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Abstract: By assigning a pseudo-spin and pseudo-orbital angular momentum (b-spin and c-spin) 
to the single-particle states in a mixed configuration of identical nucleons, it is possible to classify 
as B = 0 objects both the favored pair operators of the surface delta interaction (SDI) and the 
multipole moment operators, (the latter under suitable assumptions). The favored pair is defined 
for each J as the specific superposition of two-particle states acted upon by this separable 
interaction. The SD1 is diagonal in the total B- and C-spins; the eigenvalues of a (B, C) multiplet 
are independent of the total angular momentum J, (J = B+C); and all states with B = &v 
are degenerate (v = total seniority). For the case of a degenerate doublet of levels (I,, (1+2),+ r), 
e.g. (d+gs) or (fsh+), the specification, B = 0, defines the favored pairs uniquely, and 2B counts 
the number of nucleons not members of favored pairs. Exact calculations for the (dtg+) system 
show that states with B < iv cluster closely about their centers of gravity; therefore, to a good 
approximation the SD1 can be replaced by a generalized pairing interaction depending only 
on B and v. Possible generalizations are discussed for the case of many degenerate single-particle 
levels, where this generalized pairing interaction is no longer a good approximation. 

1. Introduction 

The surface delta interaction (SDI) introduced by Green and Moszkowski I* “) 
has served as a remarkably good effective interaction for shell-model calculations in 
many regions of the periodic table 3-6). The two-body matrix elements of this in- 
teraction and its modifications ‘) are also in good agreement with those derived 
from realistic interactions “) or directly from an analysis of experimental data ‘). 
One of the characteristic features of the SDI, when acting in mixed configurations of 
identical particles, is that it favors one specific superposition of two-particle states for 
each value of J. In the two-particle spectrum only a single one of the several possible 
states for each J-value is depressed in energy; the others have eigenvalues of zero. 
This property follows solely from the separability of the SD1 and is therefore common 
to all separable two-body interactions 1 “). The favored pair of the surface delta 
interaction with J # 0 has the additional property that it exhausts entirely the sum 
rule for a 2J-pole transition connecting it to the J = 0 ground state “). Moreover, the 
favored J = 0 pair of the SDI is precisely the pair which is the basis of pairing theory 
for systems with valence particles filling several degenerate or nearly degenerate sub- 
shells. This J = 0 pair, the energetically most favored of all pairs, corresponds to the 
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coherent superposition of J = 0 pairs which is the basis of the generalized seniority 
scheme for mixed configurations. The surface delta interaction is a scalar in quasispin 
space 2), and its favored J = 0 pair is the pair with the largest possible value of the 
total quasispin quantum number which is related to the total or overall seniority 
number. Since the total seniority quantum number effectively counts the number of 
nucleons not members of favored J = 0 pairs, it is of interest to examine the question 
whether there is an additional generalization of the seniority concept with a quantum 
number which effectively counts the number of nucleons not members of the favored 
J # 0 pairs of the SD1 or some modified form of this interaction. 

The simplest pair of nuclear subshells consists of the two members of a spin-orbit 
doublet, that is the single-particle states with orbital angular momentum 1 and j = l& JJ. 
In a configuration based entirely on such a pair of single-particle levels and made up of 
identical nucleons, (protons or neutrons only), a delta interaction can act only on S = 0 
pairs since a delta interaction vanishes in spatially antisymmetric states. In this simple 
case, therefore, the favored pairs are the pairs coupled to S = 0 and L = J = 0,2,4, 

. . . 21. (Whenever the single-particle states of a mixed configuration all have the same 
parity, the favored pairs have even values of J only.) If the single-particle levels were 
degenerate, (no spin-orbit coupling), the total spin S would be a good quantum num- 
ber. Moreover, it would be a measure of the number of nucleons not members of 
favored pairs. Since strong spin-orbit coupling is one of the cornerstones of the 
nuclear shell model, this simple case never arises in practice. In real nuclei the single- 
particle states of the same parity which are nearly degenerate are pairs of states such as 

