THE UNIVERSITY OF MICHIGAN

COLLEGE OF ENGINEERING
Department of Aerospace Engineering

Final Report

PANEL FLUTTER OF CYLINDRICAL SHELLS

\
W. J. Anderson

<

ORA Project 08079

supported by:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GRANT NO. NGR-23-005-166
WASHINGTON, D.C.

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOCR

August 1967






PART A



AEROELASTIC STABILITY OF PLATES AND CYLINDERS

William J. Anderson

The University of Michigan

ABSTRACT

Linear stability criteria are presented for the panel flutter of
thin plates and thin-walled cylinders. These structures are exposed to
fluid flow passing parallel to an outer surface. The expression for
fluid pressure is simplified in order to emphasize the dynamic proper-
ties of the systems. The pressures are derived from steady flow rela-
tions (frequency effects are ignored). An arbitrary spatial phase angle
is included in the pressure expression. As this phase angle is varied
in a continuous manner, the fluid flow passes from "subsonic" character
to supersonic character. The results are useful in classifying several
types of instability and discussing several pathological cases which
are usually treated separately.

The analysis is intended to serve as an aid to understanding the
mechanism of panel flutter; however, it can be applied directly to
several problems. It is accurate for the static divergence and "coupled
mode" flutter of flat panels in supersonic flow, and also for divergence
problems wherever experimental measurements can supply the values for

the necessary aerodynamic parameters. One result is to point out the



importance of static instability for flat panels in a transonic viscous
flow. A second result is to illustrate that the asymmetric divergence
of cylindrical shells is very sensitive to small changes in the pres-

sure distribution.
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Aerodynamic pressure parameter;
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Airy stress function
Panel thickness
Aerodynamic pressure constant, Eq. (5)
Length of panel

Mach number

Axial wave number

Number of modes

Axial stress resultant due to initial load
Circumferential stress resultant due to initial load
Aerodynamic load

Integer

Radius of cylinder

Time

Flow velocity

Panel displacement in transverse direction
Spatial coordinate, flow direction

Spatial coordinate

Kronecker delta

Amplitude constant

Angular coordinate
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Fluid density

Panel density

Axial stress in cylindrical shell due to shell motion
Spatial phase shift

Frequency, rad/sec
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1. INTRODUCTION

The elastic instability of thin panels exposed to fluid flow is
under intensive study at the present time. Typical problems involve
thin-walled structural elements with one surface exposed to fluid flow
essentially parallel to the surface. Figure 1 illustrates the flow
situation for a flat plate and a cylinder. The usual question of in-
terest is whether the elastic panels incur divergence (static instability)
or flutter (dynamic instability) at some value of flow velocity.

The fluid pressures exerted on oscillating panels are difficult to
derive in many cases. The role of fluld viscosity, frequency of oscil-
lation, and panel geometry have complicated panel flutter studies to the
point where the results are often difficult to understand.

The present study is based on an intuitive simplification of the
pressure distribution on the panel. It illustrates the effect of the
spatial distribution of pressures. The pressures are taken from steady
flow results and are hence independent of the frequency of oscillation.
The results are valid only for instabilities occurring at relatively
low frequencies.

An approximate solution is required because of the nature of the
assumptions on the pressures. These assumptions are equivalent to a
specification of the generalized forces on a discrete system. Galerkin's

method is used to pose the eigenvalue problem in matrix form.



2. TFLUID PRESSURES

The pressure expression used in this study i1s motivated by the so-
lution for flow over an infinitely long, two-dimensional stationary wavy
wall (Fig. 2). For the case of inviscid, isentropic flow, one finds

that a deflection

w(x) = ¢ sin%;—x- (1)

yields a pressure of the form

pU2 21 21X
P(X) = € ;—/ll\-?===l=| 7 cos <_B— + q) (2)
where V¥ takes the value O for a supersonic flow and n/2 for subsonic
flow. The solution is not valid near Mach 1.

