
at some particular point in the phase space, it must first be able to
move to the particular point, and second, time the movement to arrive
at the particular point at the same time as the input phase point. The
switching technique developed in this study is based on performing the
second operation for output phase points capable of the first. The
‘method will be introduced by analyzing the second order contactor servo

with inertia only.

Second Order Contactor Servo with Inertia Only

The differential equations for a second order contactor servo,

Equations (2.1), are repeated here,

e/l: t‘ (3.1)

/
The equations of the 6,6 phase plane trajectories can be obtained
from Equations(3.1) just.-as Equations (2.6) wereiobtained from Equations

(2.4). The trajectory equations are

6-6 - f[(e'fz- ©]

(3.2)

Sample trajectories are shown in Figure 3.2 with directions of output
phase point motion indicated by arrowheads. The phase plane is filled
by the two families of these parabolas. Each.member of a family has
the same shape and orientation as any other member of the same family
differing from any other member only by a translation in the 6 ai-
rection. Conventional uniqueness theorems for: linear differential

(22)

equations show there is but one trajectory of each type through

any point of the phase plane.
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(+) FORCING

Figure 3.2 Displacement, Velocity Phase Plane Trajectories,
Second Order Contactor Servo with Inertia Only.
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Another feature to be observed in Figure 3.2 is that £he
output phase point can be moved to any point in the plane with no more
than one switch of forcing.

Consider the point on the O axis marked (A). TFor the output
phase point to move to this point, it must arrive on one of the two
trajectories through the point. Only the parts of these trajectories
for which phase point travel is toward the point, will be used here.
These zero trajectories are shown in heavy marking. The output phase
point can be moved from any point on the zerc trajectories to point (A)
without changing the sign of the forcing term. The curve formed of the
Zero t?ajectories and point (A) divides the phase plane into two regioms.
Inspection of the figure shows that for any point to the right of the
curve, there is a unique path from the point to point (A) if only one
change of forcing is allowed. The path, of course, consists of an arc
of negative forcing from the ppint to the positive zero trajectory and
thence along the positive zero trajectory to point (A). Similarly, a
unique positive-negative path exists for any point to the left of the
curve. As both families of trajectories are unchanged by translation
in the O direction point (A) may be any point on the 6 axis.

Consider next a point (B) above the O axis. Zero trajec-
tories are again heavy lines, and the curve formed of the zero trajec-
tories and point (B) divides the plane into two regions. A unique
one-switch path to (B) from any point to the right of this curve again
exists. This fact holds also for the region to the left of the curve and
below the heavy dashed line. For any point to the left of the curve

and on or above the heavy dashed line, it is easily seen that two
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one-switch paths to point (B) exist. Moving point (B) to any other
position in the upper half-plane will not change the qualitative pic-
ture. A similar result can be obtained in the lower half plane by
symmetry.

So, the output phase point can be moved to any point in the -
phase plane from gny other location in the plane using no more than
one switch of foreing. Timing the movement is to be investigated next.

Convenient relationships between time and phase plane travel

can be obtainedéswmm;Eqpations(2.5). These relationships are

-1, = *(8'-8,) (3.3)

The top row of a + sign corresponds to positive foreing, the bottom
row, to negative forcing.

To use Equations(3.3), a new concept is introduced. This is
the concept of the locus of points in the phase plane from which the out-
put phase poin% can be moved to some particular point in the plane by a
one-gwitch process in a specified time. An expression for the locus
will now be derived. The locus will be made up of two parts, a positive
locus for paths with initial positive forcing, and a negative locus for
paths with initial negative forecing.

Let O and O be the instantaneous coordinates of the output
phase point; and GP and 9; s the coordinates of the particular point
to be reached. Let the specified ‘travel time be AT 2 O . For the
one-switch path, the forcing is changed when the output phase ﬁoint is

at the switch point, (6 ,6 )
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From Equations (3.2) the equatian describing the initial arc
from @, &) to (8, ,86) are

oo - r[(e.);(e)] .

/
The forcing is changed at Ga ) , and the zero tra-

Jectory is described by

+ [0 -(oy]
2

Q‘P—GL = (35)

Adding Equations(3.4) to Equations(3.5) by adding corresponding sides

gives
+ 1\2 N2 12
tze) -@) -
b, - B 26 > S (3.6)
From Equatiqns(3.3) a time relationship is obtained:
X = 2(6-6) ¥ (6,-6) (3.7)
Rearranging,
NN -
e|: 2 < * (3'8)

/
Substituting Equations(3.8) into Equations(3.6) to eliminate B,

gives, after minor rearrangement and collection of terms,

5-6, = r[(%_) + (94”) - Bd 90 ; 92&; QEAYJ (3.9)

Completing the square in the bracket gives

@), Chy (m‘ 6'6% _ Bx , AT
6-0, = 7| - :

4
n é%? 6% A
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Equations(3.10) may be written as

P /- / + M2
9-[6\»'91:&?@9} . tle (ejr AT)] (3.11)

Equations(3.ll) state that points on the positive locus with

coordinates B and o' satlisfy the relationship

@ﬂ . oo+ A0
2 4

B- [91, -Be AC - (3.12)
Equation (3.12) is the equation of & parabola in the 6,6

plane of form B=(®)/4 , a parabola opening in the positive B ai-

rection. Its vertex is removed from the 9,'@’ origin by a 8 distance of

e{@{,AY -(AXY/ 2 énd a B’ distance of B% + AC

Obviously the positive locus corresponding to a finite AC  cannot in-

clude the whole parabela, but it is some limited portion of the parabola.

The negative locus for the same AL is some limited portion of the

parabola of form 0=-(8'"%/4 vhose equation is

b - [e?— 6y AC + @jl = —[9'(9‘;_&i (3.13)

By substituting the vertex coordinates of each parabola into the equa-
tion of the other, it can be shown that the vertex of each parabola is
on the other parabola.

Let 6, and 9\/, be the vertex coordinates of a parabola.
From Equations(3.11)

o, = 6, -6, a s &2 (3.14)
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and

/

By

"

B, * AT (3.15)

Eliminating AC between Equations (3.14) and (3.15) gives

QV - ep = * [(91:)2‘(9;5] (3.]_6)

Comparison of Equations (3.16) and Equations(3.5) shows that the vertices
are on the output phasé point arcs including the zero trajectories which
lead to the particular point

The phase plane picture of the locus is clarified by referring
to Figure 3.3. 1In part (A) of the figure the boundaries of the two
leaf-shaped regions are loci corresponding to the particular point shown
as a small circle on the 8 axis. The smaller region is for a smaller
NC Positive loci are the lower parabolic arcs; negative loci, the
upper. In part (B) of the figure, similar loci are shown which corres-
pond to the particular point at the right edge of the figure.

Figure 3.3 will be used to compare loci for switch programs of
more than one switch with the locus for a one-switch program for the
same specified travel time. First, however, the use of the locus concept
to time output phase point movement to cause interception of the input
phase point will be discussed.

The input signal is taken as a known function of time, so that
the future phase plane path of the input phase point is known. The input
is limited to signals giving continuous phase plane paths. The travel

time for the input phase point to reach any point on its future path



from its instantaneous location is known. For each succeeding

point on the future input path. a one-switch locus can be constructed
which corresponds to output phase point movement to the particular point
in a AC equal to the actual input travel time to the point. As these
succeeding locl are constructed, eventually a first one will be found
which contains the output phase point if interception is possible.

This locus corresponds to the future location of the input phase point
at which interception is first possible by a one-switch program, In
fact, it corresponds to the point for minimum time interception for a
“program of any number of switches, because higher switch loei for each
succeeding point are shown below to be within the region bounded ﬁy the
one-switéh locus. Due to the continuity condition imposed above on the
input signal, the output phase point cannot get into such a region
without first passing through a one-gwitch locus. Zero-switch loci
cpfrespond to the end points of the one-switch locus.

To see that higher-switch Iaoei for reaching a particular point
in a certain AC are within the regionvbounded by the one-switch loci
for the same AL , consider Figure 3.3. For particular points on the
® axis, part (A) of the figure is used. The larger locus is taken as
corresponding to some fixed AL =(AL), . The smaller locus represents
the case for a AU= (A),. which is less than (AY), Let A,

be the difference between the two,

AT = (A0, - (a0, (3.17)

Starting from any point on the smaller positive locus (1ower

arc) a point on the larger positive locus may be generated by following
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a positive trajectory backward in time for a time of ZXfC . This is
illustrated in the figure by the dashed lines from the triangles at the
ends éf the smaller locus to the two squares on the larger locus. Using
Equation (3.3), the time length is shown as a distance in the o' direction.
From the continuify of the smaller locus and the uniqueness and space-
filling properties of the family of positive trajectories, it can be

seen that the part of the larger positive locus between the two squares

is génerated from the points on the smaller positive locus.

