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INTRODIUCTION

By means of a method developed by R.E. Kleinman (1965) of the Radiation
Laboratory, it is now possible to solve iteratively the Dirichlet problem for the
scalar Helmholtz equation in the regions exterior to a non-separable body imbedded
in the Euclidean 3-space provided:

(a) k, the complex wave number, is sufficiently small,

(b) the solution of the potential Dirichlet problem for the body in question is

known.

In the present work we consider the low frequency scattering of a plane wave
at nose-on incidence from an ogive.

In Section II we find the integral representation for the static Dirichlet
Green's function for the ogive. In Section III we give the series representation for
this function. In Section IV, by means of the above method, we express the iterates
for the scattered field explicitly in the form of integrals. In the Appendix, we indi-

cate the orthogonality properites of the eigenfunctions arising in the problem.
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II
THE STATIC GREEN'S FUNCTION OF THE FIRST KIND FOR THE OGIVE

2.1 The Separability of the Laplace Equation VZ([/ = 0 in Bispherical Coordinates

Limiting ourselves to Euclidean 3-space and orthogonal curvilinear co-
ordinate systems (ul, uz, u3), we give two definitions.

Definition: If the assumption
2 i i
Y = H Vi) (2.1)

permites the separation of the equation Vzw =0 into three ordinary differential
equations, the Laplace equation is said to be simply separable.

Definition: If the assumption

3
1 T i, i
Y= T2 .., V() (2.2)
Rk, o2, oy L

2
permits the separation of the equation V =0 into three ordinary differential
equations, and if R# constant, the equation is said to be R-separable.

Bispherical Coordinates

These orthogonal curvilinear coordinates (o, B, ) are defined by

_ csinhf

~ coshB- cosa

y = -csinasind | 2.3)

coshB- cosa

csina¥ cos §

Z =
coshf3-cosa
h.=h = c - csina
B @ coshB-cosa # ~ cosB-cosa

where
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2 2
2 _ (ox (QX) (_a_z
h, = aa>+ /)t )

and similarly for hB and h¢.

In these coordinates

h 2

2 _1|o ( &), _1 8 ( . 8),_B 3%

vy = ‘: (h + — (h sina + . (2.4)
hg o8 \'B 9B sina aa \'fB o sin2a W¢2

The ranges of the variables are - <8 <o, 0<ag 7, 0P 2.

The necessary and sufficient conditions for the separability of the Laplace
éand Helmholtz) equations in various coordinate systems are given by Moon and
Spencer (1952). Using their criteria for separation, we see that the Laplace equa-
tion is not simply separable in bispherical coordinates but is R-separable (whereas

the Helmholtz equation is non-separable in either sense).

2.2 Definition of Ogive

In the bispherical coordinates the surface =oz1(const.) is a surface formed
by rotating about the x-axis that part of the circle, in the x-z plane, of radius

ccoseca, with center x=0, z=ccota The surface of revolution is called an

ogive (Filg. 1). All the surfaces of con;tant o go through two points x= Fc
(y=2z=0): and at these points B= T respectively. The surface a =0 is the
x-axis for x >c plus the sphere at infinity; the surface a = 7 [2 is the sphere of
radius ¢ with center at the origin: and the surface a =7 is the x-axis for x <c.
The exterior region we are concerned with is @, >a 20, ©o>B>-m, 27 >p >o0.
(there is another way of arriving at the bispherical coordinates, starting with the

cylinderical coordinates, which will be considered later.)

2.3 The Green's Function

The Jacobian of the transformation (2.3) is
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N

c a positive constant

(0, ccotal)

FIGURE 1
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a(x,y, z) c3sinoz
- (2.5)
8. B, ) (coshf3- cosoz)3
Also
o( Z) -1
6(x- xo)6(y- yo)é(z - zo) = 8_(2% 6 -ao)é(B— 30)6(?5 - ¢0)
(2.6)"

Therefore, the equation to be solved is

2 (coshf3- cosoz)3
V'Gla,B, hia . B, ) = -4r 3 “ola-a )-(B- B (-9 )

¢ sina 2.7)
2
where V~ in bispherical coordinates is given by (2. 4).
We find the necessary substitution for R-separability to be
G = Vcoshf-cosa g . (2.8)
With this substitution (2.7) becomes
82 1 0 o) 1 82 1 Vcosh
28 - —(sina—g)+——-—g-—g=-4vr oS Q-cosa
2 sina oo o . 2 2 4 csino
B sin“a 9
. 5l -ao)a(B - Bo)a(¢ - ¢o) .
(2.9)

" Equality is understood in the sense of distributions. It is sufficient for our pur-
poses to interpret the equality (2. 5) (and any equality involving §-functions as
follows:

If the equation is multiplied by an arbitrary function e C(-00, 0) and inte-
grated from - to oo with

a
S 5(x) px) dx = H(0)

-0

used to evaluate integrals involving 6-functions, then the resulting equality is cor-
rect in the ordinary sense. (Similarly, for the cases in more than one variable.)
Also we shall assume the other §-function formalism such as substitution, integra-

tion by parts, etc., and for proofs refer to, e.g., Gelfond and Schilow (1962).
5
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We now require the periodicity of g in 0K ¢ < 27 and expand it in a (uni-

formly convergent) Fourier series

(00)
gla, B, ¢;ao,Bo, ¢o) = ; Amgm(a,B,ao,Bo)eim¢ in0gPpg2r . (2.10)