The pressure expression given in Eq. (2) is "exact" within the
framework of linearized potential flow for the stationary wall under
consideration. We will view this expression, however, as an approxima-
tion which has been provided to describe a given physical situation:

a panel of finite length with viscous flow effects, real gas effects,
etc. As an example, for transonic flow, McClure[l] measured pressures
of the form

2
p(x) = 51— %g K cos <é%5 + ;) (3)

for a stationary wavy wall. The constants K and | are functions of
Mach number, fluid properties and wavelength. McClure found the ampli-

tude constant K to be near unity. His measured values of ¥ ranged from



20 to 45°. We hence see that values of ¥ lying between O and 90°
have physical significance in practical cases.

Iet us consider the pressure expression, Eq. (3) as sufficient for
our purposes. We will generalilze this expression slightly by using sub-
seripts to show the dependence of the constants K and y upon the wave-

length. TFor a given deflection of a wall

int X mix
w(x,t) = e L ey sin == (%)
m=1

one then has a pressure expression of the form

. 2 N
pt) - emy,—;z—usj IR (i"%— @
(5)

Note that each term in Eq. (L) represents a wave with length %?.
In the following examples, it will be assumed that the constants

Kﬁ and Y, are known. (This is equivalent to assuming that the generalized

forces are known for the discrete system.) For example, if slender

wing (Ackeret) theory were used for supersonic flow over a finite panel,

Eq. (5) would result with K =1 and ¥, = O for all m.

3, FLAT PANEL OF FINITE LENGTH

Consider the case of a two-dimensional flat panel exposed to
fluid flow over one surface Fig. 3. The plate is of uniform thickness,
length L and simply supported at both ends. The aerodynamic expression

of Eq. (5) will be used to provide fluid pressures above the panel.



The fluid below the panel is at rest and at the same static pressure
as the upper flow.

The equation of motion for small deflectlons of the plate 1is

L 2 2
D 2—% - Ny %—% + ph %Eg + p(x,t) = O (6)
X X

and the boundary conditions are

32w 3%
w(0,t) = w(L,t) = —-é(o,t) = ——Z(L,t) = 0
ox ox

The solution is assumed to be of the form

iwt mrx

w(x,t) = e a_sin ——

nM=

Galerkin's method ylelds a set of coupled, linear algebraic equations

of motion
N 2
Lo N4 2 )
LT g |(w)” ()T - AR sinyy - M| By (7)
+ AKy cos ¥y ny ol ey = 0 (¢ =1,2,...N)
where
N o Lt _
= Lm
3] ‘ﬁ'g“—§
m= - g if m + q is odd
n = <
A = ___EEELE__ e
[M-1| D 0 ifm+ q 1s even

and 6mq is the Kronecker delta.

This is a linear eigenvalue problem in the eigenvalue A. It is

non-Hermitian and hence in general we may have complex eigenvalues.



The characteristic polynomial is solved for the eigenvalue as a function

2
N L

D

of A and
To interpret the stability of the system, we must remember that

the frequency of oscillation varles as the square root of the eigenvalue:

W o« ?\.1/2

and hence

1/2

it

w(x,t) « e

The square root must be considered a multivalued function of the com-
plex variable A. If all eigenvalues A are real and positive, then neutral
stability results. If A is real and negative, static divergence occurs.
If N is complex, then flutter occurs.

Results have been calculated for the stability of a panel with no
membrane tension (NX = 0). Extensive experience with Galerkin's method
as applied to fourth order differential equations has shown excellent
convergence when four modes are used. Two-mode, four-mode, and eight-
mode calculations were used here; the results were found to converge
adequately.

The stability boundaries shown in Fig. 4 are from a four-mode
analysis. For this speclal case, the amplitude constants and the spatial

phase shift have been set equal for all modes:

K, = K = K5 = K = K
R A A T
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As @ result, the amplitude constent is easily incorporated into the
ordinate. The figure hence emphasizes the role played by V.