A different arc between the same two squares may be generated
by moving back in time A\C along positive trajectories starting at every
point of the smaller negative locus, _Each‘point of this arc will be
above the point with the same ® coordinate on the part of the larger
positive locus between the two squares. Also, as will be shown in the
next paragraph, each point of this arc will be to the left of the point
with the same 0' coordinate on the larger negative locus. Thus, this
gsecond arc between the two squares, will be completely within the region
bounded by the larger locus.

Consider any point, M, on the smaller negative locus, which

generates a point M, on this second arc, Because the negative loci
are translated curves of the samé form and orientation as noted above,
a point, M3 , on the larger negative locus 1s generated by such trans~
lation from M, on the smaller locus. M. and M, have the same o'
coordinate as shown by Equation (3.13). Fﬂz is to the left of M; due
to the properties of the respective parabolic trajectories which gener-
ate them from ™, .

The arc of all points M, is merely the locus of points for the

case of output phase point movement to the particular point in time
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Cdt\l by means of a certain positive-negative-positive, two-switch
program. This is the two-switch program whose first switch is on the
chosen, smaller locus. It is entirely within the region bounded by the
one-switch locus. The two-switch locus of negative~positive-negative
order is similarly within the region. The result holds for any (ACU),
less than (AC), and for any (AY); . Thus, for particular points on
the 6 axis, two-switch locl are always within the region bounded by
the one-switch locus for the same. AT .

The same results can be shown for points above the 8 axis by
using Figure 3.3 (B). The symmetry of the trajectories about the ©
axis extends them to points below the B axis.

Figure 3.3 (B) will be used for consideration of the three-
switeh case. Take any point on the smaller negative locus. For con-
venience of display, the top end point of the locus will be used. Con-
sider this point as the particular point to be arrived at by a one-switch
program of negative-positive order in time A X and find the correspond-
ing negative locus. It is easily seen that the dotted line represents
the desired locus. As the chosen point on the smaller negative locus
is selected lower and lower, the dotted line moves correspondingly
lower and lower. Its upper end rides the larger negstive locus, and its
lower end rides the two-switch locus of positive-negative-positive order
previously deseribed. This result and similar considerations for the
other three-switch locus show that three-switch locl are entirely within
the region bounded by the one~switch locus for the same AT

Successive application of these analyses to points on

higher-switch loci will give the result that all leei for higher-switch
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programs are within the region bounded by the one-switeh locus for
the same AL .

Thus, the interception problem reduces to determining the first
one~switeh locus containing the output phase point because the output
phase point location on this locus fixes the unique path for minimum
time interception. To do this, let future input values and travel times
be swept through Equations(3.11) until one of the equations is satisfied
with actual output phase point coordinates inserted for © and e’ .

For this swept locus scheme, Equations(3.11) will be given in terms of
input values. Let f and f' be the instantaneous 0 and 9’ coordinates
respectively of the input phase point. The instantaneous time is repre=-
gented by t , and an increment of time measured into the future from T
is designated zfts . This increment of time is to be varied, or swept,
through values from zero to as large a positive value as needed. It is
called the sweep time increment. The actual future time equaling
plus 5ts is labeled Cs . The future values of { and ' corresponding

to future time Us are {; and ?; respectively. The new equations are

' 2
5 t 18- (3l A¢
b - [ﬂ—&' A\C&(%Q] = [e ({54 = jﬂ (3.18)

If switching could be done instantaneously when the output
phase point reaches the switeh point on its interception path, it might
be worthwhile for a switching mechanism to store information describing
switeh point location. However, as the output phase point will override
the switch point due to switching time lags, it actually will be faced

with a one~gwitch intercept condition once more. Therefore, a switching
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computer which rapidly and repetitively determines initial forcing by
a swept locus scheme would be sufficient for all switch determination.
As long as the repetitions are fast enough, a good approximation to the
intercept trajectory should be achleved and the expense of auswitch?mt
point memory device eliminated.

In an actual servo such a method could be used to determine
all contactor switching with a continuous forcing mode added to the
servo to be used when the output phase point enters a limited region
around the error phase space origin. Such an arrangement falls under
MeDonald's dual mode idea presented in Chapter II.

It is worth noting that the switch method deseribed above is
consistent with the fact that for the type servo being considered, there
are always only two possible choices, positive or negative forcing.

To illustrate the swept locus switching idea and relate it to
the switch-curve approach of Chapter II, some commonly analyzed input
signals are illustrated in Figures 3.% through 3.7.

For a constant input signal of § = ;=1 and § : ¥;= O
loci are shown for three values of AU in Figure 3.4 (B). The para-
bolie ares bounding the innermostvleaf-shaped region are the loci for
&CS= | + The positive locus is on the negative O side of the dashed
line. Arcs bounding the intermediate leaf-shaped region are the loci
for Alg=2 , and the outermost arc for ACg=3 . The figure shows
thaty as the loci sweep out the phase plane, the positive locus will
sweep over the area to the left of the dashed line, and the negative
locus, the area to the right. The dashed line described by the con-

tiguous points of the swept loci divides the phase plane into regions of
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positive and negative forcing. Therefore , it is a switch boundary.
Error, error-rate axes are indicated, and comparison with Figure 2.2
shows the switch boundaries are the same. Note that the two contiguous
points are the zero-switch loci.

Figure 3.5 illustrates the case of constant velocity input
signals. In Figure 3.5 (B) is an instantaneous switch boundary through
the initial location of the input phase point. Again the same error
phase plane switching boundary as shown in Figure 2.2 is obtained. Out-
put phase points on the innermost loci could intercept the input phase
point in AC=| with perfect switching. Those on the outermost loci would
have a travel time of AC=4 . In Figure 3.5 (C) sample perfect switch
intercept trajectories are shown for two points on loci corresponding
to an initial £I$=4u The intermediate loci show the contiguous points
or zero-switch loci, on the zero trajectories.

Switch boundaries described by swept loci are shown in Figure
3.6 for three parabolic inputs. In the case of a constant acceleration
input signal with acceleration greater than that of the servo, the accessi-
bility region of the phase plane is limited. Figure 3.6 (A) shows a
limited accessibility region between the dashed lines drawn from the
instantaneous position of the input phase point. The equal acceleration
case is shown in Figure 3.6 (B). Here the instantaneous accessibility
region is limited to the area between the dashed line and a line parallel
to the 0 axis through the instantaneous input phase point. Input
acceleration is less than servo acceleration for Figure 3.6 (C). The
accessibility region covers the whole phase plane, but the switch bound-
aries differ above and below the input phase point. Equations for the

switch boundaries are easily derived for constant acceleration inputs to

this simple servo.
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Sample switch boundaries are shown for a sinusoidal input in
Figure 3.7. The swept loci would still have the same shape and orienta-
tion in space, but the switch boundaries vary in shape and orientation.

For arbitrary known input signals to this servo, this variance
of the switch boundaries could seemingly cause difficulty in designing
a computer which would determine the sign of forcing from switch bound-
ary information. It is believed that it would be easier to design a
computer operating on the swept locus basis. The logic of one such
scheme will be described in Chapter IV, which covers an analog computer
study of the theory deveipped in this chapter. The approach used above

will now be applied to another servo.

Second Order Contacton Servo with Inertia
' and Viscous--Pamping

Eqpationg(2.9), the differential equationsfor a second order

contactor servo with inertia and viscous damping, ate repeated here.

8"+ ae' = £ (3.19)

It is convenient to treat this servo in its principal coordinate phase

plane. Let the principal coordinates be Z, and Z, where

Z, =089 +0 (3.20)
and

Z, = a6 (3.21)

These equations may be derived in the same way from Equations(3.19) as

were Equations (2.22) and (2.23) from Equations(2.11). The equations
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of the % ,#Z, phase plane trajectories are

Z, % | =(Z0 ¥ exp [: a(z —Z[;,)} , (3.22)

and the time-distance relationships are

T“To = "_"(21 _zlc) (3-23)

Sample phase plane'trajectories are shown in Figure 3.8. It
is evident that translation in the Z, direction does not affect trajec-
tory shape as Equations(3.22) indicate. The horizontal dashed lines
indicate the velocity limiting values, + l/a, expected from inspection
of Equations(3.19).

