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A new type of angular correlation apparatus is described, and a 
mathematical model of its statistics is given. The angular correla- 
tion of coincident nuclear radiations can be measured by de- 
tecting intensity correlations in the output of two counters. For 
prompt coincidences, the detector currents are mixed in a broad- 
band circuit whose output is the product of the two inputs. The 
time-averaged output of the mixer is shown to be proportional to 
the rate of true coincidences, and therefore to the angular correla- 

1. Introduction 

Pulse counting has always been the cornerstone for 
detection of nuclear radiations. Nevertheless, it can be 
advantageous to operate counters with intense sources, 
so that their output is a continuous fluctuating current 
rather than a sequence of resolved pulses. Some recent 
symmetry experiments1), which stimulated this work, 
have used counters as rate meters for precision meas- 
urement of singles rates. We will show that it also is 
possible to use continuous currents for angular correla- 
tion experiments normally done by counting pulse 
coincidences. Contrary to one's intuition, the rate of 
true coincidences can still be determined even when the 
individual pulses overlap; moreover, the statistical 
errors are the same. 

The subject will be presented as alternative limits of 
one general problem: detection of current correlations, 
for weak or strong sources. The purpose of this work 
is to devise a unified treatment of  random currents, 
valid in both extremes, and to apply it to a systematic 
derivation of statistical errors. The main result is a 
proof  of the equivalence of pulsed and continuous 
currents. There is a correspondence between circuit 
elements: instead of a scaler one uses a meter; instead 
of a pulse shaping circuit, a filter; instead of a co- 
incidence circuit, a mixer; etc. And there is a corre- 
spondence of the outputs and of their fluctuations. The 
central point is that the statistical behavior of pulsed 
currents is unchanged when the pulses overlap, so 
long as linearity of the circuit is maintained. 

We conclude that the use of strong sources and 
continuous currents offers a feasible alternative to 
conventional coincidence experiments. One can meas- 
ure in this way angular distributions, lifetimes, mag- 
netic moments, quadrupole splittings. Although the 
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tion function. Furthermore, the fluctuation of this output has the 
same ratio to the average current as the rate of random to true 
coincidences both for weak and strong sources. For delayed 
coincidences, other circuits give the time spectrum and the 
frequency spectrum of the perturbed correlation function. 
Possible applications are mentioned, and the relation to the 
Brown-Twiss interferometer is clarified. 

original motivation was to make possible precision 
measurements of perturbed angular correlations for 
symmetry tests2), the techniques are of broader utility. 
One advantage will be the direct measurement of the 
frequency spectrum (rather than the time spectrum) of 
delayed coincidences, especially for long-lived states. 
The observation of sharp peaks due to individual 
intermediate states, will offset the loss of energy 
resolution available in pulse technology. 

2. Elementary discussion 

Before we consider a mathematical description, it is 
worthwhile discussing the basic ideas in their simplest 
form. The heuristic arguments used here will be borne 
out by derivations in the next section. 

2.1. SINGLE RATES 

Consider first the output of a single counter as the 
source strength increases. For a weak source, it consists 
of random current pulses with shape F(t). Of course the 
reason for the appearance of pulses is the quantum 
nature of the radiation, but our description of the final 
pulses will be classical. For simplicity we take identical 
rectangular pulses described by two parameters, the 
width At and the integrated charge q = SdtF(t). For 
a source with v decays per second the mean pulse rate 
is ve, where e is a small factor including both solid 
angle and efficiency of the counter. If  veA t ~  1, the 
pulses are resolved and the rate can be determined 
with a scaler. The mean number of  counts in time T is 

( N )  = veT, (1) 

and the uncertainty in this number can be predicted 
if the counts follow Poisson statistics. The fluctuation 
A N = , x / ( ( N 2 ) - ( N )  2) is then ~ / ( N )  and so the 
relative error is 
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A N / (  N7  = 1/~/(veT). (2) 

For stronger sources (wAt>~ 1) we can use a meter 
in place of  the scaler; the mean current* is 

( 17 = veq. (3) 

So long as the circuit remains linear, the mean current 
can be calibrated and used as a measure of the singles 
rate. There will be an uncertainty in this measurement 
due to fluctuations in the current I(t) ,  which we can 
estimate if we can predict the autocorrelation of the 
current ( I ( t ) I ( t + z ) 7 .  This function tells us both the 
mean square current (put z ~ 0 )  and the frequency 
spectrum of the power [compute the Fourier transform 
Sdz exp(iogt)( I ( t ) I ( t  + z)7]. 