+,d& {d,g;FL {p+f+>, (f%h,>, - . -3 that is pairs of states of the type {Zj, (1+2),+,}. 
It is the purpose of this investigation to show that it is possible to associate with such 
a pair of single-particle states a pseudo-spin and pseudo-orbital angular momentum 
(subsequently to be denoted by b-spin and c-spin, respectively; with single particle 
values b = 4 and c = l+ 1 for the above doublets). The favored pairs are the pairs 
coupled to B = 0. The surface delta interaction as well as the multipole moment 
operators are b-space scalars. For states of total seniority o, the total B-spin has the 
possible values +a, +u - 1, +u - 2, . . ,, 0; and the number 2B plays the role of a generaliz- 
ed seniority quantum number since it counts the number of nucleons not members of 
favored pairs in the same sense in which the number v counts the number of nucleons 
not members of favored J = 0 pairs. Finally, for a degenerate single-particle doublet 
of the type {I,, (Z+2)j+,} it will be shown that the eigenvalues of the surface delta 
interaction are approximated quite well by a generalized pairing Hamiltonian whose 
eigenvalues depend only on the quantum numbers B and v, with a spectrum such that 
states with 2B i v are repeated with the same spacing for each seniority greater than V. 

Although single-particle doublets of the type (lj 3 (1+ 2)j+ 1> are somewhat special, 
they can be taken as the basic building blocks for the nuclear shell model. The 
major nuclear shells are made up of such doublets, all of the same parity, up to a 
highest j-value of j,,,,, to which is added a single state of opposite parity with j = 

j,,,, +2. In the limit in which these single-particle states are degenerate, the total 
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B-spin is again a good quantum number for the SDI. However, the B-spin is no longer 
sufficient to specify the favored pairs for each Jcompletely. Additional quantum num- 
bers are needed, or a generalization must be made of the symmetry associated with the 
b-space. The case of a full major nuclear shell is discussed briefly in sect. 4 in which 
some possible generalizations of the quantum number b are discussed. The present 
investigation concentrates on the case of the single-particle doublet of the type 

{lj(l+2)j+ 11. A s our prime example we take the {d%g%] doublet, with b = 3, c = 3. 
Recent experimental studies ‘I* 12) on nuclei with 82 neutrons and A = 135-143 
show that the valence protons with Z > 50 fill mainly the 1% and 2d, levels. Detailed 
shell-model calculations for the configuration (lg,2d,)” have recently been per- 
formed by Wildenthal “) and make it possible to compare the simple predictions of 
an extreme zeroth order generalized pairing model based on the favored J # 0 
pairs of the SD1 with the results of a full shell-model calculation. 

2. Symmetry of the SD1 

When acting in configurations of identical particles (neutrons or protons only) 
the SD1 becomes a separable interaction which can be expressed in terms of the pair 
creation operators for the favored pairs, (and their hermitian conjugate pair an- 
nihilation operators). These are specific combinations of the pair creation operators 
coupled to total angular momentum J, defined by 

ATM( j j’) = c ( jmj’m’l JA4)aj’, a;,,,, . 
m 

(1) 

The favored pairs of the SD1 are ‘) 

with 

d.L = t I(- l)‘&(jj’)&L(jj’), (2) 
0’ 

h,(jj’) = 

For J = 0 the favored pair is that of ordinary pairing theory. In particular, the 
operator && is the total quasispin operator 9,. In terms of the operators &JM 
the surface delta interaction takes the form “) 

H SD1 = -G~==f;f,s$,. (4) 
JMJ 

To discuss the symmetry of the interaction it is convenient to introduce the unit 
tensor operators 

ukq( j j’) = 1 (jmj’- m’lkq)aj+, af,,( - l)j’-“‘. 
mm’ 

(5) 

For a mixed configuration based on single-particle states of total degeneracy number 
28 = Cj(2j+ l), the (252)2 operators of type (5) generate the unitary group in 252 
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dimensions, U(251). Since the SD1 is a scalar in quasispin space ‘), the symplectic 
subgroup Sp(20) is the physically relevant subgroup of the unitary group. It is 
generated by the G!(2Q+ 1) infinitesimal operators 

(r.4k,(jj’)+(-l)‘+“+‘+“+ku,,(j’j)). (6) 

The irreducible representations of Sp(252) specify the total seniority. Finally, the total 
angular momentum operator, J, is a specific linear combination of the operators (6) 
with k = 1, (j’ = j), which generates the three-dimensional rotation group R(3). 
The eigenstates of the SD1 are classified by the group chain U(20) 3 Sp(252) I> R(3), 
with corresponding quantum numbers n, v and J. To examine the possibility that 
the SD1 contains additional symmetries, a search must be made for subgroups of 
Sp(252) which contain R(3). For this purpose it is convenient to associate with the 
nucleons a pseudo-spin and pseudo-orbital angular momentum, (b-spin and c-spin), 
by the relation 

where c and b are integers and +-integers appropriately chosen to yield the single- 
particle j-values of the subshells of actual interest. (A single pair of b, c values may 
suffice, or a set of several may be required.) 