The three points (A), (B), and (C) represent the types of
particular points to which it may be desired to move the output phase
point. Zero trajectories to the points are again in heavy lines. It
is easlly seen that point (A), a point on the Z, axis, is accessible
from any point in the phase plane by a unique path with no more than
one switch of forcing. This also applies to point (B), a point off the
Zr axis but within the velocity-limit boundaries, except that in the
region between the heavy dashed line and the negative zero trajectory
and above the positive zero trajectory two one-switch paths are available
for each point. All points within the velocity-limit boundaries are
acceséiple from the whole plane by one-switch paths. Point (C) is
accessible only from the region above the zero trajectories. Two one-
switch paths are available for every point within this region. Point (C)

is not accessible from any other part of the phase plane by more than

one switch either.
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The expressions for the curves containing the positive and
negative loci will be derived directly in terms of input values for this
case. Some new symbology is needed to develop these expressions in the
Z,,%, phase plane. Let Z, and Z. be the instantaneous coordinates
of the output phase point and Z,. and zz| be the coordinates of the
intermediate switch point. ILet P\ and P?_ be the instantaneous co-

ordinates of the input phase point wheré

R

1

af + ¢ , (3.24)

and

P = qf . (3.25)

Then, RS and Pz_slocate the input phase point at time equal to U plus
N

For the output phase point to be on the positi\fe or negative
locus of (R, B;) , equations describing the arc to the zero tra-

Jectory and the zero tfajectory itself are respectively
Z, ) = (2, Fl)exp [_?Q(Z., "‘Z)] s (3.26)
and

Rl = (2,50 [Fa -2)) (3.27)

The time equations are

- 1- Ft A \+l
Zu - & "‘QZ i (3.28)

' The switch point coordinates Z, and 22, are to be eliminated from
Equations (3.26), (3.27), and (3.28) leaving expressions describing the

interception loci of (Ps ’ Fz)s )
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Substituting for Z, from Equations (3.28) in Equations (3.27)

and (3.26) and for 7Z» in Equations(3.26) from Equations(3.27) gives

®, ) exp|* $(Fo0:-2 +R )| 72 - (3.29)

=(Zz F1)exp [¥ %"(1 Al -2, +Es)]

Solving for (Z, #|) gives

(2, +0) =(R, *)exp @A) 720 |2 $E A2 +B)] (330
which may be written as

Z, —[:( +(R, il).exp(&A'ts)] = -T-Z,exp(’*%[z‘ G AW]} (3.31)

Equations (3.31) reveal that the positive locus is on an ex-

ponential curve of form Z; = -2 exp(‘(lf./Z)"l] The equation in this

form describes a curve through the origin of coordinates. Equation (3.31)

shows that the shape and orientation of this curve is fixed, but that
its location in the phase plane is determined by a translation of the
origin which depend.é on Als and corresponding input values. Similarly,
the negative locus is on a 'translating exponential curve of. form
Z,= Z[GXP .7z /2)-!] , the general form being that of a curve through the
origin of codrdinates.

As was done for the first servo treated, it can be shown that
the point on each of the curves corresponding to the translated origin
of its general form is on the other curve. Thege translated origins are

also on the zero trajectories into the point (I3 , B35) .
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Loci for the three types of particular points of Figure 3.8
are shown as the boundaries of the leaf-shaped regioﬁs in Figure 3.9.
Again the larger loci are for greater travel times than the smaller.

For this servo, just as for the previous one, it can be shown that loci
for higher-switch paths are included'within the regions bounded by the‘
one-switch locus for the particular point for the same travel time.
This, then, results in the same minimum intercept time as before for
input signals with continuous phase paths. Of course, for the éervo
‘to follow the input signal, it must be such that the input phase point
stays between the limiting veloecity boundaries.

Conslderation of part (A) of Figure 3.9 is sufficient to show
that higher switch locl are within the region bounded by the one-switch
locus. The remarks are easily applied to parts (B) and (C) of the figure.
The upper arc of each locus is the positive locus, and its translating
origin is at its upper end point. Lower arcs are negative loci with
translating origins at‘the lower end-points.

Moving backwards in time along positive trajectories from points
on the smaller positive locus, the corresponding part of the larger
positive locus is found just as before. It is that part between the
‘small squares on the dashed lines from the ends of the smaller locus.

An intermediate point on the smaller positive locus and its correspond-
ing point on the larger positive locus are also shown.

Moving backwards in time the same way from points on the
smaller negative locus gives an arc within the region bounded by the
larger locus. One point of this arc is shown. It corresponds to a point

on the smaller negative locus with the same Z, coordinate as the
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Figure 3.9 One-Switch Loci, Second Order Contactor
Servo with Inertia and Viscous Damping.
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intermediate point mentioned above. The translatability in the Z
direction of positive trajectories shows this point, the small square,
is to the right of the larger positive locus.

Proof that the point is above the larger negative locus is
needed. The two negative loci are merely translated curves of the same -
form and. the translation between corresponding péints on the two is shown
by thé translation of the lower end-points. Properties of the positive
trajectories show that the small square is above the point on tﬂe larger
negative locus corresponding to translating its 5ase point on the
smaller negative locus. The arc is then completely above the larger nega-
tive locus. Sd, the arc which is the desired two~-switch positive locus
is entirely within the region. The arguments used for the previous
servo are then applicable to show that all two-switch positive loci for
arriving at a particular point in a specified time are within the iegion
bounded by the corresponding one-switch locus.

The previous arguments also carry over for the three-switch
case which then allows extension to the higher switch cases.

Cormon input signals are treated in Figures 3,10 through 3.12.

Figure 3.101is for a constant input signal. Q. is taken as one.
Typical outpu£ arcs are shown in part (A) of the figure. The positive
and negative swept loci are shown in part (B). Positive loci are to the
left of the dashed switch boundary. From inside out loci are shown for
&ts=1/2, |, and 3/2

Figure 3.11 pictures the same servo with constant velocity
inputs. In part (A) the zero-switch loci sweep out an instantaneous

switching boundary. The velocity term in the differential equation of
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e—s— INPUT TRAJECTORY
O——» OUTPUT TRAJECTORY
R SWITCHING BOUNDARY

Figure 3,11 Constant Velocity Inputs, Contactor
S8ervo with Inertia and Viscous Damping,



— —— SWITCHING ?OUNDARY't
fo=o ) fo= '/2

------- SWITCHING BOUNDARY ,;
fo= "/2 ) f;.—- 0

Figure 3.12 Input of Form (Sine 1)/2, Contactor Servo
with Inertia and Viscous Damping.
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this servo causes the switch boundary to be unsymmetrical through the
instantaneous input phase point. In part (B) of the figure, three
sample intercept trajectories are shown for an initial.élg= 3/2 .
Intermediate loci are shown for Als = | and Al = 1/2 .

Figure 3.12 shows two instantaneous switching boundaries for
a sinusoidal input signal. The variation is evident.

A switching scheme for this servo utilizing the swept locus

approach is included in the computer study in Chapter IV.

A Third Order Contactor Servo
The third order contactor servo to be analyzed is of the type

whose action may be described by the differential equations:

0" + (K+KIO" +K, K8 = 2| (3.32)

)

or

D(D + K)(D+KHO = * ) (3.33)

where D stands for the differential operator dAdx , the K's are dis-
tinct real positive constants, and Kz > Kj

Equations(3.32? may be replaced by the first order equations
Ky = X, | (3.34)

X5 = Xy (3.35)

and

Xy = “OK #KO, ~ K KX, £ 1, (3.36)
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by letting
X, = 6 , (3.37)
X,= 8 (3.38)
and
X, = 6" . (3.39)

The equations of motion given in Equations (3.34%), (3.35), and
(3.36) may be written in vector-matrix form as

/

X, @) l @) X, @)
X2 = |lo O | X £ |0 (3.40)
.X3 O -KZKB _(K;f KQ X3 |

Eqpations(3.40) may be expressed in terms of principal co-
ordinates % , %, and Zé measured along the phase space principal direc-

tions of the system. The necessary transformations are

\ ! -
X Rk KK KOGy | [®
Xl = o K;_-(IKZ— Ks) KB(K‘,_— K1) Z ’ (3.41)
_l -
Xs 0 wowmm  TRewm | V5
and ‘

Z KKy Kgpls 0 (,
ZZ = O K2K3 KZ XZ (3’}_‘_2)
23 O ‘ FI'<;_K3 Kz X3

The transformed equations are

z\ O o0 O \ \

o= O -K, O Z, | & (K, (3.43)

23 @) @) 'K3 23 K3
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The equations of motion in the principal directions are

Z\ = % , (3.44)

2ot KuZe = tK, (3.45)
and

Z, *KZ = K, (3.46)

In terms of the output variable 0 the principal coordinates
are

Z, = K,K,8 + (KtK)O' + 8" | (3.47)

Z,= KK,0' + K,B8" , (3.48)
and

"

Z, = K, K0 + K,0 (3.49)

From solving Equations(3.44),

X -, = (2 -Z.) (3.50)

Solving Equations(3.45) results in

Z7l = (2o ¥ Nem(-KX-X) (3.51)
which, upon substitution from Equations(3.50), can be written

Zosl = (Za 7)) exp [TK (2, -2.)] (3.52)