The panel is stable for sufficlently low values of A, regardless
of the value for ¥. As A increases, however, the panel becomes unstable
at some critical value of A. This can be either divergence or flutter,
depending on the value of V.

It is interesting that for ¥ = O ("supersonic" flow) only flutter
is possible. (Experimental evidence indicates that this theoretical
solution is correct for ¥ = 0.) Also, for ¥ = 90° (" subsonic" flow)
only divergence is possible. These limiting cases are well known. On
the other hand, for phase angles V¥ between 25° and 90°, one encounters
divergence first and then flutter.

The results for small values of V¥, say from 0° to LO° are important.
In transonic flow, for instance, ¥ depends upon boundary layer thickness,
fluid viscosity, etc. If a given test were carried out for varying
boundary layer properties, the type of instability might well change
from a dynamic type to a static type because of thils spatial phase shift.
(It must be remembered that the present analysis cannot predict the single-
degree~of-freedom type of flutter which often typifies transonic flow.
On the other hand, this analysis is "exact" for simply supported plates
which diverge and hence is sufficlent to predict static instability.)

For phase angles ¥ near 90°, one finds that increasing dynamic
pressure causes first a static divergence, followed by dynamic instgbility

and finally a static divergence. This might be a confusing factor in

11



gsome subsonic experimental work, where spatial phase angles might be

near, but not exactly, 90°.

4., ASYMMETRIC FIUTTER OF A CYLINDER OF FINITE LENGTH

The stabllity of a finite elastic cylinder Fig. 1 will be investi-
gated in the same spirit as the flat panel. The shell is of uniform
thickness and unstiffened. Conventional cylindrical coordinates X,

r, © will be used. Donnell's cylinder equations are adequate to describe

the deflections of interest here:

2 N2 2 2
Dv)"rw_]_\]xé%hy_g.a__w+.];§_§+psh.a__%+p(x,t) = 0 (8)
o> R a0° By dt
En %W _
\71‘1?-—1%-8}(2 = 0 (9)

The boundary conditions are taken to be the freely-supported case:

0 (at x = 0, L)

<
I
=
1}
ol
1l

Q
1]

Again, for a deflection of the form

w(x,0,t) = % cos 10 sin n_rtfc_

the fluid forces will be taken as

2

QU
Tpé - 1]

o(x,0,t) = el (cos n0) Ky P cos (BE + ¥

If one again applies Galerkin's method to the equations of motion
(8) and (9), one obtains a system of linear algebralc equations

12
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Al % -3k, MR gin g 5
D - N - By = sin Wy qm
~ R

where
~  pghoPRY
A o= —p—

A = TR
Y -1 D

and Ngm 1s defined as for the plate.

These equations can be solved for the eigenvalues % as a function
of the fluid dynamic pressure ratio 2 and the phase shift Y. We will
consider numerical results for s case corresponding to wind tunnel

tests carried out by Olson [2].

Ny = O
N, = 0

R = 8.00 inch
h = 0.004 inch
4 = 15.4 inch
v = 0.3

n = 28

We will again choose

Ilfl = \L{e = .« e \Lrn =
K] = Ko = ...K; = K

13



The results for a four mode solution are given in Fig. 5. Here
it is seen, as for a flat plate, that for ¥ = O only flutter can occur.
For values of V between 60° and 120°, there is an unexpected result.
The case of static divergence does indeed occur, but at relatively large
values of K. In this case, if ¥ is not exactly 90°, then flutter can
occur at much lower values of A.

This analysis shows the danger inherent in using an aerodynamic
theory which predicts that ¥ = 90° exactly. Resulting calculations
might not reveal a flutter situation which occur at a much lower dynamic
pressure ratio.

Note that the flutter boundary is very insensitive to changes in
¥ from -30° to 60°. This means that the details of the pressure distribu-
tion on the cylinder are not of much importance in the stability analysis.
This explains why one of the simplest aerodynamic theories, Ackeret
theory, can be used with success to predict cylinder flutter which occurs

at low frequencies [3].