Substituting (2.10) into (2.9), multiplying both sides by e_1n¢ and integrating
over §§ from zero to 27 (and observing the orthogonality of the set ﬁam’b}), we see

that

-imf
A =-—1-e o,

and (2.10) becomes

03] .
L2 et
gl B.Pia,B .0 ) = 5~ / g, @B ,B)e (2.11)
The equation satisfied by gm is
2 2
og og og 2
m m, cosa _~m (1 m _ \Veosh B - cosa
2 * 2 * sina 8o (4+ . >gm_ -am csina é(a-ao)é(B_Bo)'
o o sin o
(2.12)

: . b3
We now consider the Fourier transform of gm

*If R is the distance between the field point p=(e, 3, ¢) and the source point
po = (ao: BO: ¢0), then

®
S dB/Rz <

-Q0

provided p# p,, i.e., 1/Re L2(-00, ). Since the Green's function is regular at in-
finity (which will be shown after the completion of the construction of G),

Ge L2(-oo, ). Therefore the Fourier integral theorem is valid for G in the vari-
able B. Or we simply note that G is a distribution and that the Fourier integral
theorem is valid for distributions (Lighthill, 1960).
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®
=9 4 = . iVB -
E[gm] = gm(oz, V,aoBo) gm(a, B; Q. BO) e " dB (-o<v< o)
-0
and the operational property

2
E —5 | =V gm(a,v;ozo,Bo) .
9B

Thus taking the Fourier transform of both sides of (2.12) with respect to B,
we obtain

9 ivBo
d €.  cosa dg’m 2 1 m2 . e \[coshBo- cosa
+ = -t +— g = -4r - Sla-a ) .
do12 sina dox 4 sino m ¢ sina o
! (2.13)
Let
o 1
cosa = & , E - " sina ’ (2.14)
then (2.13) becomes

d 1 2)Eg_m__ + G _1_)( .|._1.) _m_2_ x _ _47 WBO\’ hB -£ 6(E-€)
T - P i -5 )i+ 3 -1-52 En™ "¢ © coshp o’

(2.15)
We now proceed to solve the equation (2.15) L[gm] = v with

d 2, d 1 1 m2

== 11-8YY=|+|(iv-= +=)- —

L T [:(1 3 )dg’ [(w 2)(11/ 2) 1 gz

(2.16)
ewBo
v = -47

— (coshB_- 525 - £)

with proper regularity conditions at infinity.
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The two independent solutions of L[gm—_l =0 are g 1/ (§) and
s _
gm1 = Piv—l/z( -£). Taking m=0 for a moment we see that
1 1 sin2a
= = -_—— — + 37) 0 e—
Piv-l/z(g) Piv_l/z(cosa) 2F1<2 iv, v; =5 )
4v2+1 (41/ +1 )(4 2, 3 )
TN S T = in%a/2 +..
22 22 . 42

(2.17)

is equalto 1 for =0 (§=1, Vx2+y2+z2 = o).

By changing a to 7 ~a, we have
P -8 =P (-cosa) = _F (-l'-iu l+11/ 1; cos a/2) (2.18)
Hence P, y (§) is not bounded when o =7(§ =-1).
=2

fam. 4] e ot
The Wronskian: @’ml gm2 gmz g )

We have (Magnus and Oberhettinger, 1949, p. 63)

2 P 1/+u+ 1>P(+“+2)

Fedw-#ode - e ”H)F(V u+2) (2.19)
P’;(—S) = cos(§+u)7r13l:(§')- %Sin(u+u)7r,d:(ﬁ) (2.20)

1
QH(E) 3 m {:os(v+u)7rlf;(§)—P’;(-E;)} . (2.21)

' From (2.19) - (2.21) we obtain

ZU PV+H+1> 1/+u+42>
Piot @ - o o= sm(v+u)7r:| ( 2 ( 2

1-F l—-yu+1 <u+2>

(2.22)
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Using Legendre's duplication formula

VT M) = 227 M@ ) |

replacing v by iv—é— and 4 by m (an integer), we finally obtain the Wronskian
~ ~ d
W[ , ] =P (-8 P -
gml ng w'l/z( £) d§' 1/ (&) - /(E) __1/2( £)
[ , gm :I (2.23)

where J, the conjunct of 'gvm and é"m , is given by
1 2

1- S

r'(iv+% +m)
J[g 2] = s1n(1v+m— 2)7r:l e R (2.24)
my” m v+ - m)
The Solution of (2.15): L[gm] =v.
§ ng du vg du
~ ~ 1
g =g o (2.25)
m” Cmy \ JE ng fmy \ 3 [gml, gm;_l
or
~n iVB
§ gml(_u) e %(cos Bo— u)l/2
g (g,E)=¢g (&) P s(u-£ )du
m o m J[g ,g c 0
2 -1 [ my m2]
~ iVB
1 g (u) o °(cos B - u)1/ 2
+g (S) ’ 6(u- & )du. (2.26)
J[éml, gm; c o

The first integral vanishes for §< SO while the second integral vanishes for § 2 So.