In simjlar fashion

Zs I = (Z.%1) exp(? K, (Z, “Z.o)] (3.53)

can be obtained by solving Equations (3,46),
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Equations (3.52) and (3.53) represent the projections in the
’Z‘J Zz and Z, ,23 planes respectively of the phase space trajectories
of fhe servo's output phase point. The actual trajectories are, of
course, the intersections of their projecting cylinders. Sample tra-
jectories are shown in Figure 3.13 for Ks=2 and K= | . Positive
arcs approach the intersection of the Z,=| and 2, = | planes with
increasing time. From Equations (3.48) and (3.49), this asymptote can
be shown to represent a condition of velocity limitation of o=/ KeKs.
This velocity J.imitation is evident from Equation (3.32). Naturally,
negative arcs show a similar asymptotic behavior. The asymptotes are
shown as heavy dashed lines in parts (A), (B), and (D) of the figure
and as dots in part (C).  Part (C) shows as a crosshatched reglon with
heavy boundaries the region in the plane to which output phase point
motion is confined once the region is ehtered, In the phase space this
determines a cylindrical region about the Z, axis within which the input
phase point must stay if the servo is to follow the input signal. In
a G',G', 8" phase space the cylindrical region appears as & combined
velocity-acceleration limitation due to the relay output voltage being
fixed and finite,

For determination of the interception loci the instantaneous
coordinates of the output phase point are #,, Z, , and Z; . Instan-
taneous coordinates of the input phase point are P1 ) Pz; and P3

where

)
i

KoK+ (KR + £ (3.54)

Kikof '+ Kof" (3.55)

~U
]
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and

wU

Ky Kaf' + Ko f"

(3.56)

Soy Ps s Es » and Pgs locate the input phase point at a time equal

to U plus ACgs . For the third order servo, two intermediate switch

points are used. The first switch point to be arrived at is given the

coordinates Z,,, Z,,, and Zy, ; the second, 2,, Z,, , and Z; .

Writing the equations of the two projections for each of the

three arcs of each intercept trajectory gives

-

L3l = (Za* ) exp [_T‘ K Za. _Z|)—l

232; l = (Z; * Dexp [:K3(Zm _Zl)] ;

.

Zz, il = (222'1])6}@ jiKZ(Zu “ZIZ)“)

\e

Zzlil = (Z_“il)exp‘ }K3(Zu - 1&)]

-

R 7| =<Zz‘¥'l)exl> :T" K 2<PI~S —Zn)]

By =l =2, #Dex [FK{R, 2]
Using Equations(3.50), the time equatioms .are

&Ts =1 (Z,z _Zl) ¥ (le —ZW) i-(P\S —Zu))‘

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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whieh, upon rearrangement, gives

_ T ACHZ - P
2," %y = Sz > (3.64)

Eliminating 7,, between Equations (3.57) and (3.59) gives

Z, tl = (% :l)exp[Ter(Z Z,~ 2y "4 )]

*2 exp [t Kz(zu —Zz>] (3.65)

Then, eliminating 7, between Equations (3.65) and (3.61) gives

Es * =(zz¢|);exp *K (22,722, -Z, + )]

, (3.66)
20Ky 22, * R, )] 32 e KPR, 2,
Equations(3.66) can be rearranged as
(771) exp(tKZ) ~(B,#Nexp [*K(2 2, -2 2, + R,)] - b6
=*2 exp (¢ Kz Z,z){a‘?"-Ei‘Kz (Z.-2, ﬁ h ’>
Substituting for (Z,,- Z,) from Equations (3.64) and solv-
ing for exp (K, Z,z) ' gives
(*K ; )=“ exp (1KIZ,) [Z.‘; | "(E, -'H):exp(KzA"C;)_l
T2 %

In like fashion, Equations (3.58), (3.59), (3.62), and (3.64)

| can be combined to give

(tkaZi)= ER2) (7531 - (B =) el 20 ) -
12 . N (3.69)
2 &,exp {I '\é_} (Z‘ =R AYS)]- '}
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Z,, 1is eliminated by raiging both sides of Equations(3.68) to the Ki
power and both sides of Equations(3.69) to the K, power, and, with

left sides then equal, equating the right sides to give after cancelling

common factors

2, - [tl « ([, 1) exp (KzA‘ts))l

L x (exp{ [Z - I'DS ?AYQ]} —l)
- [':t| + (B, =) exp (KZAYQ]

n Z(exp {1%—’1;2‘ N AT,)]} -D (3.70)

=

TR,

-

Equations (3.70) show the positive locus to be on a trans-

latable surface of form

2K {2 [exp(Kf> - ]ZKs z e
< IZ [exp (%Z‘Q = I:BKZ (3.72)

The negative locus is on a similar translatable surface of

form

C
[=2

K3 _
Z,° =

(3.72)
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As

(3.73)

the loci are on surfaces of the same form.

Figure 3.14 pictures the general form of the surface. It is
composed of two sheets which are qontiguous at their translating origin,
The figure is drawmn for K322 and K,=( . The sheets are symmetrical
through the translating origin and are almost ruled surfaces, They
actually are slightly bowl-shaped rather than cone-shaped.

It can be shown frmmEqpations(3.70) that the contiguous point
of the two sheets which include one of the loci is always on the surface
which includes the other locus. Also, the contiguous pointe are on the
zero trajectories of the future input phase point, (E% ,'23,1%5 ).

The positive locus is on the upper half of the sheet in the
foreground in Figure 3.14%, and the negative locus is on the lower half
of the sheet in the background. The loci are bounded by the intersection
of these surfaces, Sample loci are pictured in Figure 3.15 for 5I;=|
and P, =R = R, =O .. The figure is of a clamshell-ghaped closed
surface. The shaded surface is convex toward the viewer and represents
the negative locus for two-switch maths. The posiﬁive locus for two~

switch paths is on the rear side, its shape being indicated by the
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Figure 3.14 Surface Containing Loci , Third Order Contactor Servo.
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Figure 3.15 Loci, Third Order Contactor Servo.
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dashed lines of traces of constant Z) planes. The top point is on the
negatively forced zero trajectory and 1s the zero-switch negative locus;
the bottom point, on the zero trajectory with positive forcing is the
zero-switch positive locus. The positive and negative one-switch loei
are represented respectively by the right and left edges of the clam- -
shell.

Comparison of the concept illustrated in Figure 3.15 with that
illustrated in Figure 2.6 shows the zero-switch loci describing the zero
trajectories for a step input. The one-switch locl would describe the
switching surfaces in the phase space. Of course, this comparison does
not hold for general inputs whose E% ,las, and }25 vary with time.

Inclusion of loci for programs of more than two switches
within the region bounded by a locus as described above for the same

th

Afts is shown by considering an n** order contactor servo in the next

section of this chapter.

Higher Order Contactor Servos

In this section it will be shown that the swept locus switch-
ing concept is applicable _to certain contactor servos of order greater
than two or three. An n®h order system generalized from the previous
two systems analyzed will be investigated.

The system differential equations are

D(D+K)(D+Ky) - D*+Ka)O = 21, (3.74)

where the K'g are real constants, and

K\«>K~n—|>"' >K3>K2>O



-T2-

Equations (3.74) can be expreesed as first order equation in
terms of phase space principal coordinates Z,, Z,,.ss%, . Using

notation similar to Rose(l3) the equations.are

Z' =Bz =K (3.75)
where
Z, .
Z = |z, (3.76)
X )
Z,,
o
B = K, 3.77)
. ) ,
Q
and
|
K = Kz (3‘78)
e
The equatiomsof the system phaese space trajectories are
BY - BT U -Bs . |
7 =€z, 2% | [€P d |k (3.79)
‘o
where

n

o | o O

. (3.80)
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Conventional existence and uniqueness theorems for linear differential

(22)

equations show there is a unique trajectory of each sign of forcing
throuéh each point of the phase space.

Letl;g symbolize the set of points in the phase space which
make up the positive \]-switch locus for a particular point, Z? s in
the phase space. ‘t} stands for the gset of points making up the ecor-
responding negative j-switch locus.Lg varies with the specified travel

time, AC , also; Bso
E oLz, AY) .

with

J=0,1,2,.... (3.82)

Let ZQEI stand for the travel time aver the last J arcs of
the output phase point's path. Thus, Ail stands for zera~trajectory
travel time, Capital letters and Roman Numerals will be used in the
subscripts of these symbols {gr intermediate travel times. The [ffj's

satisfy the relations

AU > Alyy >0z > ...> A > >0

The points, GZiL , on Lfo satisfy the equations

~AY
(Z?, = C"BATZ,, s eBet gC'Bsds K (3.83)

o

obtained by folloﬁing the zero trajectories backwards in time.
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B 1
The points (Z )‘ on L| are obtained by going backwards in
3
time from each point on the zero trajectories between Z¢ and (Z )o
From the zero trajectory, an arc of opposite forcing is followed. Any

point on this part of the zero trajectories comes from

-AYy
) = %%z, « P fe‘B‘ds K (3.84)
o
. # ,
where (Z )I indicates switch points closest in time to Z. .
So |

~ s | (AT
(7) =P (7, = e fe‘B’Js K. (3.85)

o

This gives

~(8T-A¢;) 80
BAT BAT: g e-BSC'IS - ge'ﬁsds K. (3.86)

o] (o)