We will analyze the autocorrelation by considering 
the variations from the mean current ( 1 ( 0  7. Writing 
I ( t )  = ( 17 + i(t), we find 

( I ( t ) I ( t + z ) 7  = (17 2 + ( i ( t ) i ( t + z ) ) .  (4) 

These two terms have a simple significance in terms of 
the underlying pulses which comprise I( t ) :  the first 
term is due to products of two different pulses, and 
the second term is due to the product of each pulse 
with itself. The first term is 

(172 =v2eZq 2, (5) 

which grows like the number of  different pulses and 
thus like v 2. It  is independent of z and only contributes 
to the dc power. The reason for this is that different 
pulses have a random distribution of arrival times, and 
if one set of  pulses is delayed the distribution remains 
random. Hence the average product is the same for 
any delay time z. I f  we consider each pulse as a super- 
position of sine waves, then two different pulses have 
sinusoidal components with different phases. The 
random distribution of arrival times implies a random 
phase difference and all the ac components average 
to zero. 

The second term is obtained by multiplying each 
pulse with itself and summing 

( i(t)i(t + z)7 = vefdt,F(tl)F(tl + z). (6) 

The auto-correlation grows like v, but persists only 
over the width of the individual pulses and is shown in 
fig. 1. The corresponding power spectrum extends over 

* Throughout this section the mean value will be taken as the 
time average over a long time interval <f(t) > = (1/T)$ T o dt f(t). 
We will always deal with "stationary" quantities with mean 
values <f(t)> independent of time: there is no preferred 
time origin for our averages. 

(i(0)i(r)) 

Fig. 1. The auto-correlation <i(O)/i(r)> vs time delay is shown 
for rectangular pulses. 

the entire frequency spectrum of the pulse, 0 < o9 < 1/A t. 
The mean square deviation from the average current is 

( i2(t)7 =wq2/At .  (7) 

Now we can estimate the errors in measuring the 
singles rate with a meter. The average reading is given 
by eq. (3), and the fluctuation A I = ~ / ( ( I  2)  - ( 1 7 2 )  = 
@((i27) by eq. (7), so the relative error is 

A1/ (17  = 1/~/(wA t). (8) 

Comparison with eq. (2) shows that this is just the error 
in counting the number of pulses arriving in time At. 
This is a relatively large error, since all the frequencies 
in the spectrum of i contribute. 

The error can be reduced by integrating the current 
over a long time, and measuring the total charge 
Q = SSdtl(t) .  The mean charge is 

f2d ( O 7  = t ( I ( t ) 7  = veqT, (9) 

and the charge fluctuation is 

f2d ,f (AQ) 2 = (Q2 7 - ( Q 7  2 = dt 2(i(tl)i(12)7. 
0 

But we have seen that the auto-correlation only 
extends over short time differences 

(i2 i f t l - - t E < d t ,  
( i ( t l ) i ( t2)  7 ~-- (10) 

0 if At< t 1 - -  t 2 ,  

and so using eq. (7) and eq. (10) to evaluate the 
integral, we find 

AQ =~f(veq2T),  (11) 

and the relative error in this measurement is 

A Q / ( Q )  = 1/V/(veZ), (12) 

which is identical with eq. (2). An alternative to meas- 
uring the integrated current is to insert a low frequency 
filter before the meter; again one finds eq. (2) with T 
replaced by the reciprocal of  the bandwidth. This 
example has demonstrated the equivalence of pulse 
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and current measurements, at least for finding singles 
rates. 

2.2. COINCIDENCE RATES 

Next we want to demonstrate that this equivalence 
also works for coincidence rates. Consider two coun- 
ters, a and b, exposed to a source with two radiations 
in prompt coincidence. For clarity we will let counter a 
respond only to one radiation, and counter b to the 
other. For  a weak source, the rate of true coincidences 
is v8Ew and the rate of chance coincidences is 2vEeZAt, 
with ratio W/2vAt. Here W is the angular correlation 
function and e is the solid angle. In counting time T, 
the mean number of true coincidences is 

( Utrue > =v82Wr.  (13) 

The fluctuation about this mean will be the sum of the 
fluctuations in both true and chance coincidences, 

AN 2 2 "= xf(ANtrue-t-ANch . . . .  ). (14) 

Assuming Poisson statistics for both numbers, AN = 
~/(< Ntr.e> + (N~h . . . .  >) and the relative error in meas- 
uring the true rate is 
AN/<Ntr.e> =V(<Ntru¢> +(Arch . . . .  >)/< Nt,u¢> = 

= ~/((1 +2vat/W)/ve 2 WT).  (15) 

As v increases, this error approaches a constant 

AN~( Ntrue > ~_ (1/eW)~/(2At/T),  (16) 

determined by the circuit parameters, but independent 
of the source strength. The "signal" (Ntru~ > increases 
linearly with v, but so does the "noise" AN¢h . . . .  = 
~ / ( N c h  . . . .  >. These are the formulas customarily used 
in analyzing the statistics of coincidence circuits. 