Hence
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ivB g (BF (), &gt
-4r e 0(cosh;Bo- 50)1/2 my my 0 °
m o cdig .8 ~ ~
By B, |, g ©F (), 53
o 2 1
ivB m m
3¢ °(coshp -£ )1/2 F(iv+_1__m) Piv_l/ (-E)Piy_l/ (f;-’o),
_ =27 0 (0] 2 2 2 §<§
1 1 ~ %o
sin(iv+m- =)7 Miv+= +m) m m
2 2 PiV—l/z(S)PiV-l/z(—gO) s
£,
(2.27)

A Representation for the Free Space Green's Function

Taking the inverse Fourier transform of gm, from (2.27) it follows that

(0 0]

. 1\ B ,
g (E.BE.B)= 5\ € g _(5viE B o

-Q0

oo iv]g - B 4L
0 Miv +< -m)
—lr(coshB - )1/2 dy — 2
c o "o

=00

sin(iv+m- %)TT f'(iv+-;- +m)

m m
Py COPL (), E<E
(2.28)"

m m
Py ©OF) 1 (E), E2E
Substituting (2.28) into (2.11) and the resulting expression into (2.8) we

finally obtain the following integral representation for the inverse of the distance.

" The integral is understood in the cense of Cauchy principle value.

10
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© .
1 _ _-1_ 1m(¢ - ¢0) 1/2 1/2
R(E, B, §; £ Bo’ ¢O) T T 2 2{; e (coshB-§&) (coshBO- g‘o) .

/(‘s“) 1/(5),8 <€,

11/

© iulBo_Bl f'(iv+';' -m)
dv — :

1 o1
sm(1y+m—2)7r f"(w+2+m) 1/(§)p 1/(’g') £E2€

o
(2.29)

The Green's Function with Boundary Condition

To obtain the Green's function for the Dirichlet problem, we go back to the
equation (2.15) and require that the condition gm(ozl, via , Bo) =0 be satisfied on the
surface of the ogive o =a, (const.).

Using the same notation as before, we define two functions

=& ©F €)-F CF (&)

1 2' 2 1
g, = gmz(&‘)
with
~ _ ~
gml(g) = Piv_l/z("s), g 2(5) = P 1/ (€) . (2.30)

. . . ~ _ s % ~n
¢1, ¢2 are two linearly independent solutions of L[gm] = 0, since gml, gm2 are,
and L is a linear operator. Also, ¢1(E 1)=O.

First, we observe that

BP0 - $EP,E) = g 2(51>‘}m1(s>§;nz(s> -, @, OF, 2(5)]

g, (Sl)J(gm 8 )

. . 2 1 Wy
=g (§)W|g_ .8 ;]=
m, "1 |:m1 m 1-£2 (2.31)

11
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where W is the Wronskian and J is the conjunct of g ,& .
m,’°m

Proceeding as before, we find that 2
ivB
e (coshB 0 1/ 2 ¢1(§)¢2(§o) » 8 Sgo
g (S E ) = -47|' ~
c'éf (E )J(Q' B )
m,’ “m, ) (§)¢1(§ ), 50
ivB
27r2 e 0(coshBo- 50)1/2 Miv +-;- - m) ¢1(§)¢2(§0) ’ §\<§o
©  sinfwtm-I)r  aw+i+m | B,EPE) . E3E
(2.32)
and that
- im(-9 )
G(E,B,¢;§O,Bo,¢o) = - ch ZO;, e © (coshB-£) 1/2 (coshB E ) 1/2
© 1 ileo_Bl l’(iv+% -m)
dv .
oo P> /(E ) sin(iv+ m-= )1r F(iv+-;'+m)
[ /( E)P 1/(8 )- P 1/(§)P /( E] 1/2(53 ), Eo

m
piv'_%(s)[lji Ly £y Ly 6Py EIB (-slﬂ L E2E
(2.33)

With (2.29) and (2.33) we also have the solution to the exterior Dirichlet

potential problem:

V2u=0

1
uboundary "R’

and u is regular at infinity (yet to be shown).

12
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2.4 A Verification of the Result

In this section we shall use a different procedure for obtaining the bispherical

coordinates, which is particularly suitable in treating the potential problems by con-
sidering a single (and/or double) charge layer on the boundary of the body. This will
| also serve as a check of the results of section 2.3.

Let (x, 1, ¢) be the cylindrical coordinates. Then the equation to be solved is
VPG, 1, % .1 0 ) = =X s(x-x )o(r-r )o(-P ) (2.34)
%0’ 70’ "o r o o ) ’

(with boundary conditions to be imposed later).
Assuming the periodicity of G in @, with period 27, we may expand it in a

Fourier series
. z"": im($-§ )
G(x,r, §; X Ty ¢o) = or - Gm(x, T, ro) e (2.35)

Substituting into (2.34) we obtain

2 2
) 0 10 2 -47
—— —_— = - . = e—— - -
[ 5t 3t 2 %0 (m/r):IGm(x, X ro) " 8(x xo)a(r ro)
ox or
Let
G == (2.36)
m \r fm :
Then g, satisfies the differential equation
22 o2 711’“‘2 —4r
+ + : = —= - -
> > 5 gm(x, X, ro) T §(x xo)é(r ro) . (2.37)
ox or r
Bipolar Coordinates:
In general, for the map
z = f(w) = x(o,p) + ir(e, B) (2.38)