@7 = €%+ €

Similarly, (2%)..., , the points on [*... are described by

€ ds

AL "(A;‘AY N-1) - (0T Bly.g)
(Z l qwc + 88| P H( Y et "'E{C"Bsdn
o

. -r(ATér‘AY;) -0
et (C“ ds + 0 (C'Bsds K . (3.87)
Q (o]
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Equations(3.83) for points on L-i can be rewritten as

Z, Zp AN
¥ Ko A K, A
Zz - 22P @ t | - C ,
Zlo \2.,6™4Y | -e™e
(3.88)
Equations (3.86) for points on li\ as
/5t
J'z‘ 2. —AT +2 AL,
g 73 i Zz?ekng N |+ €K;_AY_26KL(AT—AT:Q ’
\ 2! | | Z\PEK“AY |+ QK“A\C-Z‘ g (AT NS
(3.89)

and Equatiors (3.87) for points on L.f\ as
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Investigation of the above locus equationsshows that dependence
on Z? effects only a translation in the phase space on these loci. As
can be seen, the f?rst term on the right side of each locue equation is
the same for loci of n-l1 and less switches for the same Z, and AU,
and it is independent of the locus parameters, the zStI% . The secdnd
terms .on the right sides.of the locus equation do not depend on Z?
Thus, for a certain 2, and AT , all points of these loci are trans-
lated in the phase space by the amount of the first term; and the loci
for a partieular‘zft are of the same geometric shape regardless of the lo-
cation of Zp 1in the phase space. These properties were noted in the
previous second and third order systems.

The particular point, Zp, will be taken as the origin of the
phase space in order to obtain certain properties of the loci by using
the results of Rose's work(l3). These properties will then hold for any
Z, due to the translation property.

Rose showed that for minimum travel time, there is a unique
path of n-1 or less switches from each point in the phase space to the

th order servo of the type being considered. He also

origin for an n
showed that the regions in the phase space from which the origin is
accessible by such switching programé are continuous and mutually ex-
clusive .of one another when discrimination is on the basis of initial
slgn of forcing and of number of switches.

Therefore, take any particular locus, say L} , and
sweep A monotonically through all positive values. As this is done
L}(O;Aft) sweeps out the positive J -switch accessibility region only.

This result stems from Roses's work and the descriptions of the loei
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given above. Every other Lj similarly sweeps out its own correspond-
ing accessibility reglon only. This gives the result that the loci are
mutually exclusive of one another when discrimination is based on .
theinitial sign of forcing and of number of switches.

From the uniqueness and space-filling properties of the families
of positive and negative continuous arcs used in the continuous process
of constructing the Li 5.is obtained the result that each L% is
continuous and devoid of holes. Each Lf is then a portion of a
hypersurface.

Inspection of the locus equation shows that, for Jdn and

a fixed AT,
1 —
un o= L] (3.91)
Aﬂkq - AY ,
and
1 =+
1im L, = LJ._‘ (3.92)
A-\(“I =0 ’
Let

J
_ 1 .
|_3 = Zl_b s Mn-i>J >0 (3.93)
i=o

Equations (3.91) and (3.92), together with the locus properties pre-

viously noted, tell that, for J4™Mm and a fixed A , L; isa
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closed n-dimensional hypersurface of the n-dimensional phase space.
L_“_\ is, then, a closed (n-1)-dimensional hypersurface of the
n-dimensional phase space which completely enclosés a portion of the

n-dimensional space.¥

¥ It is interesting to note that that L,_, 1is devoid of ‘holés tcan be
seen as outlined below:

Take an L..,(0,AY) for a certain AY , and let there be a
hole in an L% or an j making up the Lw., . From every point of
the accessibility region containing the J ~switeh locus chosen there
is & unique minimum-time path to the origin, and a family of initisl
arcs of the same forcing fill the region. It is easily seen that
each of these initial arcs can intersect the J -switch locus no more
then once, Therefore, the J -switch locus is oriented so that at
least one of these ares will go through any hole. Take one such
arc and construct from it the unique minimum-time path to the origin.
Then starting at the origin and moving along this path backwards in
time, back along the initial arc if necessary, eventually a point can
be found from which the travel time to the origin is greater than the
A of the chosen Lw., . On the path between this point and the
origin 1s a point from which the travel time to the origin is equal
to the a of the chosen

If this point is on one of the lower switch locl for the chosen
AY , following the unique minimum-time path backwards in time causes
one to go outside Lw-1 at the point; movement on an arc intersecting
Lw-, 18 from outside to inside in the forward time direection.
Direction of movement through a hole in Lw- can be given the same
inside~outside orientation. Continuing back in time the path neyer
goes back inside Lw-, , so the point must be in the J -switch accessi-
bility region for a minimum time path to the origin to be constructed
from the initial arc through the hole. But the | -switch locus was
constructed to contain all such points in this region. Therefore,
the initial arc must intersect the chosen J -switch locus at the
point rather than pass through a hole.
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For the case considered,Zy is the origin, and

Um  L.,= Zy (3.94)

AT > O

As AU increases without limit Lo sweeps .out the entire phase
space.* As Lt passes over any point iﬁ the space the instantaneous AY
is tha{; for the minimum time path from the ppint to the origin. Any path
from the point to the origin of more then n-~1 switches will have a greater
travel time, Thus, it is easily seen that higher-switch loci are within the
n-dimensional region enclosed by the L., for the sameAX,

That this locus property extends to the case of Zp's other than
the origin is easily shown. An Lw.(O,(A),) is taken for a fixed A, and
an L. (0,(A0),) is taken for a lesser AC. The Lw.(Z;A) for any point
on the L“_‘(o,(At),,) is completely within the region enclosed by the
Lwo,(aY),)  ,AY being the difference between (AL ), and &Y),. The
seeanci térms on the right side of the loci equations are available for
comparison, .Doing the seme thing for a Z¢ off the origin gives the stand-
ard translation terms, and the second terms on the right side of the loci
equations are the same as those for the case of Zs &t the origin, So,
higher~switch loci are witﬁin the region ‘enc‘losed by | w.. for the same
AU for any Z+,

Lastly, w1 4is used in the swept locus switching scheme

for a known input signal, For a continuous input phase path in the

¥ The uniqueness of minimum time paths from each point in the space
to the .origin shown by Rose results in the Lw-i's being mutually
-exelusive when discriminated between .on the basis of travel times.
Consideration of two Lw. 's of almost equal travel times will then
show that the Lw.'s are topologically equivalent to hypergpheres.
In turn, an Ly or"; can be .sqen as topologically equivalent to a
bounded portion of a hyperplédnec. .
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n-dimensional phase space the input signal must be a function of time of
class Cn‘l.‘ The swept locus switching scheme will approximate minimum
time interception for such input signals.

Input Prediction

In order to apply the switching technique developed
above to a contactor servo faced with an input signal not known as a
function of time, the future input information (previously assumed known)
must be furnished by a prediceting mechanism operating on the present and
past input signal. The problem is compounded by the fact that thé input
signal may be corrupted by a noise component@5)00nsiderable’literature
has been published on the subject of prediction theoryt26:2M)mch of 1t
traceable in concept to Wiener's work(25). Generally, the published
theories have been derived for fixed prediction times, whereas the
switching method of this paper requires sweeping through a range of
predicting times. It is not the intent here to attempt derivation
of a new theory to facilitéte design of a mechanism for such swept pre~
diction. Rather, utilization of the existing work to approximate swept
prediction will be discussed briefly.

The prediction problem is often considered in two parts, the
first of which is the defining of optimum prediction for the application
under consideration. The prediction error is defined as the difference
between the desired or perfeét prediction and the actual output from the
predictor. Here, it must be ﬁoted, that the quantity being predicted
may be some function of the input signal rather than the value of the
input signal itself. Minimization of some funetion of the prediction
error is usually taken as a definipion of optimum prediction. The best

known example of such a definition is that calling for minimization of
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the mean square prediction error. The second part of the prediction
problem consists of using all known information about the input signal

to determine the description of a physically realizable optimum prediector
for the input considered.

The actual mechanism doing the predicting may operate by com;
bining the operations of extracting desired input information from a
noisy input signal and of extrapolating the input information into the
future. The two operations also may be done separately. This would
be the case if one mechanism extrapolates the input into the future as
a function of time of known form by using function parameters extracted
from the noisy input signal by another mechasnism. Bloek diagrams of
‘predicting systems with swept prediction time using predictors of the
two types mentioned are shown in Figures 3.16 and 3.17.

Figure 3.16 shows & system using predictors of the first type
mentioned. OSweep time is not swept continuously, but is stepped through
the sweep range. There is a predictor for each desired function of the
input for each step of sweep time. Predicted values are transmitted to
the locus computer through the ganged commutators. Needless to say,
very small sweep-time steps would‘make such a system rather complex.

Figure 3.17 shows a system using predictors to extract present
input values from a noisy signal and a series extrapolation for future -
input values. Other extrapolation functions could be used dependent on
the input signal. An elementary series extrapolation method was used

in the computer study described in Chapter IV.
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Figure 3.16 Prediction with Commutated Filters
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Figure 3.17 Prediction with Series Extrapolation.

