Matrix elements for configuration d^4s in a weak octahedral field using Racah methods

WAI-KEE LI* and S. M. BLINDER Chemistry Department, University of Michigan, Ann Arbor, Michigan 48104

(Received 1 May 1968)

Abstract—The general formula for matrix elements of configuration d^ns in a weak crystalline field have been derived by means of Racah algebra. These have been explicitly applied to the case of d^4s . The tabulated reduced matrix elements should be of assistance in the analysis of spectra of d^4s , and perhaps d^5 , complexes having cubic or near-cubic symmetry.

1. Introduction

In interpreting the spectra of some tetrahedral complexes of Co^{2+} (ground configuration d^7), Stoneman [1] suggested that some terms arising from the d^6s configuration might play an important role in the ordering of energy levels. Although the lowest terms of the d^6s configuration observed in the spectrum of the ion Co^{2+} is over twice as high as any of the observed terms of d^7 , it can be argued that the presence of the ligands reduces the effective charge of the transition metal ion. Thus, the situation for Co^{2+} might well resemble that in the free ion Fe⁺. Indeed, if the atomic spectra of the isoelectronic sequence Mn, Fe⁺, and Co^{2+} are examined more closely, it is found that each has a different ground configuration, d^5s^2 , d^6s , and d^7 respectively.

An analogous situation has been observed in some simpler transition metal systems. In a recent review article [2], Dunn gave the following account of the ScO spectrum. Sc²⁺ has the ground state electronic configuration $3d^{1}(^{2}D)$. Its first two excited states are $4s^{1}({}^{2}S, \sim 24,000 \text{ cm}^{-1})$ and $4p^{1}({}^{2}P, \sim 62,000 \text{ cm}^{-1})$. Recall that a perturbing negative charge will partially resolve the degeneracy of the dorbitals, viz. $d(\delta) < d(\pi) < d(\sigma)$, δ and π orbitals being doubly degenerate. A similar ligand will split the p orbitals into $p(\pi) < p(\sigma)$. On the basis of such a splitting pattern, it might be supposed that the lowest state of Sc²⁺ in the field of a negative charge would be $d(\delta^1)$, with diatomic ground term ${}^2\Delta$. However, the observed energy levels of ScO consist of a $^{2}\Sigma$ ground state, a $^{2}\Pi_{z}$ first excited state and a higher-lying This dilemma can be resolved by applying the argument given in the preceding paragraph. Indeed, as Dunn points out, both Ca+ and K, isoelectronic with Sc2+, have 4s1(2S) ground states, which in the field of a negatively charged ligand, give rise to a $^{2}\Sigma$ ground term. Moreover, since the $4p(^{2}P)$ level has dropped from 62,000 cm⁻¹ above the ground state in Sc⁺, to only ~20,000 cm⁻¹ in Ca⁺ and \sim 15,000 cm⁻¹ in K, the $^{2}\Pi_{\star}$ and $^{2}\Sigma$ excited states of the ScO spectrum can be attributed to ligand-field splitting of this atomic ²P term.

^{*} Present address: Department of Chemistry, Chung Chi College, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.

^[1] C. F. STONEMAN, Ph.D. Thesis, University College London (1958).

^[2] T. M. Dunn, Coordination compounds. Physical Chemistry, An Advanced Treatise (Edited by H. Eyring, D. Henderson and W. Jost), Vol. 5. Academic Press (1968).

A similar situation is thought to prevail in the case of the (nearly) tetrahedral complex $FeCl_4$. The visible spectrum [3] can not be readily interpreted within the domain of the d^5 configuration. Even though the isoelectronic ions Cr^+ , Mn^{2+} , and Fe^{3+} have the same d^5 , g ground term, the ordering of the excited terms for these ions is vastly different. Thus, the first two excited terms for Cr^+ arise from the d^4s configuration, while the first few excited terms for Mn^{2+} and Fe^{3+} are from the d^5 configuration. By the preceding arguments, the situation in the Fe^{3+} complex may well resemble that in Cr^+ . The object of this paper is, accordingly, to calculate the ordering of crystal field levels for terms arising from a d^4s configuration.

2. METHOD AND RESULTS

For the case of a transition metal ion embedded in a weak octahedral crystalline field, the spin-orbit coupling and crystal field interactions can be treated as perturbation terms. It is convenient to employ the $|SLJM\rangle$ representation [4]. The perturbation Hamiltonian can be written

$$\mathcal{K}' = \zeta_{nl} \sum_{i} \mathbf{s}_{i} \cdot \mathbf{l}_{i} + 14Dq \pi^{1/2} \sum_{i} \{ Y_{40}(\theta_{i}\varphi_{i}) + (\frac{5}{14})^{1/2} [Y_{44}(\theta_{i}\varphi_{i}) + Y_{4-4}(\theta_{i}\varphi_{i})] \}, \quad (1)$$

where ζ_{nl} is the one-electron spin-orbit coupling parameter and Dq, the usual crystal field parameter.