These same results govern the performance of the 
new coincidence circuit shown in fig. 2. The current 
from each detector (Ia and Ib) passes  through a filter 
and into a mixer whose output (I¢) is proportional to 
the product of the two inputs. The output is then 
integrated over a long time constant, or passed through 
a narrow-band filter to a meter. The entire circuit up 
to the mixer must pass frequencies up to - l/At and 
have time jitter less than At. An angular correlation 

COUNTER Ill-PASS 'A' tILTER N~IXER 
[ ~ - - ~ - - ] - ~ ]  LO-PASS 

SOURCE ~ F I L T E R ~  
0 COUNTER ,f-PASS 

'B' FILTER 

Fig. 2. Block diagram of new angular correlation apparatus for 
measuring rate of true prompt coincidences. 

experiment can be performed by measuring the de 
output of the mixer versus the angle between the two 
counters. 

The trick in understanding this circuit is to recognize 
the similarity between the mean current output of the 
mixer and the fluctuation in the current from a single 
counter. In this case we must evaluate the cross- 
correlation of two currents (Ia(t)Ib(t)) rather than the 
auto-correlation of a single current ( I ( t ) I ( t+z)>.  By 
the same reasoning, the cross-correlation can be split 
into two terms by introducing the deviations from the 
m e a n  I a = <Ia> + ia ,  Ib = <Ib> d-ib: 

(I t( t)> = <Ia(t)Ib(t)> = <Ia>"  <Ib>+<ia(t)ib(t)>" (17) 

The first term results from chance coincidences in the 
two counters and grows like v 2 

( I . 5  (Ib> = VZ¢2q 2. (18) 

The second term comes from true coincidences and is 
proportional to v and to the angular correlation 
function, 

< ia(t)ib(t)) = v~Zq 2 W/At. (19) 

Both terms represent dc currents in the mixer output. 
But it is evident that the two terms can be measured 

separately: any linear device which cancels the dc 
current in the output of the counters will eliminate the 
chance coincidences in the dc output of the mixer. 
A high-pass filter with broad bandwidth will suffice; 
so will a battery. 

We will not attempt to give an elementary discussion 
of the fluctuations in the mixer output, which would 
require the estimation of biquadratic averages such as 
( 2 2  I , I b ) .  Some qualitative results are clear, however. 
Since our "signal" is again the dc output, the errors 
in its determination can be reduced by integrating out 
(or filtering) the high frequency components. The 
integration time (or reciprocal bandwidth) will play 
the role of the counting time in a pulse circuit. The 
statistical error will be shown in the next section to be 
the same as eq. (15), 

AIc / (Z> =V/{(1 +2vR/W) /w2WT} ,  (20) 

with a suitable interpretation of the resolving time R 
and counting time T. The circuit in fig. 2 will work 
for any source strength, weak or strong, provided the 
linearity is maintained. The result stated in eq. (20) 
shows that the statistical error approaches a constant 
as the pulses overlap. The signal to noise ratio in the 
output is then determined by the solid angle e, the 
rise time of the pulses R and the time constant gov- 
erning circuit stability T. It remains to be seen how 
large this signal to noise ratio can be made. 
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This shows another example of the equivalence of 
pulses and currents. We conclude that there is a very 
general relationship between the two, reminiscent of 
the particle-wave duality in quantum mechanics. 

3. Statistical model of  random detector currents 

In order to analyze circuits like fig. 2, we need a 
model for random detector currents. It is not sufficient 
merely to characterize the currents a s - s a y -  Gaussian 
noise plus a signal. We want to predict the signal to 
noise ratio, and study its dependence on circuit para- 
meters. The treatment we have adopted is a modifica- 
tion of the theory of shot noise in electronic devices 3'*). 
The reader is urged to consult the articles of Rice 3) 
for a discussion of the basic statistical concepts. The 
essential step is to isolate the random variables (r) 
from the non-random variables (n). The output of any 
circuit I(n,r) must be calculated for any configuration 
of variables n and r, and then averaged over the 
probability p(r). In treating the various observable 
effects of random currents, it is vital to perform the 
average over r for the final output, and not at some 
intermediate stage. The general form of the ob- 
servables is 

< I(n)> = jdrp(r)I(n,r), 

( I(n,)I(n2)) = f drp(r)I(n,r)I(n2r), (21) 

and so forth. For linear circuits we usually need only a 
few such averaged quantities. 