5. CONCLUSIONS

The appearance of a spatial phase shift as a free parameter in the
fluid pressure expression results in some new observations. It il-
lustrates the change, in a continuous manner, from subsonic (or slender
body) flow character to supersonic character. The intermediate values
of the phase angle have physical application to the cases of wviscous

transonic flow over flat plates and supersonic flow over cylindrical

shells.
14



The analysis is limited to two types of e}astic instability:
coupled mode flutter snd divergence. The study cannot predict single
degree-of-freedom flutter because of the use of steady flow relations
for the fluid forces.

Several examples were studied in which the pressure amplitudes K
were ldentical in all modes and the phase angles VY, were identical in
all modes. This case was chosen because of its simplicity. Conclusions
for the flat plate and the cylinder will be discussed separately.

The flat plate exhibits both divergence and flutter. For
one range of the spatial phase angle V¥ (-90° to -60°), the plate is
stable .or all dynamic pressures. For a second range of V¥ (-60° to 25°),
only flutter is possible. Finally, for a third range of V¥ (25° to 90°),
divergence is the critical form of instability, occurring at a much lower
dynamic pressure than flutter. The stability diagram indicates that
experiments carried out for certain phase angles might be confusing in
the sense that different regions of stability and instability could be
observed in turn as the dynamic pressure is rgised.

Divergence occurs for flat plates at a relatively low value of
dynamic pressure ratio. As a result, divergence may be a distinct
problem for the case of viscous transonic flow, where previous pressure
measurements indicate that the necessary phase shift does occur [1].

The cylinder example studied was for a particular cylinder geometry,
chosen to match the only successful experiments to date. The cylinder
exhibits coupled mode flutter over the entire phase angle range of

physical interest. This flutter boundary is surprisingly insensitive

15



to the value of Y. This is fortunate from a practical standpoint. It
means that coupled mode flutter calculations can be carried out for such
a shell with less attention paid to the details of the spatial pressure
distribution.

The occurrence of divergence for the cylinder is not & simple phe-
nomenon. In the past, divergence has been predicted for some types of
cylinders in supersonic flow (where axial wavelengths are long compared
to circumferential wavelengths). For the cylinder studied here the
divergence would be of little practical interest. Very small phase
shifts from ¥ = 90° cause flutter to occur at much lower dynamic pres-
sures than divergence.

It 1s not prudent to extend the results of this simple analysis
too far. On the other hand, it can serve as a qualitative aid to invesfi-
gators in panel flutter. There are times when the methods of analysis
are so cumbersome that one restricts his techniques (or his interest)
to only divergence or to flutter. It is apparent that ome must bg

careful to not overlook one of the possible instabilities.
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Fig. 1. Typical panel flutter problems.
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Fig. 2. Flow over an infinitely long, stationary,
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Fig. 3. Flow over a two-dimensional flat panel.

20



0L¢

G2¢e

*29eT1d 4eTJ B JOJ sataepunoq A3TITIAqB3}S °*+ °*8BTd

S334930 ‘A 3ITONV 3ISVHd VILVCS

08l Gel 06 Gb 0 G- 06-
[ _ _ I _ _ [ 0
FRNERREN 5
319V.1S 319VLS
—v
4311074 y3.L1N714 —1°
-8
O
= —0I
m
p o)
o a
pd
(@]
m
b
9|

pAL/MV OlLvd 34NSS3¥d JINVNAQ

2l



<1,

250x10% |-

DYNAMIC PRESSURE RATIO, AK

200} Ly
2
wl
(O
1t
<
150 35
FLUTTER FLUTTER
100}
Ll
-
2
STABLE E STABLE
50—
0 | — i ABL , i J|
-90 ~45 0 45 90 135 180 225

Fig. 5.

SPATIAL PHASE ANGLE ¥, DEGREES

Stability boundaries for a cylinder.