The unit tensor operators which are scalars in c-space are of particular interest. 
They are defined by 

Bib” = c c <bmb b - 41kb q&d&cmc abm,bcmc(- l)b-m’b 
mc wm’b 

(84 

and can be expressed in terms of the unit tensor operators of eq. (5) by 

%,b = n-1) i’+b+c+kb[(2j+1)(2j’+1)]+ (i : kc,) nkaJjj’). (8b) 
jj’ 

(If more than one value of c is required, eqs. (8) may include sums over c with ap- 
propriate weighting coefficients.) The unit tensor operators which are scalars in b-space 
can be defined in analogous fashion 

C;; = c (_ l)j+b+c+k E[(2j+ 1)(2j’+ l)]+ [i ; L) ukc&j’). (9) 
ji c 

Using the symmetry properties of the 6-j symbol, it can be seen that the operators 
B,k: with k, odd, and similarly the operators Ci; with k, odd belong to the class of 
eq. (6), provided single-particle states of the same parity are assigned values c of the 
same parity. These operators thus generate subgroups of the symplectic group 
Sp(28). The operators with k, = 1 and k, = 1 are of greatest interest. With appro- 
priate normalization factors (or reduced matrix elements) the operators 

g=’ = ~[~(2b-i-l)b(b+1)(2j+1)(2j’+l)]f(-l)i’+b+c+1 (i J t) ni,(jj’) (loa) 
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and 

c=r = ~~~2c+f)c(c+~~(2j+l)(2j’+l)~~(-l~~b~c~1 i j: i ~~~(jj’~ (lob) 
( 1 

satisfy the relations 

[B+,JL] = 280, [&,,&I = +B*; 

CC, C_ J = 2C,, [G, C&l = I+c* f W> 

and 

P, Cl = 0, W) 

J = B+C. (114 

The operators B and C are commuting angular-momentum operators whose sum is 
the conventional total an~lar-momentum operator. The operators generate a direct 
product of two three-dimensional rotation groups [O(3) x O(3)], a subgroup of 
Sp(2Q), which itself contains the conventional three-dimensional rotation group. 
The irreducible representations are labeled by quantum numbers (B, C) related 
to the eigenvalues B(B+ 1) and C(C+ 1) of the operators B2 and C2. The angular 
momenta J untuned in a repre~ntation (B, C) are given by the usual coupling 
rules: J = B+C, , , ., IB-Cl. To find the possible representations (B, C) contained 
in a given representation of Sp(2Q), (total seniority v), and to study the physical 
significance of the new subgroup and its relation to the symmetries of the SDI, it is 
best to consider some examples so that the values of b and c are specified. 

3. The two-level ease 

The single-particle states of the same parity which are nearly degenerate in real 
nuclei are pairs of states such as {s,d+}, {d+g%>, (p+f*), . . ,, that is, doublets of the 

type (I,, (i+2)f+ r3. F or such a doublet the single particle b- and c-spins can be 
assigned as b = 3, c = If 1; e.g., (b, c) = ($,3) f or a (d+ga) doublet. ~ntis~etry 
requirements restrict the two-particle states (two identical particles) to those with 
B = 0, C = even, (J = C); and B = 1, C odd, (J = C-I- 1, C, C- 1); and it can be 
shown that the favored pairs of the SD1 are the pairs with B = 0. The pair creation 
operators coupled to 3 = 0, C = Jeven, can be written as 

With b = 3, and the relation 

(2c+f)<coco~Jo)(-l~~~ (cj ; $1 = <j~j’--+~JO), (13) 
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the creation operator for the favored pair of the SDI, eq. (2), becomes 

&T&f = [~(2c+1)]~(-l)‘<cOJOlcO)A,+,,~~~~,J~ 

and, except for a proportionality constant, is the B = 0 pair creation operator. 
Since the favored pair creation operators are b-space scalars, they commute with the 
components of B 

Cd,‘, > B1 = C&J&f 9 B1 = 0. (15) 

Just as the favored pair annihilation operator with J = 0, (the total quasispin operator 
9_), can be used to determine the seniority of a state, the favored pair-annihilation 
operators with J # 0 can be used to measure a generalized seniority, (the B-spin). 
A state with nucleon number n = a is entirely free of favored J = 0 pairs and satisfies 

ZZz,,ln = 0) = 0, (16) 