Although in the systems diagrammed only input displacement
and derivative values are predicted, it is conceivable that the pre-
dictors coﬁld be built to predict desired functions of these variables
instead. Such a device would perform some of the functions of the locus
computer, and it is possible that better locus approximations might be |
achieved. However, such a system concept for the combined predictor and
locus ‘computer would be expected to give different designs for input
signals with different characteristics. This could be an economic dis-
advantage for the combined system when comparing it to a system con-

sisting of a fixed locus computer and a separate input-dependent predictor.
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To obtain the best design for an actual application, it is believed
that the problem would have to be considered on an overall basis to
include the first step of defining optimum prediction. It is, in fact,
quite reasonable to state that in the designing of a predictor and
locus computer system for a practical servo the non-ideal character-
istics of the overall servo system would have to be considered. Bass's
work(l6) mentioned in Chapter I, would be very useful in these

considerations.



IV. COMPUTER STUDY

This chapter describes an electronic analog computer study
which was carried out to check the theory of Chapter III. The study
was also expected to point out some problem areas inherent in a swept-
locus switching scheme. The systems studied were the two second order
contactor servos whose loci were determined in Chapter I1I. Switching
mechanisms were operated on the basis of having a known future input
signal and on the basis of performing a very simple prediction of the

future input signal.

Locus Determination

The idea of the swept-locus switching scheme is to determine
whether the output phase point is on the positive or on the negative
iocus corresponding to earliest interception of the input phase point
using perfect switching. Then, having determined the locus, forcing
of the same sign is applied to the system until a later sweep shows
the output phase point to be on the locus of the opposite sign. For
the output phase point to be on one of the loci its coordinates will
satisfy one of Eqpations(3.ll) for the contaetor servo With inertia
only. These equations are repeated here slightly rearranged to define

functions L' and ‘U

_ r[e’-(;c:’rzmﬂz. {; fms (AT)J (4.1)“

L' is defined using the top row of signs; l” , the bottom. If L¥=0O

with the appropriate input and output values inserted, the output phase
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point is on the curve which includes the positive locus. Such a curve
is shown in Figure 4.1 (A) as a dashed line. However, the positive
locus for the case shown is only that part of the curve which forms the
left boundary of region V of the figure. In like fashion, L= = O
indicates the output phase point to be on the solid curve which inéludes
the negative locus on the right boundary of region V.

To locate the output phase point as being on either the left
or right boundary of region V the behavior of region V is considered.
At the initial instant of a sweep, when .Al;=0O, region V is merely
the instantaneous input phase point. As A¥s is increased, region V
expands and, in general, moves about the phase plane. Initially the
output phase point is outside of region V. Eventually, if interception
is possible, the output phase point will be inside region V for some
period of time. Finding which boundary, right or left, that it crosses
to go from outside to inside solves the problem. The possibilities of
the output phase point merely touching the boundary of region V and not
going in or moving inside through the intersection points of =0
and |==0 are not copsidered in the study for the following
reasons: The first represents‘ﬁhe case of interception at a point on
the input phase path after which the servo cannot follow the input.
Interception with the possibility of following the input for a period
of time was considered preferable. The second possibility, entering
region V through a particular point on a locus curve, would have zero
probability for the perfect switch servo. For a practical system,
the probability could be made arbitrarily small by increasing the

gsensitivity of the device for determining boundary crossings.
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The logic of the scheme used in the computer study for this
boundary crossing determination is relatively simple. To get into
region V, the output phase point comes from either region I or region
ITI. In region I, both ¥ and U are greater than zero. In region III,
they are both less than zero. In region V, L= is greater than zerb,
but ¥ is less than zero. As the output phase point crosses the posi-
tive locus between regions I and V, |Y changes from positive to nega-
tive, but LU stays positive. So, let there be an indicator which
exhibits a positive signal, while the output phase point is in region I
where both L's are positive. When ¥ goes negative, but L stays
positive, the positive signal is then read from the indicator. The
sweep is then stopped and repeated. If the output phase point moved to
region IIT via region II or IV rather than going into region V, the
indicator should exhibit a negative signal when both L's are negative.
If the output phase point then crossed the negative locus, the indi-
cator would be read as the positive L , and negative * condition of
region V is obtained. The indicator would not be read under the con-

dition of >0 and L°< 0 for the output phase point in region

IT or IV,
Summarizing:
'>o , U>0, for positive ‘indication;
*< o, <o, for negative indication;

read indicator as 1< O ;, U>0O condition is reached;

having read, stop the sweep and repeat.

For the contactor servo with inertia and viscous damping =
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and = are defined using Equations(3.29). These give

12 = Zz—[ih(gs % f)exp(Q.ATs)]i'Zexp{i' %‘[Z,"(l?s t ATS)}} . (k2)

With the L's so defined, the locus determination pattern given at the
end of the preceding paragraph holds for this servo also. This may

be seen by using Equations(4.2) and Figure 4.1 (B).

Input Information

The L 's are computed from the instantaneous output displace-
ment and velocity values, the instantaneous value of sweep time increment,
and the input signal displacement and veloclty values corresponding to
the swept time. In the computer study, output values were taken from
the appropriate computer amplifiers, and sweep time increment was
taken from repetitive integration of a constant voltage. However,
inpuf values for the known input case were obtained by a more round-
about method because of a limited availability of function generation
equipment and a desire to avert the differentiation noise problem.

The input velocity was set on function generators. Appropriate swept
input velocity was then read directly, and the swept input displace-
ment was obtained by integration.

The idea of the integration process used can be explained
using Figure 4.2. Initial problem time is shown as¥,, and instaﬁ—

taneous time as ¢ .
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The instantaneous value of the change of input position from the

initial input position,

OF = §-F, (4.3)

1s represented by the area with negatively-sloped cross-hatching
between T, and T . For the cases studied f,= 0 was used, so
the area actually represented f .

Time corresponding to the initiation of a sweep is shown as
'Cos , and the instantaneous sweep time as Y3 . Instantaneous sweep

time increment is, as before,

Ats = 'tS = t . (l"oh‘)

Let V" be the ratio of sweep time rate to problem time rate,

both rates being constant. Then,

X, - X
Y = =32 (4.5)
T - Tos
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cand

NG = Y (T-,) (4.6)

For the sweep to scan a reasonable portion of the future input signal

while the input phase point travels only a negligible amount,

Y>> (h.7)

Let the area on the figure between Y, and Us shown with
positively-sloped crosshatching be called AZ{ . Let the overlap of the
Af and Af areas, that doubly cross hatched area between U and G

be called A;f . Then, as can be seen from the figure,

fo=f. v nf+0f - AF (4.8)

AS ,Af , and Af may be expressed as

T

Af = Sm) dx (+.9)
7Z‘O
Xs T

Aj C = SHI) Ch:' = (Y+ D S{I[Tos-*(\(} D(\C-tosﬂdt’ (ll-.lO)
Uss Los

and

T

af = [FOdy (1.22)
Tos

The (Y'+1) 1in the argument of the integrand of Equation

(%.10) is due to the fact that the argument is swept through at a rate
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equal to the sum of the rates of problem time and sweep time. The
(Y+1) factor multipiying the integral scales up the [&f value
accordingly.

Equation (h08) was approximated in the computer study by
letting Y+|=Y in the multiplicative factor of Equation (4.10) and

T =Tes 1in Equation (4.11). There, then, remains

R R
fo = f* 5{’(?:) dx + YS §’[TOS +(Y+I)(T—\cos)] dr . (k.12)
-ro

oS
For constant position and constant velocity inputs, Equation

(4.12) is exact.

Computer Circuits

It is believed that an explanation of some of the computer
circuitry used is in order. The computer solutions were run in slow
time. Three ratios of seconds of computer time to units of U time
were used. The servo with inertia only was simulated using a 20:1
ratio, a 10:1 ratio was used for the damped servo with prescribed
inputs, and 5:1 for tﬂe damped servo with predicted inputs. The symbol
A indicates the ratio in thé circuit diagrams.

Symbols used in the sample circults of Figure 4.6 through
Figure 4,13, are shown in Figure 4.3. The "Reeves" symbols refer to
REAC Mod C10l computer and Mod S101 CO50 servo components of the Reeves
Instrument Corporation. "Goodyear" symbols are for GEDA L-3 and N-3

components made by the Goodyear Aircraft Corporation. "Philbrick"

symbols are for GAP/R K=3 components made by George A. Philbrick
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Researches, Incorporated. 'The differential relay was a locally fabri-
cated item at the Air TForce Institute of Technology.

The symbols refer to standard computer components except for
the high gain A-box shown in the Philbrieck section of the figure. The
standard Philbriék‘A-box used consisted- of a summer stage and an in-
verter stage. TFor the high gain A-box, a voltage divider was inserted
in the feedback of the summer stage as pictured in Figure 4.4. The
voltage divider raised the gain across the summer stage by a factor of
approximately five hundred, so that a very small net voltage at the

input of the summer would saturate the A-box.