270



PART B



ENGINEERING ESTIMATES FOR SUPERSONIC FIUTTER OF
CURVED SHELL SEGMENTS
William J. Anderson and Kuo-Hsiung Hsu

The University of Michigan

ABSTRACT

Static aerodynamic theory is used to find design curves for the
flutter of curved panels. The panels are rectangular segments cut from
a circular cylindrical shell. Supersonic flow is directed parallel to
the generators of the shell segment. The pressure expression used is
general enough to encompass a wide range of physically possible pres-
sure distributions. Design curves are given in the form of a thickness
parameter required to prevent flutter as a function of curvature and
length-to-width ratio. Upper and lower bounds for the onset of coupled-
mode panel flutter are given. Comparisons with other theories and experi-
ments are made. The results are intended to aid in design of wind tunnel

models for panel flutter tests.
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D En?/ [12(1-v°) ]

F Airy stress. function
—— . /3
MP-1 iz h
H Thickness parameter, A T
(1-v2)'q
h Panel thickness
L Length of panel
M Mach number
m . Axial wave number
N Number of modes
N, ,Ng Stress resultants, see equations (5) and (6)
p(x,0,t) Aerodynamic load
q Integer, also dynamic pressure
R Radius
t Time
v Flow velocity
W Width of panel
W pe Effective width of panel, W/n
W Panel displacement in radial direction
X Spatial coordinate, flow direction
L L )
Z Curvature parameter, RpVi-v®
aqm Kronecker Delta
e Angular coordinate
% Included angle of shell segment
Q Eigenvalue
o} Fluid density

2k



Panel density
Spatial phase shift

Frequency, rad/sec
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1. INTRODUCTION

There is a neéd for rough estimates of panel flutter boundaries in
design work. One specific area which has not been studied extensively
involves the flutter of a rectangular panel with curvature (Fig. 1).

This panel would in general form a portion of a cylindrical body (Fig. 2),
and would be supported at its edges by heavy bulkheads or stringers.

Some portions of the outer skin of a missile would correspond to this

case. For conventional aircraft, such a panel might represent a window,
where the window is relatively weak compared to the surrounding structure.
Such windows can be a problem in high speed flight where temperature lowers
their rigidity.

The exact mathematical solution to this problem is so difficult,
and the results dependent on so many parameters, that there is serious
doubt whether it is of any practical value. On the other hand, recent
research [1] for cylindrical shells indicates that approximate results
can be found by using a steady flow (quasimstatic) theory. The approach
taken here is to recommend a get of design curves developed by a simple
theory with the intent that corrections to these curves are to be made
as experimental data are obtained. It is felt that the design parameters
used here are somewhat universal and will be the ones which will prove
useful in the long run, even after more precise theories are available.

In the mathematical development of the problem, we will remain withe

in the framework of linear shell theory and steady flow theory. A modal
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approach will be used, hence the aerodynamic problem resolves to finding
pressures on sinusoidally deflected walls. The aerodynamic pressure
distribution used in this problem will be generalized in the manner studied
in Ref. IZ]Q* A parameter V¥ is introduced to typify the spatial pressure
distribution. Then V¥ is allowed to vary over the range of values which can
be expected for such a panel under different physical conditions including
boundary layer effects and length-to-width ratio effects. The result is
an approximate theory which gives upper and lower limits to the panel
thickness requirement to prevent flutter. The upper limit correspondg
to the use of Ackeret theory, the lower 1limit corresponds loosely to a
"slender body" type of theory. These two bounds represent extremely dif-
ferent flow situations, yet the dynamicg of the system are go insensitive
to the details of the pressure distribution as to cause a variation from
upper to lower bound of only 55% for most cases.
A series of figures will be presented for design purposes. These
should be especially useful in designing models for wind tunnel testing.
Previous work has been done on related problems. Dzygadlo [3]
studied the elastic instability of an infinitely long elastic segment
of an infinitely long cylinder. The stability boundaries were found for

a traveling wave form:

w(x0.) = w(o) U [y e
L [RAES

*Part A of this report.
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A set of integro-differential equations of motion resulted. These were
solved with the aid of a Fourier series in the © variable. Much effort
was placed on a study of the effect of structural (Voigt) damping on the
stability boundaries. For moderate amounts of damping, unexpected changes
in the panel's stability resulted. The numerical results presented were
not extensive. It was concluded that for small damping ratios and for
fixed shell thickness and radius, the critical Mach number does not vary
greatly for included angles for the segment lying between ﬂ/u and n.
Another study of interest was by Dowell and Widnell [4]. The case
considered was a finite length elastic gegment in an infinitely long
rigid cylindrical shell. In this case, the generalized aerodynamic forces

were found for deflections of the type

/U
Rigi
w(x,0,t) = e eos 1o sin ELIEE, %

Dowell made several comments about the stability of the shell segment

merely by looking at the character of the generalized forces. First of
all, in the low supersonic Mach number range, a single degree of freedom
type of flutter is possible. Secondly, for shell segments with long
length=to-width ratios, static divergence takes place. Flutter boundaries
for the "coupled-mode" type of flutter were not presented.

Neither of these studies is easy to extend to the current problem.
Neither case yields useful design curves (nor were they intended to).
The approach used by Dowell would be the more easy to extend to the present

case.
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The present solution parallels the approach used by McElman 5] to
some extent. McElman studied a curved orthotropic panel segment by using
a two mode analysis with Ackeret theory. No design curves of the type
shown here were presented in McElman's work. (In order to work with lower

aspect ratio panels, one needs many modes rather than two. )

2. STATEMENT OF PROBLEM

Consider a cylindrical shell segment as shown in Fig. 1. Super-
sonic flow passes over the outer surface of the segment, with flow di-
rection parallel to the cylinder axis. The segment is of uniform thickness
and of isotropic, homogeneous elastic material. Conventional cylindrical
coordinates x, r, © are used. The shell segment is defined by
r = R
0<x<L
%0 0<%
2 - — 2
Deflection of the surface of the segment will be given by w(x,0,t) measured
from the mean radius of the shell. The edges of the shell will be "freely-

supported’ as defined below. The shell may be internally pressurized.

No struectural damping will be included.

STRUCTURAL DETAILS

The shell is thin and initially circular. Radial deflections are

restricted to be small:

30
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E,(_)_{'_LHLQ<< 1

The in-plane motions of the shell u(x,0,t) and v(x,0,t) are small compared
to w(x,0,t) so that inertial effects due to in-plane‘motion can be neglected

(Reissner's assumption). The included angle O, Will be less than n/2 so

that Donnell's shallow shell equations can be used.

o —
i = O%w Ng 32y | 1 3%F d%y
v - Ny =5 = + = + ph + X,0,t = 0 1
W p's BXE EZ 3562 R 322 P atg p(x,0,t) (1)
2
vhp L Eh T (2)
R 3x

where D is the bending rigidity of the shell, ﬁ; and ﬁé are constants
representing the components of membrane stress due to internal pressuri-

zation and F(x,@,t) is the stress function defined so that

~ 1 3°F
2
re O°F

Note that ﬁ; and ﬁb are the time dependent components of membrane stress

due only to panel motion. The total membrane stresses are

[

Nx(X:@:t) Ni + ﬁX(X:@:t) (5)

Ny(x,0,t) = Wy + f(x,0,t) (6)

Boundary conditions to be applied at x = 0, x = L are

_ 3 >%w _ >°F
v o= W g;z = gaz = 0] (7)
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9

Boundary conditions at @ = iAﬁ— are
2 2
oW O°F
W = ———E = u = —— = O 8
00 dx= (8)

These freely supported boundary conditions have been chosen primarily

because they are satisfied (term by term) by the series

0] <x < L
o
2

co EEQ sin S
59 1

¢}

. N
iwt
w(x,0,t) = e mgi a,

, 0
0
<ox< P (9)
These boundary conditions are useful, however, because they result in a
dynamically "weak" plate. Hence, the stability boundaries will tend to
be conservative for design purposes when applied to damped plates.
At this point, the structural problem has been posed. We need to

find the aerodynamic pressures p(x,@,t) generated at the panel surface.