If the action of LzZ~~(~‘_) on a state of n nucleons yields zero only after the succes- 
sive application of (x+ 1) such operators, the state has a seniority z, = n-2x. From 
the commutation relations (15) it can be seen that the favored pair annihilation 
operator with J # 0 cannot change the B-value of a state. The operator dJM, 
however, lowers the nucleon number by two units, and consequently must give zero 
when acting on a state of B-spin high enough that such a B-spin is not found among 
the (n-2) nucleon states. In particular, 

d,,jB = $u) = 0 for all J # 0, (17) 

that is, a state with B = &I is entirely free of favored J # 0 pairs. Similarly, successive 
application of two favored pair annihilation operators with J # 0 must yield zero 
when acting on a state with B = .)v - 1, . . . . The B quantum number, therefore, 
counts the number of favored J # 0 pairs; and states with B = 0, 1, 2, . . . can be 
said to have the values 0,2,4, . . . for the new generalized seniority quantum number. 

The possible (B, C) values for states with v 2 3 are given by the well-known 
techniques of spectroscopy. For the (d+g%) doublet, for example, with (b, c) = (t, 3), 
they are identical with those for atomic f-shell spectroscopy, as given by Racah 13). 
Some of these are shown in table 1 to illustrate the richness of the v = 3 and v = 4 
spectrum, (the three- and four-quasiparticle states of pairing theory). 

From the commutation relation (15) several simple properties of the SD1 follow: 
(i) The SD1 is a scalar in B-space. Since it is a scalar in J-space, it is also a scalar 

in C-space. It is therefore diagonal in both B and C. If the single-particle levels are 
degenerate, both B and Care good quantum numbers. For the (d*g%) doublet it can be 
seen from table 1 that the matrix for Hsn, p s lits into submatrices which for v 5 4 
are never larger than 3 x 3. 

(ii) The eigenvalues of HsD, are independent of J, and are functions only of v, B, C, 

and the additional quantum numbers needed to distinguish states with the same 
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TABs,l? 1 

Allowed (BC) values for the (d*g$ system 

V w3 

1 (&3) 
2 (02) w (06) (11) (13) (15) 
3 W) (84) (P3) (92) (Pa 

W C&7) WI (?z5Y G4Y G3) aw C&l) 
4 (26) (24) (23) (22) (20) 

(19) (18) (17Y WV w3 U413 (13)” w2 (1112 
(‘&lo) (W2 (07) KW fW2 WY (03) (W3 too) 

(B, C) for u > 2. Each (B, C) state is therefore a degenerate multiplet. Its components 
withJ=B+C,..., [B-Cl all have the same energy. 

(iii) The eigenvalues of the SD1 for all states with B = $0 = -&n are zero for all 
values of C. All states (B = +v, C) with different values of C are therefore degenerate. 

The properties (i)-(iii) hold not only for the SD1 but for a modified interaction in 
which the single strength coefficient G of eq. (4) is replaced by J-dependent coefficients; 
that is, properties (i)-(iii) hold for any interaction built from B = 0 pair operators. 
With these properties it is also easy to calculate the eigenvalues of Nsm for u > 2 
by means of a cfp expansion using cfp’s known from atomic spectroscopy. The two- 
particle matrix elements are different from zero only in states with B = 0. For the 
two-level case they have the value 

-G(2c-l- 1) (cOJO~CO)~, 

so that the n-particle matrix elements are given by the cfp expansion 

(18) 

<nucl’(BC)(Hs,,Inua(BC)) = -$Gn(n-- 1)(2c+ 1) C (cOJO(CO)~ 

X c +2D,_,a*_J, R-2 G-2); w)l)~~ew 
~n--2~n--ZBn--ZC~--Z 

X <n-2v,_,oc,_,(B,_, C,_,);(o~>~)nu~‘(~C)>. 09) 

The quantum numbers 01 are needed whenever a (B, C) value occurs more than once 
for a given ~1. For c = 3, (the analogue of atomic f-shell spectroscopy), the quantuln 
numbers a are given by the irreducible representation labels of the special group G2, 
(Racah I”)). However, the group Gz seems to have no particular physical significance 
for the SDI; (H snr is not diagonal in G,). The cfp needed for eq. (19) for the (d*g*) 
doublet follow from the tabulations of Racah 13). The eigenvalues of Ws,, for states 
with u 5 4 are shown in fig. 1 and table 2. As previously noted, states with B = &I, 

are all degenerate. The states with B c .$a, though not degenerate, cluster quite closely 
about their centers of gravity. For example, the states with v = 2, B = 0, J = 2,4, 6 
lie -&, -&, and $$-$ units below the v = 2, B = 1 states, (on a scale on which the o = 0 
state lies one full unit below the o = 2, B = 1 states), and cluster quite closely about 
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Fig. 1. Energy levels for a degenerate (dsgs) system. Exact eigeuvalues for SD1 are shown only for 
u 5 4. For the generalized pairing interaction only the low-lying higher a-states are shown. 