13
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where f is analytic in its domain of definition, we have

dw oo B oo oB ’
and
ox _ or & _ or
Using (2.39) and (2. 40) we obtain
82 82 dz 62 62
St 3 gla,p) = ol I G S gx,r) .
o oB ox or
In particular, if we consider the map
iw
+
z = iccotw/2 = ¢ 1re_ (2.41)
iw
l-e
with
z = x+ir , w = atif,
we obtain
_ csinhf r = csina (2. 42)
coshfB-cosa ’ coshf-cosa )
and
2 2
-‘% = < 5 - (2. 43)
(coshB - cosa)
The range and the domain of -definition of this map is
-o<x<o0, 0<r<ow
. (2.44)
O<a<m7, -0 <B<o

14
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The z-half plane is represented on the w-strip as shown in Fig. 2. Under this map
the equation (2.37) transforms to
2

2 2 = -m J 2
0 0 4 dz
R g B B) = &
Lﬁaz 662 sinza m o0 dw

-1 47 |

Ax, r)
Ve 5o - ao)é(B - Bo)

o, B)

1/2
-47  (coshB-cosa)
= . *Sla-a )s(B-B)
Ve (sinar)l/2 © °
(2.45)
with
csinhf csina
X = o r = 2
o coshB -cosa ° "o coshf -cosa
) ) ) o

We now define the bispherical coordinates (o, 8, ) by rotating the bipolar
coordinates (o, ) around the x-axis. As in section 2.2 the ogive is the body of
revolution obtained by rotating the coordinate surface o =a1(const.) around the
x-axis.

By proceeding as before, we solve the equation (2.45) and arrive at the same

representations for 1 /R and G of the previous section. Details are omitted.

2.5 The Regularity, the Existence and the Uniqueness

In bispherical coordinates

+
r = J;2+y2+ ZZ _ Psh@ cosa 2. 46)

coshf- cosa

Since o and B are real, r—> o is equivalent to « —0 and B—>0. That

rG < m as r—>m is clear by inspection of (2.33).

or o or g or (2.47)
o _ Va)shB+cosoz . (coshB-cosa)3/2 (2. 482)
or ccoshf sina ’

15
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8B _ _ !} coshB+cosa . (coshﬁ-cosoz)B/2 (2. 48b)
or ccosa sinh 8 ’
oG _ sino
oG _ sinh
B 0<VRshB—cosa> as r—m (2.49Db)
Substituting (2.48) and (2. 49) into (2.47),
-g% = O(coshB-cosa) as r—ow
and hence
r2 96 _ o(1) as r—>o.
or
2+e oG . . .
Note that r .= _5m as r—> oo for an arbitrary € >0. So the static Green's

or
function (2.33) is regular at infinity (in the sense of Kellog).

The existence question does not arise in our particular problem, since we
have actually constructed the Green's function, and have justified every step in the
process (either by providing or by indicating the proofs or referring to the proper
sources).

The uniqueness, of course, follows from the fact that the solution to the ex-
terior potential problem

1) v =0

(2) ¢ regular at infinity

1]
o

is ¢

17
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2.6 Summary
In bispherical coordinates (o, 3, ) we have constructed the (unique) static

Green's function of the first kind, i.e., a function such that

(coshB- cos oz)3
3

¢ sino

(a) VG, B, Bio B8 = -4m  sle-a )5(B-B )s(B-9 )

(b) Gla,,B, ¢;ao, B, ¢0) =0

(c) G is regular at infinity in the sense of Kellog.

Next we shall find the series reprvesentation for (2.33) because that form will
be more suitable for generating the Green's function for the Helmholtz equation for

the ogive.

18
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I
THE SERIES FORMS

3.1 Series Representation for 1 /R (Residue Series)

We have
[0’}
im(p-9 ) 1 1/2
%{ = - —21; 20; e ° (coshB-§) /z(coshBO-go) / .
® iv|g-B | 1
0 Miv+= -m)
e 2 m m
P, &P ()], (3.1)
_ sin(iv+m—-;-)7r F(iv+-§-+m) [11/—1/2 i - Oj EcE
~ %o

With the substitution s =iv-1/,, this becomes

io-%  (s+3)6-B,)
0)1/2 ds 2

(coshB-cos oz)l/2 (cosh BO—‘ cosha

1 _ i
R 2c sinsw
-ioo -1,

®
. E - €, ©08 m(f - ¢0) (-1 ’C—Ezjﬁ . P:l(—cosa)Plsn(cosao)
m:

aza (3.2)

where eo=1, em=2 for m=1,2,3,... .
This, in turn, reduces by means of the addition theorem to
. 1
ico -1, e(s+§)|B-Bo|

i 1/2 1/2
aliew (cosh B-cosa) (coshBo— cosao) | ds ey Ps(cos 8)

1
R
-io-Th (3.3)

where cos @ = -cosacosa - sinasina cos(f - ¢o) .

19
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The only poles of the integrand are at the zeros of sins7; hence, they are

simple and located at s=0, 31, 32,... . Furthermore, since

Ps(cos Q)Nv-é;%m_é sin{(s+%)8 +£} (3.4)

for large |s | we see that the integrand vanishes if (and only if) Res <-1/2 as
|s |—->oo. This condition determines which way the contour is to be closed (Fig. 3).
Since oo is the only limit point for the poles and the spacing between the poles re-

mains uniform, no special analysis is required in "threading' the poles for large |s |

and we proceed in the usual way to obtain the residue series.