28 — 4

QUTPUT

28

—)

OUTPUT

Figure 4.4 High Gain A-Box

The functional operation of the computer circuits used is
shown in block form in Figure 4.5. During a locus'sweep, the sweep
box feeds the sweep time increment into the input block for use in
determination of f; and f . It also feeds a¥; to the third block
where it is combined with ﬂ R ﬁ , B , and Ey to continuously form

' and .. The [* and | values are monitored by the fourth block
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in accordance with the locus determination pattern given above. When
the locus decision is made, it is passed on as a command to the forcing
block which, accordingly, either maintains itsrsame forcing on the con-
trolled system, or switches the forcing. The decision information is
also passed back to the sweep block which then deactivates the decision
block and resets the input block for a new sweep. At the end of the
reget period, the sweep block reactivates the decision block and
initiates a new sweep.

The sample circuits begin with Figure 4.6 which shows the
simulations for the output data of the two servos studied. The circuits
are straightforward second order systems with forcing signals applied
at the left ends.

Figure 4.7 shows two sweep circuits used. Part (A) of the
figure 1s the sweep circuit for known inputs. Replacing the dashed
portion of part (A) by part (B) gives the sweep circuit used in the
predicted input work. Considering part (A), it is seen that the (-)
output, the output of the summer stage, of the high gain A-box is
saturated negativeﬁy during a sweep. The (+) output is saturated posi-
tively and is fed into the clamping terminal of the upper J-box. The
J-box output is then clamped at zero. The V-box has zero output until
a decision pulse arrives later during the sweep. The high gain A-box
and potentiometer combination acts as a bistable flip-flop as shown by
Howe(28). The operational amplifier without feedback of Howe's paper
is replaced by the modified summer stage here. It was necessary to use
the modification described above for the high gain amplifier in order
to overcome the effects of positive feedback in the Philbrick ampli-

fier. The (-) outﬁut of the high gain A-box feeds into the dashed
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A-box which feeds a GEDA limiter circuit. The limiter is adjusted so
that the following J-box sweeps ﬁsz at the desired rate. The J-boxes
used were set for the same integration rate as the REAC and GEDA inte-
grators, but it was found that their rate, although constant, was not
the same as that of the others. The limiter output was set accord-
ingly. The (m) output lead to the clamping terminal of this J-box
activates it during sweep. The (-) output also feeds the two A-box
half-wave rectifier which furnishes the activate-deactivate signal for
the decision block. This rectification action was also described by
Howe(28)a

When a decision is made, a positive or negative pulse 1s
sent to the V-box, which then feeds a negative pulse to the high-gain
A-box. The pulse overrides the potentiometer output, and the flip-
flop reverses., The half-wave rectifier output then deactivates the
decision block. The (-) output of the high-gain A-box clamps the dashed
J=box, resetting the input block. The (_) output feeds the then acti-
vated upper J-box through the C-box. The J-box output builds up until
it overrides the potentiometer output and the flip-flop reverses to
its original state for a new sweep.

In the circuit of Figure 4.7 (B), A¥s is not clamped to zero
during the reset period but merely decreases, as the integrator has an
input of opposite sign. The first limiter controls both sweep rate
and reset rate for ATs . The second limiter merely prevents AUs from
going negative in case that might give a false decision.

Figure 4.8 is the circuit for determination of swept input

values., It operates in accordance with Equation (4.12). The A
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symbol refers to the last term of Equation (4.12). The J-box is clamped
by the (-) output of the sweep circuit high-gain A-box.

Figure 4.9 is a stréight forward circuit utilizing summers and
electronic multipliers to form Et and |© for the servo with inertia
only and a known input.

Figure 4.10 illustrates Ef and | computation for the servo
with inertia and viscous damping and a known input. The exponential
terms required were approximated by the first four terms of the expo-~
nential series;

(X):f+x+—éf+%3+.... (%.3)
A value. of l/S.Was,used.for the dampingAparameter,Og,

Figure 4.11 is discussed in the section on the prediction
problem.

The decision circuit is drawn in Figure 4.12. The two ampli-
fiers on the left of the figure are connected as damped linear second
order systems, and serve as low pass filters. Such filter analogs have
been described by Nichols and Rauch(ag). The circuits used have damp-
ing ratios of .71, undamped natural frequencies of 60 radians/seCOnd,
and gain constants of 1. The two differential relays are thus fed L
and | values free of much sixty eycle noise.

To describe the action of the decision circuit, let L~
and L= both%be positive, the output phase point being in region I of
Figure 4,1.  The output of the |- differential relay is then Tifty
volts positive, while the L* differential relay has a zero output.

The positive fifty volts causes the output of the flip-flop formed with

the high-gain A-box and the C-~box to be a positive twenty volts.
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This positive twenty volts is connected to the upper terminal of the
third differential relay. This differential relay, however, has a zero
output, for its input from the previous summer amplifier is a negative
twenty volts, which is more positive than the negative thirty volts on
the other input terminal. As the output phase point moves into region
V of Figure 4.1, the ¥ aifferential relay output becomes a negative
fifty volts. The flip-flop does not reverse, as this negative voltage
to 1ts input is cancelled by the positive voltage to its input from

the | channel. The output of the summer feeding the third differential
relay changes to a negative forty volts causing the relay output to be
connected to the upper terminal. Thus, the deeision for positive
foreing is made.

The succeeding amplifier changes the positive twenty volts
to a negative forty volts which is fed to the V-box of the sweep circuit.
As previously described, the sweep circuit then sends a large negative
voltage to the summer before the third relay. The differential relay
output then returns to zero during the reset period. The deactivating
signal is removed as the next sweep starts. A negative decision is
describable in similar fashion.

The decision pulse from the last amplifier of Figure 4.12 is
fed to the input of the flip-flop of Figure 4.13 which maintains the
same forcing value until a pulse of the opposite sign causes it to
reverse, The four amplifier cirecuit following the flip-flop is a stand-
ard REAC limiter circuit. The output of the final pot is fed to an

output circuit as shown in Figure 4.6.
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Figure 4.8 Input Circuit.
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To complete the discussion of .the computer circuits, mention
should be made of two operating adjustments found useful., Normal
balancing procedures were also used, of course. The circuit for the
case of the servo with inertia only was adjusted on the basis of its
response to a zero input signal. The D and 3' values were adjusted
manually to arbitrarily move the outpgt phase polnt asbout in the phase
plane. This was done until it was at a location in the plane where
the decislon mechanism would give forcing decisions of either sign.
Several such points were located which then fixed the computer switch-
ing curve in the phase plane. It was found the computer switching
curve was quite close to the thegretical one for the zero input. A
less than one percent variation of one of the .5 megohm input resistors
of the output amplifiers of Figure 4.9 virtually removed the difference.
Varying these resistors varies the rate at which the parabolas con-
taining the loei open up. Thus, the intersection points of the two
parabolas which deseribe the switching curve are also varied.

The eircuit for the serve with inertia and viscous damping
was also checked against a zero input response. In this case, actual
operation of the circuit resulted in & limit cyele action about the
origin of the phase plane as expected. The size of the limit cycle was
decreased to an acceptable value by about a one~fifth of.one percent
adjustment to the potentiometer shown feeding the .2 megohm input re-

sistor at the left of Figure 4.10.

Known Input Study

Using the computer circuits described above, the transient

behavior of the two contactor servos with swept-locus switching was
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checked. Relatively simple input signals were used. Computer runs
were begun with initial separation of the input and output phase points,
and recordings were mede of system behavior until approximate- inter-
ception was obtained. A linear mode for small error,error-rate condi-
tionsvwas riot used. The recordings consisted of two phase plane plots
and a displacement, time plot. The three plots were made simultaneously
for each run. Phase plane plots were made on two Model 205-G Vari-
plotters made by Electronic Associates Incorporated, and the time plots
were made on a Model 1 Autograf recorder made by F. L. Moseley Company.

For the contactor servo with inertiad only, error,error-rate
and output displacement-velocity phase plane plots were made. An Y
of two hundred was uéed. Recordings are showh in Figures 4.14 through
h.?h for this servo. The response to a constant input is shown in
Figures 4.14% through 4.16, and comparison with Figure 2.2 indicates
satisfactory resulté were achieved. Worthwhile noting are the larger
displacement overshoots for the runs in which switching occurred at
higher velocities. For these runs, the time for each sweep was longer
near the switching boundary than for those ruﬁs which switched closer
to the origin. This longer time between decisions and the higher
output veloeity, naturally, combined ta give greater overshoots of the
switech boundary. The same effect is seen in the ramp input plots.

Figure 4.21, the error, error-rate plot for the parabolic
input, shows trajectories corresponding to sums and differences of the
input ahd output accelerations as prescribed by Equations(2.3).