their center of gravity at jj or 2/(2c-!- 3) units. This suggests that the SDI, (in the two- 
level case at least), can be replaced to good approximation by a simplified interaction 
for which the effective interaction strength for favored J + 0 pairs is independent of 
J (but differs from the pairing strength for 3 = 0). This simplified form of the SD1 
wiII be called the generalized pairing interaction. It is given, in terms of the B = 0 
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TABLE 2 

Energies of SD1 for the (d& system 

v=l ($3 3) -2.000 v = 0 (0,O) -2.000 v = 2 (0,2) -1.267 
(094) -1.182 

fJ=3 (bl) -1.333 (036) -1.233 
(+A21 -1.400 

-1.273 v = 4 (0,O) -0.721 (1, 1) -0.504 
(B 3) -1.364 (092) -0.723 -0.369 
($3 4) -1.368 -0.660 (132) -0.494 

-1.279 -0.559 -0.409 
(k5) -1.375 (093) -0.636 (193) -0.518 

-1.295 (094) -0.738 -0.448 
($3 6) -1.387 -0.717 -0.389 
($9 7) -1.329 -0.611 (134) -0.485 
t&8) -1.350 (095) -0.742 -0.450 

-0.644 -0.381 
(036) -0.690 (195) -0.486 

-0.602 -0.445 
(0,7) -0.647 -0.400 
(098) -0.700 (1, 6) -0.478 

-0.627 -0.412 
(0,101 -0.676 (l-7) -0.479 

-0.415 
(I,81 -0.43 1 

-0.452 

pair operators A&OMB=O,cMc of eq. (12), by 

H *en. pairing = --tG(2c+l) &h,oo&,,oo+ 
[ 

It can be expressed in terms of the usual (J = 0) pairing Hamiltonian and a two- 
body pseudo spin-spin interaction modified by a monopole term of appropriate 
strength 

H een. pairing = 
_G2c+1 

-~~~doo+G~3[2~6i.bj-f~1]. (21) 
2c+3 i<j icj 

The generalized pairing term for J # 0 pairs thus leads to the two-body B2 operator, 
much as the ordinary pairing term leads to the quasispin Y2 operator. (Racah and 
Talmi I”) in discussing the pairing properties for the ordinary spin-orbit doublet of 
the I” configuration cite the operator si - sj as the simplest seniority preserving operator.) 
The eigenvalue of the generalized pairing Hamiltonian (21) is given by 

E *en. pairing = - G s [+(n-u)(4c+4- n-u)-B(B+1)+$z+$l(n-1)]. (22) 

Despite the apparent n-dependence, the relative spacings of these energies is n- 
independent. The interaction is a scalar in quasispin space, as is the SDI. The eigen- 
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values are plotted in fig. 1 alongside the exact eigenvalues of the SD1 for the (d,g,) 
doublet, (c = 3). It can be seen that the generalized pairing interaction gives a very 
good estimate of the position of any one of the very large number of states with v 2 3. 
States with v = 4 may be important in a calculation only insofar as they perturb the 
v = 2 states (through the single-particle energy splitting, for example). For this 
purpose their location by means of the generalized pairing interaction may serve as an 
excellent approximation. For v 2 4, the quantum number B becomes more important 
than v in ordering the energy levels. Thus states with v = 4, B = 0 lie close to the 
v = 2 states, while states with v = 5, B = f lie close to the v = 3 states. Finally, it 
should be noted that the spectrum of states with 2B $ v is repeated with the same 
spacing for each seniority greater than v. 