Ims
a—
& | f
i |
7
|
|
|
| 1/2 Res
= e % —>
) % —3—
.. -3 =2 SN 0 ! ?
|
|
|
|
|
N |
-]

FIG. 3: THE CONTOUR AND THE POLES

20
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© 1
(s +3)|B-B |
i}- = - lr(coshB—cosa)l/z(coshB - cosa )1/2 E e 2 P (cos®)-
c 0 0 - s

1

" rcoss T (3.5)
n

where sn= -n, n=1,2,3,... .
Replacing n by n+1 and observing that P__ 1(cos6) = Pn(cose), (3.5) be-

comes

1 1/2 1/2 S '(“+_;')B’B
== (coshB - cosa) (coshBo— cosao) Z e ° Pn(cos v,

1
R
n=0 (3.6)

where cosy = -cos @ =cosacosa +sina sinaocos(¢ - ¢0) .

3.2 Series for 1/R (Directly)

We now use a well known procedure to find the series representations for
1/R directly, which will also serve as a check
In bispherical coordinates, as we noted earlier, with the substitution

G = \coshBcosa g, VzG = 0 yields the following equation for g,

2
g, 1 8, g, 1 o 1, _

2 + sina aa(sm"‘ 801)+ .2 2 4g 0, 3.7
B sin“a of

which, by g=A(a)B(B) O(f), separates into the three equations

l;w
;
'e‘N

5 = ogpg2er (3.8)
ap
d°B {
— = (n+-2-)B, -0 <B<w (3.9)

21
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1 d mzA
Py E(sma E) - Sinza = -n(n+1)A, OLag (3.10)

The assumptions of continuity in § and the boundedness of A at =0, a=7
restrict m to be zero or a positive integer and n to be an integer greater than or
equal to m,

We want to solve the nonhomogeneous equation (3. 7) with right side

gy YooshB-cose 5 4 y58- y5(p- ) . (8.11)

¢ sina

We have the well known complete set of (normalized) eigenfunctions for our problem

in o and §, namely,

_ _2n+1 (n-m)! m cos
‘/’nm(a’ = \[;m 47  (n+m)! Pn (cos) sin(m¢) (3.12)

with eo =1, em =2 for m=1,2,... . Substituting the expansion of g

g, B, P ;B .0 ) = ZB(B,B e @, p)-y lef)  (3.13)

o nm o
n, m

where B(B, Bo), Anm(ao’ ¢O) are to be determined, into the differential equation for

g and making use of the fact that the surface harmonics ‘//nm satisfy the differential

equation
2
2 9y
1 9 . nm 1 nm _
Sine 8o Sl oo + 3 ) +n(n+1)¢nm— 0 (3.14)
sina of
we arrive at
Z > 1.2
A (e, P @ =5 - (@+3)" BB) = (3.15)
n, m dg
4 JcoshB- cosa
- = rey 6(a-ao)6(B-Bo)6(¢-¢ o)
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Since
dgwmnwn 'm' - nmn'm' ’
Q
where
290 T
aQ = dp \ sinadr,
Q 0 0

we multiply (3.15) by sinoa//nm(a, ) and integrate over o, to obtain

@, 9).

nmoo

2 1,2 _ Am
nm(ao ¢°)I-_-d3 -(n+-2-)] \[coshB cosa 6(B- B W

(3.16)
Taking

Amn(ao,¢ ) =y__(,p) (3.17)

nm oo

we are left with the differential equation

2
L[B]= [—d—-é - (n+%)]B _4r \FoshB cosa 6(B- B ).
dp

(3.18)

The independent solutions of L [B] =0 are
1 1
—(n+-2')B (n+ -2')[3
y; = e , Yy = e

with the Wronskian W(yl, yz) = 2n+1, Hence, the solution of (3.18) is
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~(n+3)(8-B,)
A \/&;shBo— cosar ¢ . B2B
B(B,B) = St 1 . (3.19)

1
-(n+<)B -P)
e 270 , B<B

Substituting (3.17) and (3.19) into (3.13) and observing that
G = \lcosh-cosa g, we arrive at the following series representation for the free

space static Green's function in bispherical coordinates

1 _1 . - .
R, B.f,a ,B,0) V(cosh - cosa)lcoshf - cosa )

n

®
Z € (+ )s cos [m(¢ ¢_—_|P (cosoz)P (coser ) -

n=0 m=0

1
-(n+ 5)(6 - BO)
e » B2B, e =1
: , ° (3.20)
e'(n"'%)(Bo’B) €m=2 for m=1,2,3

If we let

cosy = cosacosa +sinasina cos(f - ¢o) (3.21)

then by the addition theorem

n

P (cos'y) P (cosa)P (cosoz )+ 2 Z s
—

. le(cosa} P:l(cosao)cos m(p - ¢o) (3.22)

The above result for 1 / R is expressed in the following more compact form
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1 1 2 _(n+_12_)|B-BO\
- \/(cosh B- cosoz)(coshBo—cosao) ; Pn(cos Y -e .

(3.23)

which is equal to (3.6) as it should be.