3.1. SINGLES PULSE RATES 

For a random current composed of pulses, the use 
of conditional probabilities is appropriate: one con- 
siders the probability p(K) of exactly K pulses in time T, 
and defines the conditional probability p(rIK) of the 
configuration r for K pulses. The general form of an 
averaged quantity is changed to 

(I(n)) = r~=oP(K drp(rlK)I~(n,r), (22) 

where IK is the current produced by K pulses. The 
probability p(K) can always be taken, for weak or 
strong sources, as the Poisson distribution 

p(K) = ( ( N ) r / K ! ) e x p ( - ( N ) ) ,  (23) 

where ( N )  is the mean number of pulses in time T. 
To describe the current from a single detector, we 

can take as random variables the arrival times tj of the 
individual pulses; the time t is the only non-random 
variable. If each tj is independently and uniformly 

distributed over the time T, the conditional prob- 
ability is 

p(tjr K) = (1/T) K. (24) 

The current is just the sum of K pulses 
K 

I~(t, tj) = Z F(t-t j) .  (25) 
j = l  

These eqs. (22)-(25) define our model; all that remains 
is straightforward calculation. The mean current is 

[*r /2  

I(t)) -- ~ p ( K ) J _  r/2 (1/T)dtl  ... 

. . .  fr/2 (1/r)dtK V(t- 
d - T /2  j 

The sum has K identical terms 

( I(t)) = y Kp(K)(1/r) f dt,f(t-t,), 
K 

using ~ Kp(K) = ( N )  = veT, and shifting time variables 
we get 

( l( t) ) = ve j F( tl)dtl. ( y )  

Throughout these derivations we will assume that T is 
much longer than the pulse width, and discard contri- 
butions of pulses overlapping the ends of the time 
interval. The results describe "stationary random cur- 
rents", which are independent of the time origin. But 
we will not actually take the limit T ~  ~ ,  since in any 
real experiment the counting time T is limited by long 
term drifts in the circuit parameters. 

The autocorrelation of the current is 

( l(t)I(t+ z)) = ~r p(K) f (1/T)dh... 

f (1/T)dt  K - t i ) ~ F ( t -  +z). 2 F(t t) 
i j 

Splitting the double sum into K(K-1)  identical off- 
diagonal terms and K identical diagonal terms, we get 

(I(t)I(t+z)) = 
= E K(K - 1)p(K)(1/T2) ' 

. f d t ,F( t - t l )  f dtzF(t- tz  + ~)+ 

+ Z Kp(g)(1/T) f dt,F(t-- t l )F(t-  t, + z). 

Changing integration variables and using 
Z K ( K -  1)p(K) = (veT) 2 

leads to the result 
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<l(t)l(t+z)> = 

From this we find the mean square current fluctuation 

(AI) 2 = <12(t)>-< l(t)> 2 = ve f FE(tt)dt, .  (7') 

These results confirm our previous arguments, and 
extend the formulas to pulses of  arbitrary shape. The 
process could be continued to higher ordered correla- 
tions like (14 ) but we will not do so. For strong 
sources, the central limit theorem guarantees that the 
random current is a Gaussian process, and that these 
higher correlations are determined by the lower ones; 
for example, if veAt ~ 1, then ( I * ( t ) )  ~ 3(I2(t)> z. In 
this sense, equations (3') and (6') provide a complete 
characterization of the current for strong sources. 

So far, our treatment is identical with the theory of 
shot noise. It  is important to recognize that another 
choice of  the random variables will give the same 
observable results; it consists of  attributing random 
variables to the source, instead of to the counter. Let 
there be K quanta emitted by the source, at times t i 
and in directions ~.. I f  the times and directions are 
independently and uniformly distributed, the con- 
ditional probability is 

p( t i ,~ j lg  ) = (4~T) - r .  (26) 

The non-random variables are the time t and the direc- 
tion of the counter ~. The current can be written 

K 

IK(t~; tj,hfl = Z S(~,~j )F( t - t j ) ,  (27) 
j = l  

where S is a step function which is unity if ~j is within 
the solid angle subtended by the counter at ~, and S is 
zero otherwise. It is an easy exercise to repeat the 
derivations; the results are identical, if we take p(K) 
with mean <N> = v T  and use (1 /4~)~dO~S(~ ,~)= e. 
This is another model of  a random current; there may 
be many more. The device of  relating the random 
variables to the source is crucial to our next problem : 
the study of cross-correlations in two counters looking 
at the same source. 

3.2. COINCIDENCE RATES 

As before, we will consider a source emitting two 
different radiations (a and b) in prompt  coincidence. 
The times tj and directions ~] and ~b of the two quanta 
are random variables, while the time t and directions 
of  the two counters ~a and 8b are nonrandom variables. 