The energies shown in fig. 1 are for a degenerate single-particle doublet. If the 
single-particle energies E J + 1 , Ej are unequal, the single-particle Hamiltonian must be 
considered. It can be put in the form 

H s.p. = 12 
[ 

H&j+1 +&j)+ --!--- (&j+ 1 -&j) 

2(2c + 1) 1 + & C&j+ 1 -cj),~l bi * ci 7 (23) 

that is, apart from a constant term proportional to n, the single-particle Hamiltonian 
has the form of a one-body pseudo spin-orbit coupling term. Its matrix elements are 
therefore subject to the selection rules ldB1 6 1, ldC1 6 1; and in first order per- 
turbation theory they can make no contribution to the B = 0 states. Calculations 
by Jones and Borgman 15) for the (lgs2d+) levels of the 82-neutron nuclei show 
that the single-particle splitting can be treated in perturbation theory to good approx- 
imation. In these calculations the positions of states with v > 2 have been approx- 
imated by the generalized pairing value, eq. (22). The detailed shell-model cal- 
culations of Wildenthal 6), however, do indicate that higher order terms may play 
some role since the final separation of states with v = 4, B = 0 and v = 2, B = 1, 
(or rather with predominant components of this type) have only about one half the 
separation energy predicted in zeroth order. 

Finally, for a single (b, c) doublet, the favored pair operators generate a generalized 
quasispin group. This group can be identified from the work of Helmers 16) as a 
symplectic group in (4c+2) dimensions. Its infinitesimal operators are the (2c+ 1) 
(c + 1) favored pair creation operators &TM and their conjugate annihilation operators, 
together with the (2c+ 1)’ operators Ci: of eq. (9). To make the correspondence 
with the infinitesimal operators of Sp(4c+2) precise, it is convenient to uncouple 
these operators in c-space and write them in the form 

A+ m,mk = ~(-l)b-maa~bcmia~--msemr = A:,,,, (244 

v rnfrnk 
=; 

a~~~,,,,,a,,,,,,--2(2b+1)6,,,,. (24b) 

The correspondence between the B = 0 operators of eq. (24) and the generalized 
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quasispin group operators is shown in table 3. With b = 3, the eigenvalues of Hi 

can be at most + 1. In this case, therefore, the irreducible representations of the gen- 
eralized quasispin group Sp(4c+2) are all of the form (111 . . . 00). The number of 
I’s in the irreducible representation labels can be shown to be equal to (2c+ l -2B). 
The generalized quasispin group Sp(4c+2) therefore does not lead to new quantum 
numbers in the two level case. The generalized pairing Hamiltonian of eq. (20) is, 
except for trivial factors, a combination of the Casimir invariants of the generalized 
quasispin group Sp(4c+2) and its subgroup, the three-dimensional quasispin group 
based on the favored J = 0 pairs, whose eigenvalues are specified by the quantum 
numbers B and U, respectively. Finally, the orthogonal subgroup 0(2c+ 1) generated 
by the operators C’iz of eq. (9), with k, odd, may introduce new quantum numbers 
in the case of relatively large c and ZL For the smaller values of c and u of usual 
interest in the nuclear shell model, however, the irreducible representations ‘of 
O(2c + 1) are almost always completely specified by the seniority number 1) alone 13). 

TABLE 3 

Standard form for the infinitesimal operators of the generalized quasispin group, Sp(4c+2) 

Operators “) Infinitesimal generators b, 
(standard form) 

Number of 
operators 

Ebl with: a = +2ei (2c+l) 
a = -2el (2c+l) 
a = el+ek c(2cfl) 
a = -et-ek c(2c+l) 
a = e,-ek c(2ctl) 
a = -e,+q c(2cfl) 

Hi (2c+l) 

“) See eq. (24). ml = c, c-l,. . ., -c for i = 1,. . ., (2c+l). 
b, The notation is that of ref. I”). 

4. The many-level case. Major nuclear shells 

In the many-level case there may be several ways of assigning the one-particle b- and 
c-spins. The case of major nuclear shells will be illustrated by the (s+d+), (d,g,), 
(h+) and the (p*), (p+f%), (f5hZ), (iY) shells. If the favored pair is to be precisely 
the pair of eq. (2) favored by the SDI, it appears that all states of the same parity 
must be assigned a b-spin of 3; so that the (bc) values for the two examples cited 
would be (+I), (33), (O-k$), and (30) (92), (34), (w), respectively; or in general 
the (bc) spins for the major nuclear shells would be chosen as (4, c,,,), (3, c,,,,,-2) 
. . ., (O,j,,), where the state with angular momentum j, (c-spin = j,) has a parity 
opposite to that of the remaining states. Many other choices are of course possible. A 
(ps, p+, ft-) triplet, for example, could be assigned (bc) = (1%). However, if there is 
to be a precise correspondence between B = 0 pairs and the favored pairs of the SD1 



140 K. T. HECHT AND A. ADLER 

the choice based on b-spins of 3 seems to be required. With this choice there are 
several ways of making B = 0 pairs of a given J = C. 