3.3 The Series Representation for the Green's Function of the First Kind

With the substition s = iv —1/2 ,- our previously obtained integral representa-
tion for the Dirichlet Green's function is written as
. 1
~ioo -1, (s+§)|B-Bol

Y 1/2 1/2 e
G = % (coshB-cosa) '~ (cosh Bo— cosao) ds

sinsw
-ico -1,

@
m Ms+1-m)
_ Zem(_l) cosm(¢"¢o) Ms+1+m)

m=0

m
m m Ps (—cosal) m m

- <P (-cosa)P (cosa )+ —————— P (cosa)P_(cosa )¢,
s s o s s 0

m
PS (cosal)

@ >a 2040 . (3.24)

We now investigate the location and the nature of the poles of the integrand
of (3.24).

Observations :

(1) First we note that since the behavior of P:l(-cosa)PISn(cos ao) is the

same as

Plsn(—cosal) m m
. P (cosoz)PS (cosao)

m
PS (cosal)
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for large |s| the contour to be used for G is the same as that for 1/R. Therefore,

we only need to study the integrand in the half plane Res <-1/2.

) 1 Ms+1-m)
sinst M(s+1+m)
simple poles at s=-m-n, n=1,2,3,... .

has m poles of order two at s =—“1, -2,..., -m and

(3) In the s-plane Plsn(cosa) is an entire function. Zeros of P:1 in the s
plane are all real and distinct. ™

(4) In the s-plane, the zeros of Plsn(cosoz), P;n(cos B) are different for a #;
the zeros of P;n(—cosa), P;n(cosoz) are different.

(5) We recall that in constructing the Green's function in the variable o over

the range o, >« >a0 we used the proper combination of two functions:

1

_ ,m m m m
p, = P8P _(E)-P_(E)P_(-E))

_m
p, = 5
If s is an integer, then, since
m _ m._m m _ m_m
PUE) = (DTPI(-E),  PU(E) = (-1 P(-E)

the total Green's function G = 0 for all a in al > a > 0. This means that the factor

* H,M. Macdonald (1900) showed that for u real and u >0 Pu(cosa) can have no
complex zeros; all its zeros are real. He also showed that P‘é‘(cosa), u>0, has
an infinite number of distinct real zeros, and, in addition, at most 2k complex
zeros, where k is the greatest integer contained in u. In our case m=0,1,2...
and we can exclude the possibility of complex zeros as can be seen from the relation

Ms-m+1)

—m _
PS (cosa) = Flstm+1)

(—1)mP;n(cos Q)

for integer m.
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1 Ms+1l-m)
sinst [M(s+1+m) m
contribution is from the simple poles of 1 / PS (cosal) at the non-integer real values

has in fact no residue contribution to the integral and the only

of s in the region Res<-1/2.
(6) Let s =sJ. denote the non-integer real solutions of the equation

P;n(cosal) =0 in the region Res <-1/2 of the s-plane.

We can now by means of the observations (1) through (6) write down the final

residue series for G

®
G = -;-r(coshB—cosa/)ll2 (coshp - cosao)l/2 {; €m(—1)m cos m(¢'¢o) :

1 m
Z e(sj+ 2)|B-Bo| f"(sj+1—m) st(-cosal) _ -
- sins, 7 r’(s_+1+m)_g_{P cona )} PS.(cosa)Ps.(cosao)
J J J ds Sj cosa, j j

. >Sa>a (3.25)
1 o

27



THE UNIVERSITY OF MICHIGAN
7030-3-T

v
THE GREEN'S FUNCTION OF THE FIRST KIND
FOR THE HELMHOLTZ EQUATION

4.1 The Objective and the Preliminaries

We are seeking the Green's function for the surface B of the ogive a =«

1
satisfying
2 .2 o

@ (V'+ k)G (p,p ) = -47 "6 [R(p, po)__], p,p eV

(b) Gk(pB, po) =0 , (4.1)
lim 3G

(¢) the radiation condition, r{— -ik Gk> = 0, uniformly in all
r—>m or

directions, where V denotes the volume exterior to the ogive surface B,

pla, B, ) the field point, po(ao, Bo, ¢0) the surface point, pB(ozl, B,P) a

point on the surface of the ogive « =a,.

R(p, po) is the distance between p and P and 6 [_R(p, pos:l has been given

cosh§+cosa

coshB - coso
and r—>0 & a—0, B—>0. With our choice of §-function and the radiation

explicitly in bispherical coordinates in the static case. We recall r=

condition, the free space Green's function is elkR/ R, and the decomposition of Gk

into singular and regular parts is

ikR(p, po)
e
= S————— +
G (p.p ) R(p.p,) U (pe.p) . (4.2)
and
(v2+ k2)Uk =0 . (4.3)

Uk has no singularities in the closure V, is twice differentiable, and satisfies the
radiation condition. Also we note that if the Helmholtz equation is considered as
reduced from the wave equation, our case corresponds to assuming the harmonic

. -i
time dependence e
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We now restate the representation theorem (Kleinman, 1965), which is an-
other form of the Green's theorem, and the expansion theorem (Atkinson, 1949;
Barrar and Kay; Wilcox, 1956) as applied to the ogive.
Theorem 1
If
(a) w(p) is defined for all peV

(b) we Cz(V)