The times are distributed as before, but the relative 
directions of the two quanta from the same decay are 
correlated. The conditional probability is 

^ a  b ^ a  ^ b  p(tlnlnl,t2n2n2,.. [K) = 
K ^ a  ^ b  ^ a  ^ b  ^ a  b = ( l /T)  p(n,nx)p(n2n2)...p(nKt~K), (28) 

and the detector currents are 

I a = 2S(pta,~al)Fa(t-t j), 
J 

lb : Z S(nb, n~)Fb( t -  t j). (29) J 

We are including some difference in the pulse shapes 
in the two counters, but are neglecting the current in 
counter a due to quanta b and vice versa. The prob- 
ability p ( ~ )  is normalized so that 

f df2] 1. (30) 

It is easily shown that the mean current and the 
auto-correlation in either circuit is exactly as above. 
But there is also a cross-correlation in the two currents, 

( I,(t)Zb(t + z) ) = 

Zp(K) f (l/T)dt, f dQ", f .. 

... f ( , /T)dt,, f dO",, f dO p(  a,,ng) ' 
• ~s(~a,~a)Fa(t-  t i )ZS(~b,~)Fb(t  + z-- t j). (31) 

i j 

Again we separate the K ( K - 1 )  off-diagonal terms 
(chance coincidences) from the K diagonal terms (true 
coincidences). The latter are proportional to the double 
integral 

f dQal f (32) 

which defines the correlation function W. It is normal- 
ized so that 

f dOa f dobW( a,n --1. (33) 

The quantity ~2 is the product of the two solid angles 
ge  b. Evaluation of eq. (31) gives 

( l , ( t )Ib(t+'r))  = v%2 f dt1F.(t,) f dtzFb(tz)+ 

+w2Wfd t ,Fa( t , )Fb ( t ,  +r) .  (34) 

The first term is obviously the product of the two mean 
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currents and can be removed by introducing the ac 
currents, 

(i~(t)ib(t+z)) = ([l.(t)--(Ia)]EIb(t+z)--(Ib)] )=  

= w2Wj'dt,Fa(t,)Fb(t, ++). (35) 

Another simple trick for eliminating the first term, is 
to insert a linear circuit whose output pulses G(t) 
satisfy 

fd t ,G( t l )  = (36) 0. 

This establishes our principal result; the mean output 
of the mixer in fig. 2 is 

( I t ( t ) )  = (ia(t)ib(t)) = veEWfdqO"(tl)Gb(t,), (37) 

proportional to the correlation function IV. 
The evaluation of the fluctuation in the mixer 

output requires the auto-correlation in Ic(t). The model 
gives a straightforward technique for deriving this, 

( I+(t)I¢(t + r)) = 

=  p(K)f(,/r)d,lfdO  fdOTp(e, 7)... 
... f (l/T)dtK f f dO p(n ,  ) SaGa(t-tl) . 

• 2SbGb(t -- t j)ZS~ Ga(t + "r -- t k)ZSbGb(t + z -- t,), 
j k l 

which has K 4 terms. However, from eq. (36) we need 
keep only the terms with indices equal in pairs. A short 
derivation gives 

< Ic(t)I¢(t + z)) = 

[ve2W f dt,G~(t,)Gb(ta)]2+ 

+v284W2 f dtlGa(tl)Gb(tl + z) f dtzGu(t2)G.(t~ + ~)+ 

-]- Vg 2 w f dt, G.(tl)Gb(tl)G.(tl + r)Gb(t , + z) + 

+ v~+~W~fdt,a.(q)aa(t, + Ofdt~a~(t~)G~(t~ ÷ O. 
(38) 

The first term is just ( I e )  2 and only contributes to the 
noise spectrum at ¢o = 0. The second term is smaller 
than the remaining two for small e and can be dropped; 
it is due to a pair of true coincidences. The third and 

fourth terms can be identified as the fluctuations due 
to chance and true coincidences. If  the mixer output is 
integrated for time T(which can be identified with our 
averaging period), the relative error in the charge 

Qo= f~dtlo(t) is 
AQff(~Q) = v/((1 + 2vR/W)/ve 2 WT} (39), 

where the resolving time R is given by 

R = 
l f dtlGa(tl) f dt2Gb(t2) f dzG,(tl +r)Gb(t2+r) 

2 dtlGa(tl)Gb(ta 

(40) 

3.3. FOURIER REPRESENTATION 

This last result, and many others, can be understood 
better in terms of the frequency dependence than the 
time dependence of the currentsS). Our model can be 
rewritten by systematic use of the Fourier transform 

i(e)) = dtI(t)exp( +koO, 
- - o 3  

I(t) = (&o/2x)/(co) exp ( -  ie)t). (4l) 

From eq. (3') we obtain 

(7 (~ ) )  = 27~6(~)veff(O), (42) 

and from eq. (6') 

(7(co')i(o,)) = 2x6(co' + ~o)S(o)), (43) 

where S(co) is called the power spectrum, 

f+ ()> S(oo) = dzexp(iogr)( l(O)l z = 

= 27zr(co)v 2e 21F(0)I 2 + ve I/~(eg) 12. (44) 

These results show that our model of a single counter 
is equivalent to a source of currents I(co) with random 
phase and with mean intensities having the same 
frequency spectrum as the pulses themselves, as well 
as a dc component. 