~,+=oM,=o,JM = Cacc,(~)C r”:2~~~“l;_l)b+c+j+J (j ’ “) A,',(jj'), 
cc’ jj’ c j' J 

where the coefficients a,,,(J) are still arbitrary. In order to make the precise cor- 
respondence: A&,,, = &iM, the coefficients a_,(J) must be chosen as 

a&> = [ 
‘2’;;;:‘;; “I *(&‘0,J0)( - 1)’ for integral c(b = 3), (26a) 

ajoj&J) = ( - lP’+’ 2LgJT :)]+ (je 3j0 -#Jo>. 

The vector B is given by eq. (lOa), with b = f; but a sum over the c-values of the 
b = 3 levels is now implied. (The valuesj, j’ determine c; note that j, j’ # j,.) The 
vector C is given by terms of the form given by eq. (lob) summed over all c, again 
with b = 3, to which a term withj = j’ = j,, must be added where this term gives the 
j, contribution to the vector J. With these definitions the vectors B and C again 
satisfy the properties of eqs. (1 la, b, c) and (15). The c-space tensors Ci with k > 1 
can now be chosen in several ways. Tensors with even k 

C: = 5 u(k) iZ (- 1) 
ji’ 

c+t+i+k[(2j+ l)@‘+ 1)1’ (f j’; kf] u&j i’)+ yj,(k)~&o jo), 

with 
(274 

and 

y,,(k) = (-1)c (27b) 

yj,(k) = (_ l)jO-3 2j0 + 1 
[2k+ l-J3 

<je+jo-31kO), 

are, except for a constant multiplier, the multipole moment operators “) 

Q(k 4) = const. c h&.Y)u,,( j j’). 
ii’ 

(28) 

In the approximation in which the variation of the radial integrals of the 2k-pole 
operators with the different single-particle states are neglected, the electric multipole 
operators, and (in the same approximation) more general 2k-pole operators are seen 
to be b-space scalars. In this approximation, therefore, their matrix elements are 
subject to the selection rule AB = 0. A special case of this selection rule was noted by 
Arvieu and Moszkowski “) who pointed out that the 2J-pole operator can connect 
the ground state of even nuclei (U = B = C = 0) only to the favored J # 0, 21 = 2 
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state, (again a state with B = 0) so that this transition probability takes up the full 
strength of the sum rule for a 2J-pole transition. It is interesting to note that inelastic 
scattering experiments on odd nuclei of the 82 neutron family ‘*), such as 141Pr, 
with ground states which are predominantly 2, = 1, B = 4 excite mainly a group of 
positive parity states centered about 1.5 MeV where the excited states have predo- 
minant components with u = 3, B = +-, whereas no appreciable excitation to po- 
sitive parity states is observed at higher energies in the region of the predicted o = 3, 
B = 3 states. 

One of the difficulties of the above assignments of (bc) values is that the quantum 
number B does not by itself give a unique definition of the favored pairs. For a de- 
generate set of single-particle levels with j = 3, 3, 3, (p+, p+, f*, or s+, d+, d3), 
there are two different pairs with B = 0 for both J = 0 and J = 2. The favored 
J = 2 pair is depressed below the v = 2, B = 1 states by 0.571 units, the favored 
J = 4 pair by 0.238 units on a scale on which the a = 0 state lies 1 unit below the 
v = 2, B = 1 states. The second B = 0, J = 0 and J = 2 states also remain at the un- 
perturbed position of the u = 2, B = 1 states. The favored J = 2 pair is now de- 
pressed much more than the favored J = 4 pair. A generalized pairing approximation 
of the type of eqs. (20)-(22) is therefore no longer a good approximation. A much 
better approximation might be based on a model in which there is a single favored 
J # 0 pair, with J = 2, while the single B = 0, J = 4 pair is demoted and lumped in 
with the unperturbed states. 

Similarly, for degenerate single-particle levels withj = $,$, 3,$, the favored pairs 
of the SD1 are depressed below the u = 2, B = 1 states as follows: J = 2 by 0.667 
units, J = 4 by 0.394 units, and J = 6 by 0.163 units, again on a scale on which the 
favored J = 0 (u = 0) state is depressed by 1 full unit. The generalized pairing 
approximation which worked very well for the two-level case becomes poorer as the 
number of single-particle levels increases. Again, a much better approximation might 
be based on a model in which the favored J # 0 pairs are restricted to be those with 
J = 2 and J = 4, while the J = 6 state can to a good approximation be grouped with 
the two-particle states with zero eigenvalue which, (according to the above b, c 

assignments), include besides all of the B = 1 states, B = 0 states with J = 0, 1, 2, 3, 
and 4. 