AERODYNAMIC DETAILS
A strong assumption on the aerodynamic pressures will be made. The

pressure on a panel deflection
w(x,0,t) = ¢ eIt og DO oy WX (10)

will be assumed to be

) )
p(x,0,t) = ¢ QL0 pUZ_ mt o 1m0 g £%§ + J) (11)

In other words, the pressure will have a magnitude equal to that given
by Ackeret theory and a spatial pressure distribution that can vary as
desired. (It would be possible to discuss this same assumption later

in terms of generalized forces, but this is not as meaningful.)
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The above assumption appears to be a strong oversimplification at
first glance. One wonders how to choose a proper value of y for a cy-
lindrical shell‘segment. In Reference 6, extensive numerical work was
done for pressures on oscillating cylinders exposed to potential flow.
The phase angle ¥ was found to vary only between 0° and 90°. Hence, we
will include values of ¥ between 0° and 90° in the present study. 1In
Reference 2, the dynamic results of such an assumption are studied in
detail. It is found that the choice of ¥ does not drastically affect

the thickness requirement for cylindrical shells.*

STABILITY DETAILS
Galerkin's method is used to pose the problem in matrix form. The

deflections of the shell segment are
_ i o 5 .
w(x,0,t) = e cos 7— L ap sin == (12)

Note that this expression allows n half waves in the circumferential
direction of the panel. If n takes a value higher than 1, then the ef-
fective length-to-width ratio of the panel increases accordingly because

there are stationary nodal lines down the length of the panel.

*¥Footnote: The thickness required to prevent flutter is a continuous
function of Y. For the case studied in Ref. [2], the thickness require-
ment has a minimum near ¥ = 30°. This value of the thickness ratio at
¥ = 30° is practically identical with that at V¥ = 0°. Because the
calculation for ¥ = 0° has more physical meaning (Ackeret theory) it
is used as a reference rather than ¥ = 30°.
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The expression for pressure, Eq. (11), is used in conjunction with

Egs. (1) and (2) to yield the set of linear algebraic equations of motion:

N ‘ 2 4 N, I° NoIR
1272 m X oY~ (Ly2
Y ey |4 [m2 + ()22 + + e+ —5— (=)
m=l Wert  p*[nP+ (%)2]2 °D D Werr

eff

where:

In
L/Vess = RO
£ pshngLL
n D
0 m+q even

no_o=,
m gm m+q odd
Wy

Thus, a set of linear algebraic equations are obtained. The occurrence
A
of a negative eigenvalue A signifies static divergence of the panel and

A
complex A signifies flutter.

3. RESUITS
Stability boundaries have been calculated for the aerodynamic loading
discussed above. All results will be given for cases with zero membrane

stresses Nx and Ng. This theory would be more inaccurate at positive
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values of membrane stress which would cause higher flutter fredquencies.
The results are presented using the effective length-to-width ratio

L/We pr 8 curvature parameter Z and a thickness parameter H. The plots

£
of H versus L/Weff are given as a generalization of the work of Kordes,
Tuovila, and Guy [7], and the curvature parameter 7 is chosen to cor-
respond to Batdorf's study of cylinder puckling [8].

A four mode solution for ¥ = O (Ackeret theory) is given in Fig. 3.
It is easily seen that curvature helps to stiffen the panel and reduce
the thickness requirement. An interesting effect is obtained in the
regions where H increases with increasing L/weff° This means that a panel
of given physical length and width will flutter in a mode with n > 1, giving
a higher critical value of L/Weff° As an example, a panel of length 10
inches and width 2 inches has a physical length-to~width ratio of 5. If
7 = 8000 for this panel then it must have a thickness ratio of H = 0,065
to prevent flutter from occurring at an effective length-to-width ratio
of 15. This particular panel flutters with n = 3, i.e., it has two in-
terior nodal lines extending down its length.