Similarly, the output of the mixer in fig. 2 satisfies 

2 f (  • 
(To(m)) = 27~b(m)w W 1/2r~)da~,Ga(o)l)G~,(ml ), (45) 

and 
(7¢(co')/c(co)) = 2nil(co + co')Sc(co), 

with 
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( )12 
S~(¢o) = 2ntS(~o) ve2W 1/2n)drnlCa(~O 1 ~o 1 + 

f0/Z )d o  I I Gb( , +  o)1 .-[- y2e2 2+ 

"~ve2W f(l/2~z)d~Ol(~a(tOl)(~.(gOl_m ) 2. (46) 

We can view the correlation apparatus as a current 
source with random phases and with frequency 
spectrum given by eq. (46). The first term in (46) gives 
the dc signal and the remaining terms the noise. By 
transforming eq. (40) [or by inspection of eq. (46)] we 
see that the resolving time can be expressed in terms 
of the pulse shapes as 

f dco [ G.(co)l 21 (~b(~)l 2 
R = lr (47) 

f d~oC~(w)C*(co) 2 

This shows that the resolving time can be reduced by 
increasing the bandwidth of both pulses; R is roughly 
just the reciprocal of the bandwidth of the mixer, or 
of the counter, whichever is smaller. 

We can also generalize the discussion of the 
"counting time" T by considering a linear filter in the 
mixer output. A brief derivation reproduces eq. (39) 
with T given by 

[ f  d~  Z(m)2]--1 
T =  ~ ~ J , (48) 

where Z(co) is the transmission of the filter at each 
frequency. Hence T is roughly the reciprocal band- 
width of the filter and meter. 

At this point we feel that we have adequately proven 
the claims of section 2 and have shown how the model 
works. In the next section we will discuss (without 
proofs) some important extensions of this model. 

4. Extensions of the model 
The model presented in sections 2 and 3 was based 

on several unrealistic assumptions, introduced for 
clarity and simplicity: all pulses were identical, co- 
incidences were prompt, counter a did not respond to 
radiation b, etc. These assumptions served to reduce 
the number of  variables in the model. However, once 
the averaging techniques are established, it is easy to 
include more variables and to make the model more 
realistic. 

4.1. REALISTIC MODEL OF COUNTER 

The output of a real counter is influenced by more 

random variables than we have admitted, and will be 
noisier than our estimates. For example, the individual 
pulse heights are not identical, but are randomly 
distributed over a pulse height spectrum. This can be 
described by writing the j  th pulse as a jF( t -  t j), where aj 
is a random amplitude. Similarly we could describe 
variations in shape and in arrival time. We can also 
include pulses in counter a due to radiation b; the 
current might then be written 

la(t ) =~" [ajS(~a,~)Fa(t- t j) + bjS(~a,~b)leb(t- tj)] .(49) 

Clearly the mean current will involve ( a )  and ( b ) ,  
and the fluctuations will depend on ( a  2), ( a b ) ,  (b  2). 
Full analysis of these effects would lead to a better 
understanding of the influence of the counter design 
on the signal and the noise. For example, if we include 
only the effects of random amplitudes, the current 
fluctuation in a single counter becomes 

d I / ( I )  =V/{(a2)/(veAt(a)2)}, (8 ' )  

instead of eq. (8). This is minimized by reducing the 
variation between pulse heights, and (for given current) 
increasing the number of pulses. 

4.2. DELAYED COINCIDENCES - TIME SPECTRUM 

The extension to delayed coincidences and the meas- 
urement of perturbed angular correlations, is of con- 
siderable importance. We can accomplish this by 
adding another random variable for each pulse in the 
source, the delay time zj. The two radiations a and b 
occur at times t~ and tj + zj with probability P(~ftbzs) = 
(r/T)exp(-r%), p(~o~,j). Here F -1 is the mean 
lifetime of the intermediate state. The cross-correlation 
of the two detector current becomes 

( ia(t)ib(t + Z)) --- 

=vee f f dqrexp(-rzl)Co(q)Gdt, + z-q)W(q), 
(50) 

where W(z) is the perturbed correlation function. Note 
that as F ~  0% eq. (50) approaches the previous result, 
eq. (37). The integral in eq. (50) is just e x p ( - F z ) W ( z )  
averaged over a time interval of order At. Thus, the 