Such models have the advantage that they can in principle be based on a single 
set of (bc) values. For thej = -), $,Jj family, for example, (bc) can be chosen to have 
the values (13) or (+l); while for the j = 3, $,s, 3, family (bc) values of (92) or (23) 
are possible. In these models the vectors B and C are those of eq. (lo), while the 
favored pairs are the B = 0 pairs of eq. (12) and are now uniquely defined by the 
specification: B = 0. A generalized quasispin group can be defined as in table 3, 
and the vectors B, C, can be imbedded in a group [0(2b + 1) x O(2c + l)]. While these 
models are simplest from the mathematical point of view, the question remains whether 
the B = 0 pairs defined in terms of a single (bc) multiplet are in relatively good 
agreement with the J # 0 pairs actually favored by nature. Unfortunately the cor- 



142 K. T. HECHT AND A. ADLER 

respondence does not seem to be very close. The B = 0 pairs based on a single (bc) 
multiplet seem to have the wrong j, j’ components. This is illustrated in table 4 
for the favored J = 2 pair of a j = 3, 3, 3, configuration. The table shows the j, j’ 
components of the favored J = 2 two-particle states. It can be seen that the pre- 
dictions of the SD1 are in very good agreement with those based on the Kuo matrix 
elements “). (These numbers are the j, j’ components of the lowest J = 2 two- 
particle state obtained by diagonalizing the Kuo two-particle matrix “) for a com- 
pletely degenerate (s,d+d+) single-particle multiplet. The phases in the various other 
columns are adjusted to correspond to these.) Unfortunately the j,j’ components of the 

TABLE 4 

The j, j’ components of the favored J = 2 state for the j = + 3 & configuration, based on several 
models 

j j’ SD1 Kuo b=lc=$ b=#c=l SUB (40) 

4 % 0.447 0.485 0.772 0.567 0.326 

t Q 0.342 0.331 0.168 -0.495 0.250 

s 4 0.316 0.288 -0.446 -0.491 0.231 

8 a 0.592 0.592 0.188 0.415 0.683 

?z 4 0.483 0.472 0.377 -0.138 0.558 

B=O,J=2pairsfortheb=l,c=gandb=$, c = 1 models differ appreciably 
from these. An assignment of (bc) values: (4, c,,,), (3, c,,,-2), (3, c,,,-4), . . . 

therefore seems to be the best for the states of the same parity of a major nuclear shell. 
It is interesting to see how closely the favored pairs with J = 0, 2, . . ., 2c,,, agree 
with those of two particles coupled to the totally symmetric SU3 representation 
(2&O), with A = c,,, . Wigner coefficients for the coupling of totally symmetric repre- 
sentations of SU3 in the chain SU3 3 R3 have recently been given by Sharp et al. I’). 

The reduced Wigner coefficient for the product (LO) x (no) -+ (2il, 0) has the form 

((10)~; (nO)c’ll(2n, 0)J) = [(2c+ 1)(2c’+ l)]‘(cOc’O1JO) 

with 

x f(k 4fG 4 W4! 
f (24 J) [ 1 (21+2)! 

+, (29) 

(+(n+C))!1!2C * 

f(n, c, = [(t(2-c))!(A+c+l)! 1 . 
Except for the factors f(12, c) these coefficients would be the ones required by the 
SDI, (see eq. (26a)). Unfortunately, the factorsf(l?, c) again differ appreciably from 
unity. The results for a J = 2 two-particle state coupled to SU, representation (40) 
are shown in the last column of table 4. 
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No complete group theoretical description has been found for the favored J # 0 
pairs, except in the case of the {li(l+ 2)j+ 1> single-particle doublet. The calculations 
for the case of many nearly degenerate single-particle states would therefore be similar 
to calculations for mixed configurations in atomic spectra where the (bc) values 
play the same role as ordinary spin and orbital angular momenta, with b = -j and c 
integral. An extension to configurations of both neutrons and protons will be the 
subject of a subsequent investigation. 

It is a pleasure to thank S. A. Moszkowski for his suggestion that we examine the 
symmetries of the SDI. 

Note added in prooJ The usefulness of pseudo-LS coupling schemes has recently 
also been pointed out by A. Arima, M. Harvey, and M. Shimizu (private commu- 
nication) and by C. Quesne and R. Arvieu (private communication). 
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