(¢) [rw]< o, o

2
T -Q-W—‘ <masr—>w,

then w(p) satisfied the integral equation

2 0
= 1 1 1 —_—
w(p) Go(p, p") V w(p') dv' + W(pB) o0 G O(P, pB)ch

oV B (4.4)

where the volume element is given by

3 .
dv = dxdydz = i%"l’—z—)dadﬁdgb = C sing s dxdpdp ;
(coshB- cosa)

the surface element (for the surface o =a1) by

C'?'sinar1
do = 5 dB dg

(coshpB- cosal)

the Laplacian Vz in bispherical coordinates (a, B, §) is as given in the static case;
9/on is the normal derivative (in the direction out of V) and is given by

1 9
on h oo
o

- 1 _ 2
=-3 (coshB - cosa) o

Theorem 2

The field scattered from the surface of the ogive may be written as
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.
oS
U lp.p) = = fn/ T (4.5)

n=0

where the series converges absolutely and uniformly for r >d+€v, € >0. d is the
radius of the sphere obtained by rotating @ =7 /2 about the x-axis. The series may
be differentiated term by term with respect to @, B or § any number of times and
the resulting series all converge absolutely and uniformly. The functions fn depend
ona BO, ¢0, and the parameter k.

Following Kleinman (1965), we want to represent the regular part U _ of the

k
Green's function using Theorem 1. Uk is not regular at infinity as can be seen from
Theorem 2. There is more than one way of making Uk regular.
Although the obvious form e_lkrU , indicated by Theorem 2, is regular, in

k
a particular problem such as ours the choice must be made more judicilusly to sim-

plify the resulting equations and to enable us to carry out the integrations arising in
connection with the iteration. Thus we define

e"ikf(a; B) U

U = " (4.6)
and call f the "eikonal" because of the apparent analogy to the corresponding entity

in physical optics (e.g. Born and Wolf, 1959).

4.2 The Proper Choice of the Eikonal f(e, )
We have

U=c¢e U (4.6)
and
2+ e = 0. (4.8)

Therefore,
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V(e ) +12 K Y = volike T v+ ey + k2 eI T

ol [1-(vto Vf)] 12 T+ e 2 Y

+ 21k e KLV ovE+ ik e T VAE = 0

or
Vz le+ 2ik VU o VE+ik ﬁvzf-i- [1 -(Vf °Vf)]k2 ﬁ =0. (4.9)
We see from (4. 9) that the first natural simplification is achieved by setting
Vievi =1 ., (4.10)

This is the ""eikonal equation' for f.

Solution of Vf oVf =1

In bispherical coordinates

=1 —?— 8 —ﬂ— 9
= (cosh3-cosa) { ™ eB 33 Sing 8¢ . (4.11)
With (4.11), (4.10) becomes

Ay, (@Y -
o o

(coshB- cosa)2

2

We note that
: » b .
coshfB-cosa = 2sin<gizl§> . sin(a—21§> = 2sinh CL22> sinh C“—z—u—¥> .

z = B+ia, z = B-ix

Let

then
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of _ of _ of
F%% 9z oz

of _ of | of

B oz oz
. (gf_>2+<§£2 _ L et
"\ oB 9z 0z

The equation to be solved is

L OB _ o’
92 B 4 inh®(z/2) sinh>(Z/2)
or
of Lo ___c .o
2 2., % (4.12)

2 sinhz(z/2) 2 sinh2(2/2)

Assume f=g(z) + g(z), then

2 Qgé(—zz-l = m = —csa-z- - coth(z/2)
2 ajb(z-z_) = 2511:122/2 = -c-g—.z. coth(z/2)
. glz) = - coth(z/2)

g(Z) = - 3 coth(z/2)

£=12 {:oth <4‘3—+22> + coth <§—'5‘9‘->} . e>0 (4.13)

(+ sign to be chosen in our case).
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+
From r = coshf+cosa and (4. 13) it is immediately seen that
coshfB-cosa

f=0(r) as r—>o (@—>0, —0). (4.14)
From Theorem 2,
(00}
rU, = 6% § £ /e ;
k n
n=0
and with U = e_lka ,
k (03}
r0U = tk(r-1) ;_ :f /rn ,
n
n:
so that
\rff\ <® as r—ow. (4.15)
Also
. (00}
r2 a—fj’ = r2—a— —ika = r2_6_ —-——elk(r—f) E :f /rn
or ar |° k or T — 'n
n=0
2 0
~r o (1/r) as r —> 0;
therefore
|r2—g¥ <o as r—>o . (4.16)

Equations (4.15) and (4.16) show that

is regular at infinity.
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We also note that sz = 0; therefore (4.9) yields