COUNTER HI-PASS DELAY 
'A' FILTER LINE MIXER 

0 cou,TE ~ ,~-pAss I I ~  

Fig. 3. Block diagram of angular correlation apparatus for 
measuring time spectrum of delayed coincidences. 
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de output <Ic> =<i~(t)ib(t+*)> of the mixer in fig. 3 
measures the time spectrum of delayed coincidences, 
with finite time resolution of order At. To predict the 
fluctuations in the output of this circuit we must 
evaluate < Ic( t )I~( t') > = ( i~( t )ib( t + Z)ia( t')ib( t + *') >. This 
can be shown to lead once again to eq. (39) with re- 
solving time given by 

1 w(Qfd t tGa( t t ) f  dt2Gb(t2) 
R -  

2 frdr,exp(-r,l)W(r,) 
f + + (4o') 

[fdt,G"(t,)Gb(t, + ~ - v , ) ]  z" 

This shows that the resolving time is about the pulse 
width, but is further reduced by a factor e x p ( - F Q  
for long delay times. These results are a natural 
extension of the prompt coincidences• 

4.3. DELAYED COINCIDENCES -- FREQUENCY SPECTRUM 

Next we will design a circuit to measure directly the 
frequency spectrum of W(z), instead of the time spec- 
trum. Instead of multiplying the counter outputs we 
will add them, select the desired frequency and then 
square the result; see fig. 4. The current input to the 
narrow band filter is I ( t ) =  ia(t)+ ib(t). The auto- 
correlation of this current is 

<I(t)I(t+,)> = 

= VeafdtlGa(t,)G"(h + z)+ve~fdt,G~(t~)G~(tl + 3)+ 

• { G " ( t l ) G b ( t ,  + ~ -  T1) @ Ga(t, + z ) G b ( t ,  - -  z,)}. (51) 

The first two terms are due to the auto-correlation of 
individual pulses, and extend over times of order At. 

COUNTER 'A' 
I NARROW SQUARE 

[ I ] BAND LAW LO-PASS 
DEVICE ~ETER S O U R C E  [ I : i L T E R  _ _  FILTER 

I " 1 1  

Fig. 4. Block diagram of angular correlation apparatus for 
measuring frequency spectrum of delayed coincidences. Note 

that there is no delay line in the circuit. 

The last term is due to true delayed coincidences and 
extends over times of order F -  l. 

To analyze the filter output, it is convenient to 
change to the frequency spectrum of this result. We 
find <7(co)) is zero, and 

< = 2 a( o + 

where the power spectrum is now 

s @ )  = Yea i ga(o~)lZ+veb I Gb(o~)lz+ 

2 

• fdWexp(-rOW( )exp(-io  )+c.c. }. (52) 

There is a simple interpretation of this: the random 
coincidences in each counter provide a current with 
broad spectrum and random phases; the true delayed 
coincidences give an additional contribution at the 
frequencies of W(Q, with frequency width F -~ and 
with random phase. Neither of these gives a net 
average current, hut both contribute to the power. 

The output of the filter can be written 

J(t) = Idt 'H(t- t ' ) l ( t  ), (53) 

or in terms of the Fourier amplitudes 

J(~o) =/4(~o)i(¢0), (54) 

where/~(o9) is the transmission of the filter, assumed 
to be zero except in a narrow band. The mean output 
of the square law detector is 

< J2(t)> = f d t  H ( t - t ' ) f d t " H ( t - t " ) (  I(t')I(t")y = 

= f(1/2n)dto  I/4(~o) IZs(w). (55) 

This shows that our circuit is an elementary form of a 
spectrum analyzer, with an output proportional to the 
power spectrum S(eo) integrated over a narrow band. 
Thus, from eq. (52) the output contains a term pro- 
portional to 

vP(co) = rfd,exp(-rr)exp(-ia~T)W(,), 

integrated over the band pass of the filter. This term 
gives a bump at each of the frequencies in W, with 
width F. The line shape can be either Lorentzian or the 
dispersion curve, depending on the relative phase of the 
pulses. An additional delay line in one counter will 
shift this phase and change the line shape. 
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NARROW SQUARE 
8ANC, LAW LO-PASS 

SOURCE COUNTER FILTER DEVICE FILTER METER 

o I I 
Fig. 5. Block diagram of apparatus for measuring frequency 

spectrum of delayed coincidences of similar radiations. 