Results for ¥ = 90° are given in Fig. L, These results are some-
what similar to the ¥ = O curves except that the instabilities in the
lower left corner are due to static divergence. Again, one must observe
the cases where H increases with L/weff and one must choose the multiple
of the geometric length-to-width ratio which gives the critical value

of H.
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Finally, several of the curves for ¥ = 0° and ¥ = 90° are combined
in Fig. 5. These are approximate bounds for the thickness required to
prevent an instability. Note that the difference between the two bound-
ing curves is not great, particularly in certain intermediate regions of
L/Weff. This may be an indication as to why Ackeret theory gives relatively
good results for the cylinder experiments discussed in Ref. 1. In these
tests, a cylinder fluttered in a mode which yields an effective L/Weff =
9.21 and with Z = 6,950. Flutter occurred at H = 0.062k,

It is felt that figures such as Fig. 5 can be very useful to designers.
The curves give rough bounds for the onset of flutter or divergence for
freely supported panels. As experiments are carried out, confidence can
be obtained for accuracy of such curves.

It is suspected that for L/weff large, more modes are needed to
ensure convergence. Gaspars and Redd [9] studied carefully the number
of modes required for convergence on finite aspect ratio flat plates
when Ackeret theory is used. They found that as many as 50 modes were
needed for flat plates with aspect ratios of 10 or more. The present
results are less sensitive to convergence problems because of the\presence
of curvature and because the flutter parameter H is less sensitive to
error in the eigenvalue of the matrix problem.

Other theories and experiments are shown in Fig. 6. Several of the
points shown correspond to work for full cylindrical shells. The pro-
blem of a shell segment is closely related to that of a full cylinder.

Structurally, the major difference is that the full cylinder can flut=-
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ter in modes with waves travelling in the circumferential direction whereas
the segment cannot. Of particular interest in Fig. 6 are the experimental
points found for full cylinders by Olson and Fung [1] and by Stearman,
Lock and Fung [10]. It is now suspected that these cylinders did flutter
in circumferentially travelling waves [11l]. This might explain why the
experimental values occurred at slightly higher values of thickness ratio
than predicted by the present theory. The experiments of Tuovila and

Hess [12] were carried out for a shell segment clamped all around. The
tests were done at Mach 1.3, which unfortunately brings in transonic ef-
fects into the comparison. In transonic flow the unsteady aerodynamic
terms are of importance and there effects are neglected in this theory.

The theories of Voss [13] and Shulman ' [14] both were done for a
complete cylinder with the use of Ackeret theory. These shouid (and do)
correspond with the present calculations and serve as a check.

The theory of Dyzgadlo [15] was carried out for a more exact aero-
dynamic theory on a finite length cylinder. These were mode calculations.
'hese appear to yleld values of H slightly higher than the current work
which may reflect the fact that fewer modes were used by Dzygadlo.
(Gaspars and Redd [8] indicate that the thickness requirement decreases
with an increase in the number of modes.)

All in all, there are no unclassified experiments known to the
authors which furnish the proper comparison with the theory. Such tests
would be useful.

Figures 7-9 are cross plots of the same data given in Figs. 3-5.
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L. CONCLUSIONS

Design curves have been given for prevention of aeroelastic insta-
bility of curved shell segments. The calculations are approximate in the
sense that unsteady aerodynamic effects are ignored and because a modal
approach was used. These are the very reasons that the results are under-
standable, however. From a practical standpoint, these design curves,
as corrected by experiment, will probably be more useful than exact theories.

The only case illustrated here was the case of freely supported edges.
The results should be conservative if applied to panels with calmped edges.

One shortcoming of the current calculations is the limited number
of modes used. Only four mode solutions were carried out. If more modes
were used, the results presented at higher values of L/Weff would become

more accurate.
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Fig. 2. Elastic shell segment imbedded in a cylinder.
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