Figure 4.23 is the displacement,time plot of an input signal

composed of parabolic arcs. The input veloeity function was put on
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Figure 4.16 Time Plot of Response to Constant Input,
Contactor Servo with Inertia Only,
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Figure 4.19 Time Plot of Response to Constant Velocity
Input, Contactor Servo with Inertia Only,
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Figure 4.22 Time Plot of Response to Parabolic Input,
Contactor Servo with Inertia Only.
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Figure 4.23 Time Plot of Response to Varied Input,
Contactor Serve with Inertia Only.
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the two GEDA function generators. Close agreement between the two was
obtained by setting the function up on both generators, plotting their
outputs versus their inputs on a Variplotter, and then causing the plot
of one output to coincide with the plot of the other by systematically
adjusting the first function generator's setting knobs. The error,
error-rate plot, Figure 4.2k, points up the deficiencies a switching
system based on a fixed errory, error-rate plane switch boundary would
have for such an input.

For the serve with inertia and viscous damping, phase plane
plots were made of the output varisbles in the displacement-velocity
plane and in the principal coordinate plane. Input signal velocity
was kept well within the servo veloeity limits to hold down the tran-
sient time. AnY of one hundred was used. Plots for this servo are
in Figures 4.25 through 4.32. In general, the plots validate the theory.
The overshoot for the more arbitrary input signal of Figures 4,31 and
4,32 is larger than desired. Much of this trouble is believed due to
the fact that the function generator used for ‘ﬁ did not maintain a
steady setting, so that the swept loci were in error. The approxi-
mations for the exponentials contributed to the error also. It appears
that this effeet diminished with diminishing sweep time, for the output
came into the input curve in goed fashion after the overshoot. The
reason for the malfunction of the generator was not found before the

author's computer time ran out.

Simple Tnput Prediction

Ags a first look at applylng the swept locus switching scheme ‘

to the case of an arbitrarily varying input signal, a very simple
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121

Figure 4.27 Time Plot of Response to Constant Input,
Contactor Servo with Inertia and Viscous
Damping.
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Figure 4.30 Time Plot of Response to Constant Velocity
Input, Contactor Servo with Inertia and
Viscous Damping.
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Figure 4,31 Time Plot of Response to Varied Input,
Contactor Servo with Inertia and
Viscous Damping.
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prediction scheme was combined with the swept-locus cireuitry to check
gystem responses to sine wave inputs. The prediction used was to ex~

trapolate f; as

2 i
f= £+ s+ Bl g (k.14)

and f; as

=4+ Ao £ (4.15)

Sine wave inputs were used because of the ready availabllity of f, §!
and f* from the usual computer sine wave generator. Thus, for the
study, the practical noise difficulty due to differentiation was
eliminated.

The circult representing the combined input and T,
blocks of Figure 4.5 for the serve with inertia only is shown in
Figure 4.11. Prediction was done both with and without the f” terms
of Equations (4.14) and (4.15). Eliminating these terms was merely a
matter of removing the servo multiplier from the circult of Figure 4.11.
A circuit combining features of Figure 4.11 and Figure 4.10 was used
for the servo with inertia and viscous damping.

Displacement, time plots for the servo with inertia only are
shown in Figures 4.33 through %.35. Part (A) of each figure is for
prediction without the ¥ terms; part (B), with the {" terms.

Figure 4.33 i.e., the case of maximum input acceleration equal
to one-half system output acceleration, indiecates that the more sophisti-

cated prediction probably gives a better transient response in general.
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Figure 4.33 for maximum input acceleration equal to eight-tenths output
acceleration appears to give the same impression. Extended runs of

the seemingly divergent output trace in part (A) showed that the amp-
litude of the output did not continue to diverge. The amplitude did
not assume a steady state value, however. The corresponding trace

of Figure 4.35 showed similar behavior for the equal acceleration case.
In part (B) of Figure 4.35 can be seen effects due to sweep saturation.
The maximum sweep time increment was sometimes not long enough to
allow a forcing decision to be made near a peak of the input wave where
input acceleration was highest. The forcing from the previous sweep
was carried over although in error for the new sweep. For the study,
the sweep circuit was turned on and off manually durihg the divergent
periods. Eventually, as the input acceleration diminished, the sweep
circuit was able to function properly. It seems reasonable that for
input accelerations temporarily greater than output acceleration, the
condition would be aggravated. For general inputs, a more sophisti-
cated prediction method would probably be in order.

For the servo with inertia and viscous damping the additional
factor of output velocity limitation was naturally introduced. The
sinusoidal inputs used were chosenkwith maximum velocities equal to
the limiting output velocity levels. Two values of maximum acceleration
were then selected. Figure 4,36 shows the case for maximum input
acceleration equal to one-half maximum output acceleration. Predic-
tion using the f” ﬁerms appears to decrease transient error better
initially. As the solutions were run faster for this servo, forcing
decisions were relatively farther aparf. It is believed this accounted

for the "bumpiness" in the output curves.
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Figure 4.33 Responses with Prediction and Maximum f" = .5,
(A) Ramp Extrapolation, (B) Parabolic Extrapolation.



~131-

]
21
o4
(A)/ 5 Ifo N5 20 T
0 .
o
'--
(B) / \/ \/ |

Figure 4.34 Responses with Prediction and Maximum f" = .8,
(A) Ramp Extrapolation, (B) Parabolic Extrapolation.
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Figure 4.35 Responses with Prediction and Maximum f" = 1.
(A) Ramp Extrapolation, (B) Parabolic Extrapolation.
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Figure 4.37 for maximum input acceleration equal to seven=
tenths maximum output acceleration shows extreme sweep saturation for
the parabgliec extrapolation of the input.

One other item concerning the prediction study is worthy of
note. As mentioned previously, A¥s was not swept from zero each sweep-
by the prediction sweep circuit. Instead it was decreased at a constant
rate during the reset period t¢ a value greater than zero, so that the
early and useless portion of the sweep was neglected. This would
allow less time between decisions. It was found that a difficulty could
be encountered here if the swept ZYES did not decrease enough during
the reset period to be below the AUs corresponding to the decision

on the next sweep.
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Figure 4.36 Responses with Prediction. Maximum f' =
Maximum @' and Maximum f" = .5, (A) Ramp
Extrapolation. (B) Parabolic Extrapolation.
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Figure 4.37 Responses with Prediction. Maximum f' =
Meximum ©' and Maximum f" = .7. (A) Ramp
Extrapolation. (B) Parabolic Extrapolation.



V. CONCLUSIONS

In this study, a new approach to the problem of determining
switching criteria for optimum performance of contactor servos has been
introduced. This swept locus switching concept is applicable to more
general inputs than are the switching boundary schemes in the litera-
ture. The switching boundaries developed have been limited to those
for step or ramp inputs, whereas swept locus switching has been shown
to be applicable to any input functions of time of class Cn”l for
the servos analyzed, n being the order of the differential equations
of servo action.

The swept locus method was developed for inputs known as
functions of time. The method takes advantage of the available future
input information, in effect allowing the servo to "see" more than a
constant position or constant velocity extrapolation into the future
from present values. It is suggested that the general input signal,
known only in the past and present, may be handled by a swept locus
system using predicted input values.

The swept locus scheme is admittedly complex, but so is the
optimum switching problem. The scheme is simplified by realizing that
the switching of an actual servo may be treated by rgpetitively solving
for the initial forcing of an (n-l)nswitch program. High repetition
rate, accurate locus computers, and a sensitive decision device would
give a good approximation to optimum switching. Consideration of the
initial forcing only would simplify the switch boundary analyses also.

However, the author has not seen this idea stated or used elsewhere.

=136~
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The servos analyzed have differential equations

D*O = *| (5.1)

and

D<D+K27(D+K3>~---<?+Kh) =% (5.2)
where the K's are distinet positive real constants. For these servos,
the loei for switch programs of (n-1) or less switches have been shown
to be (n-1) - dimensiénal»Hypefswrfaces_tqyglogically equivalent to'hy-
perspheres in the~ space of output position and derivatives used for
the analyses. It has been shown that the loci are on gurfaces of in-
variant functional form in the phase spaces. These surfaces merely
translate in the space as the input signal varies. This invariance of
the functional form of the surfaces simplifies computer conmstruction.

The computer study of the two second order systems showed
that near optimum switching prognams were obtained using the swept locus
scheme, thus validating the theory. DPossible practical preoblems of
computer saturation were noted when imperfect input prediction was
used. An automatic sweep reset device would help remove the trouble.

It is believed that it would be advantageous if switching
for other types of contactor serves were analyzed on a locus basis.
For the real root cases, this should not bq difficult. The complex
root cases aré probably more difficult. The author has graphically

analyzed a second order servo with differential equations

(DO = | (5.3)
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and found the locus approach applicable. Programs of more than one
switch were found to be necessary, however.

Possible simplifying approximations for the loci might make
this approach easier to mechanize for a practical servo system. Special
computing components would help also. |

For arbitrarily varying inputs, the prediction problem, only

hinted at in this study, would need a great deal of study.
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