The fluctuation of this output can be evaluated 
by calculation of the fourth order correlation 
(I(t)I(t')I(t")I(t'")); the result is very lengthy and will 
not be given here. We will content ourselves with 
giving only the leading terms for large v, which can be 
shown to satisfy ( J g ( t ) )  ~ 3 ( j 2 ( t ) )  2. This implies that 
the noise is Gaussian, and it means that the fluctuation 
in the output is comparable to the mean output 

~v/( ( j,~) _ ( j2)2)/( j2) ~ / 2 .  (56) 

If  by the "signal" we mean the third term in eq. (52), 
then the "noise" is comparable to the first term and 
the signal/noise ratio is just the ratio of terms in the 
power spectrum, which is ~1I~(~o)I- 

In this apparatus we have not succeeded in separating 
the true and random coincidences; both contribute to 
the power spectrum and give a fairly small signal/noise 
ratio. But there are several techniques available for 
improving this ratio, if the correlation is perturbed. 
The perturbed correlation function depends W(r) on 
external fields which can be modulated, which changes 
the true coincidence rate but not the chance rate. 
Standard techniques of narrow band modulation and 
signal averaging should enable accurate measurement 
of #((o). 

4.4. GAMMA-GAMMA COINCIDENCES 

Finally we note a particularly simple circuit for the 
angular correlation of two similar radiations, like 
7~-72. Since one counter will respond to both radia- 
tions, we can identify the two counters in fig. 4 and 
simply take the output of a single counter; see fig. 5. 
This circuit will measure the frequency spectrum of  
delayed coincidences in the same direction. The 
analysis of the signal and noise is the same as in 
section 4.3. 

5. Summary and conclusions 
We have shown the arguments to support our general 

thes i s - tha t  angular correlations can be measured by 
detecting current correlations as well as by counting 
pulse coincidences. The basic statistical considerations 
are identical: eq. (39) really sets a lower limit to the 
source strength, since the statistical error is in- 
dependent of v above a certain limit, and gets worse 
below this limit. Our tentative conclusion is that by 

raising the source strength until the current exceeds the 
"dark  current" (which is present without any source), 
angular correlations can be observed in a new and 
different way. 

Of course the principal reason for pulse counting is 
the good energy and time resolution which it gives. 
The energy resolution is lost in our circuits, which 
probably means that the methods discussed here are 
of no utility in studying complex decay schemes. In 
principle the energy resolution could be restored by 
studying the correlations in transmission through an 
energy sensitive device (such as a MOssbauer absorber), 
but this requirement is generally in conflict with the 
intensity requirements. The loss of energy resolution is 
partially offset by the frequency resolution available: 
a single narrow level in a complex decay scheme can 
be recognized by the narrow lines it produces in the 
apparatus of figs, 4 and 5, or by the long-lived delayed 
coincidences in the apparatus of fig. 3. 

Certain applications look particularly promising. 
One is the direct measurement of the radiofrequency 
spectra (Zeeman hyperfine and quadrupole splitting) 
of long-lived states. The apparatus in fig. 4 may be 
useful in bridging the gap between pulse coincidence 
measurements on short-lived states (z ~< 1 /~sec) and 
atomic beams measurements on long-lived states 
(z ~> 1 sec). 

Another application is to precision measurements of 
simple decay schemes for symmetry tests. Perturbed 
angular correlation experiments offer an alternative to 
singles polarization measurements. The most interesting 
possibility is in measuring the frequency spectra of 
perturbed correlations: the "odd"  terms generally have 
different frequencies than the "even" terms in a correla- 
tion function. For instance, the odd harmonics of the 
Larmor frequency in a perturbed f l - y  correlation are 
a test of parity conservation6); similar tests are avail- 
able for perturbed 7 - 7  correlations in quadrupole 
fieldsT). 

5.1. RELATION TO BROWN-TWISS INTENSITY 

CORRELATIONS 

The reader will note the close parallel between the 
circuit of fig. 2 and the stellar interferometer of Brown 
and TwissS). Both circuits measure intensity correla- 
tions expressible in terms of a fourth order correlation 
of fields. We should emphasize the differences between 
the two devices, however: our circuit measures the 
correlations between two different fields (i.e. f l - 7  or 
Y~- 72) whereas theirs measures the correlation of one 
field with itself. We have tried to clarify this difference 
by assuming that our two counters each respond to 
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only one field. The origin o f  the intensity correlations 
are due to a spatial coherence (quantum bunching) 
of  a single field. In  our  apparatus,  the correlations 
originate in the time coincidence of  two different fields 
(or quanta)  emitted by the same nucleus. 

Conversat ions with several colleagues played a vital 
role in the development  o f  this work. The author  
would like to acknowledge stimulating discussions with 
Prof. W. Williams, Dr. J. C. Van der Leeden, Dr. E. N. 
Kauffman and Dr. J. D. Bowman.  The author  is 
grateful to Prof. F. Boehm for the hospitality o f  his 
laboratory at Caltech, where some of  this work was 
done. 
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