V2T = -2ik v o vt (4.17)
But
vU = v(e'lka ) = -ike'lka Vf+e'1kaU ;
Kk k k
therefore
v ovf = -ike“kak(Vf on)+e"kaUko Vi = -ﬂce"kak+e'11‘fVUko "
So we have
V20 = -2(k2U +ik VU ovjf)e'lkf ) (4.18)

k k
Now U satisfies the hypothesis of Theorem 1, Taking w(p) = U in (4.4), we

have

~ 2~ ~ 8
U(p, po) = av' Go(p, PV U(p', p 0)+ dGU(pB, po)'a;1 Go(p, pB) ,
v (4.19)

where Vzﬁ is given by (4.17) or (4.18), or

~ ~ ~ a
= -9i ! 1) . 1 + . < .
U(p, po) 2ik |\ dv Go(p, p') - Vf e VU(p', po) do U(pB, po) on Go(p, pB)

v (4.20)
4.3 Scattering of a Plane Wave by the Ogive (Nose-on Incidence)
We write (4.20) in the operator form:
% = ko g+ul® (4.21)

where

34



THE UNIVERSITY OF MICHIGAN

7030-3-T
K = -2ik dvGo(p, p')Vf eV (4.22)
Vv
v =\ wie.,p)L ¢ (b p.) (4.23)
pB’po on op’pB ' )
B
The iterates are given by
N
o™ - § :Kn g© (4.24)
n=0
or by
M = g o p!¥D O , N>1. (4.25)
On the surface of the ogive =a,,
~ —ikf(ozl, B)
U(pB, po) = e Uk(pB, po),
and the sum of the scattered field Uk and the incident field Ulnc vanish on the sur-
face; therefore (4.23) becomes
-ikfl@_ ,B) .
(0) _ BREL P ine 9
U'=-\e U (pB) °n GO(P, pB)dG . (4.26)

If we assume the incident field to be a plane wave propagating in the direction
of the negative x-axis, that is, if

Uinc _ e—1kx(a, B)

x@, B) = _csinhf

coshf-cosa

(4.27)

H
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then we may assume m =0 in the expression for the static Green's function

1
s.+3)|8-8 |
T 1/2 1/2 e ) 20
G = = (coshfB-cosa) ' (coshf -cosa ) - .
o ¢ o 0 - sins, T
J )
P (-cosa,)
sj 1
) P (cosa;} st(cosa)st(cosao) . (4.28)
ds S, 1

J

__1 9 -
=- (coshB-cosa) w and that Ps (cosal) =0,

Observing that 2 = - -;—-
J

9
on oo
a
from (4.28) we obtain
oG
o

_o 1/2
on )T

- . 3/2
=5 smal(coshB—cosal) (coshBo—cosaro

a=o c
1

s+ )|B BI P (cosa)

T B

(4.29)

e

Substituting (4.27) and (4.29) into (4.26) and noting that

2T ® 2 .
¢ sina,
do = dp dp
B 0 oo (coshB-cosafl)
we obtain
PS (—cosal)
(0)( B ) = -27rzsm a (coshB - cosa ) 1/2 § R .

sins, 7 d_ }
j {P J(cosozl)

. 1
o -ik[fle, B, Bﬂe<sj+ PIB-8, |

d e
o P (cosal-)} PS.(cosao) dB 372
J j o (coshp- cosal) (4.30)
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where
B+ix - i
- £ 1 1
f(ozl,B) =3 {coth( 5 +coth<E 5 > ,
_ csinhf
X(al’B) " coshB-cosa ’

1

and we recall that s; are the real zeros of P_ (cosozl), (sj <-1/2).

J
The iterates U(N) for N >1, given by (4.22) and (4.25) are

™ - -2ﬂ<j dv' G _(p, p')Vila', B') o v Ve, g+ 0 (4.31)
v
where
2w T oo} 3
dv' = ap’ da'g ' ¢ sina' :
v 0 0 (coshf' - cosat)
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APPENDIX
ORTHOGONALITY AND THE NORMALIZING FACTORS FOR THE SET { m}

In the usual manner we obtain

1

m m _ m d P
(s,- sj)(si+sj+1) Ps.(g)st(E)dg = {(1 £ )\: . s d%’ S]}

S 1
1 (A.1)

Since Plsn(cosal) = P]sn(cosa'l) = 0, we conclude that
i J
1
PPPYdE = 0 if s,#s, for m=0,1,2,...
s.” s il 7

i
§

To evaluate the integral for the case si = Sj’ we consider the Taylor expan-
sion of Ps around PS , substitute the result into (A.1) and let si—> sj to obtain
j i
1

1- §
2
[Psi(g)] d = - 5 [— P (s ][ P (s _J (A.2)

i

81
Then we observe that

2.1/2 d

(%’)—(1 £) &=

1

P <s>+ me(1- 8372 ) (A.3)
i

Squaring (A.3) and integrating,

dP_ (S) dP_ (E)
m+1 1 m25‘;’2 m
[P (g-:)'_] a = | |a-£9 + omg — {7 (5)} .
1-—%’ i

(A.4)
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Integrating the first two terms by parts,

1 9 1 dP (E)
m+1 _
g [Psi (gﬂd—- P(‘é’)dg (1-£2) = }ds—
El El

-mj {P (E)ngw mE P (»;-’)} (A.5)
1

Substituting the value of the first integral on the right from the differential

equation, we obtain

1 1
2 2
S I:P::H(E)] d§ (si—m)(si+m+1)g [P::(E)] dg . (A.6)

3 g,

Now we iterate (A.6) to obtain

m 2 r'(si+m+1) 9
[Psi(%’)] dg = I"_(sl_—_m [Psi('é)] a . (A.7)
51
Finally, using the result (A.2) we have
1 0, s, # s].
j PLUEIP () dE = (A.8)
£ i j 1- 82 dpP I(E ) dP_ (S) I"(si+m+1)
- 2s+1  ds, d'é’l [(s;- m+1)
Ss. =S
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