A general method for calculating matrix elements of the spin-orbit interaction for configuration $d^n s$, based on irreducible tensor-operator techniques, has been given by Trees [6]. The matrices for $d^4 s$ have also been calculated by Bozman and Trees [7].

Matrix elements of the weak crystalline field can also be calculated by means of Racah algebra. Applying the Wigner-Eckart theorem, the matrix elements

$$\langle d^n(v'S'L')sS_1'L'J'M' | V_n^k | d^n(vSL)sS_1LJM \rangle$$

where

$$V_{p}^{k} = \sum_{i=1}^{n+1} Y_{kp}(\theta_{i}\varphi_{i})$$

and v is the seniority number defined by Racah, have the following form:

$$\langle d^{n}(v'S'L')sS_{1}'L'J'M'| V_{p}^{k} | d^{n}(vSL)sS_{1}LJM \rangle$$

$$= (2J'+1)^{-1/2} \langle JMkp | J'M' \rangle \langle d^{n}(v'S'L')sS_{1}'L'J' | V^{k} | | d^{n}(vSL)sS_{1}LJ \rangle$$

$$(2)$$

Since the potential acts only on the orbital part of the eigenfunction, the double-barred

^[3] N. S. GILL, J. Chem. Soc. 3512 (1961).

^[4] A. D. LIEHR and C. J. BALLHAUSEN, Am. Phys. 6, 136 (1959).

^[5] T. M. DUNN, D. S. McClure and R. G. Pearson, Some Aspects of Crystal Field Theory, p. 12. Harper & Row (1965).

^[6] R. E. TREES, Phys. Rev. 83, 756 (1951).

^[7] W. R. BOZMAN and R. E. TREES, J. Res. Natl Bur. Std. 58, 95 (1957).

matrix elements in (2) can be reduced using equation (44b) of Ref. [8]:

$$\langle d^{n}(v'S'L')sS_{1}'L'J' \parallel V^{k} \parallel d^{n}(vSL)sS_{1}LJ \rangle$$

$$= \delta_{s_{1}s_{1}'}(-1)^{S_{1}'+k-L'-J}[(2J+1)(2J'+1)]^{1/2}W(L'J'LJ;S_{1}k)$$

$$\cdot \langle d^{n}(v'S'L')sS_{1}'L' \parallel V^{k} \parallel d^{n}(vSL)sS_{1}L \rangle.$$
 (3)

The double-barred matrix elements on the right hand side of (3) can be further reduced using the same formula:

$$\langle d^{n}(v'S'L')sS_{1}'L' \parallel V^{k} \parallel d^{n}(vSL)sS_{1}L \rangle$$

$$= (-1)^{L'+k-L}[(2L+1)(2L'+1)]^{1/2}W(L'L'LL; 0k)$$

$$\cdot \langle d^{n}v'S'L' \parallel \sum_{i=1}^{n} Y_{kp}(\theta_{i}\varphi_{i}) \parallel d^{n}vSL \rangle.$$
 (4)

The Racah coefficient W(L'L'LL; 0k), which can be evaluated directly, is given by

$$W(L'L'LL; 0k) = (-1)^{L+L-k}[(2L+1)(2L'+1)]^{-1/2}.$$
 (5)

Combining equations (2-5), the matrix elements can be expressed

$$\langle d^{n}(v'S'L')sS_{1}'L'J'M'| V_{p}^{k} | d^{n}(vSL)sS_{1}LJM \rangle$$

$$= (-1)^{S_{1}'+L+k-J}(2J+1)^{1/2}W(L'J'LJ; S_{1}k)\langle JMkp | J'M' \rangle$$

$$\cdot \langle d^{n}v'S'L' | \sum_{i=1}^{n} Y_{k}(\theta_{i}\varphi_{i}) | | d^{n}vSL \rangle.$$
(6)

The reduced matrix elements $\langle d^n v' S' L' \| \sum_{i=1}^n Y_k(\theta_i \varphi_i) \| d^n v S L \rangle$ can be calculated by a method based on coefficients of fractional parentage. Explicit formulas are given by Brink and Satchler [9].

As pointed out by FINKELSTEIN and VAN VLECK [10], it is convenient to use basis functions which diagonalize the octahedral potential apart from elements non-diagonal in J. Such functions are classified according to their cubic representation Γ rather than according to M. The transformation matrices $\langle J\Gamma | JM \rangle$ for $J=\frac{1}{2}$ to $J=4\frac{1}{2}$ are tabulated in Griffith's book [11]. The matrices for $J=5\frac{1}{2}$ and $6\frac{1}{2}$ are reported in Ref. [12].

The matrix elements $\langle d^4(v'S'L')sS_1'L'J'\Gamma_i|V_{oct}|d^4(vSL)sS_1LJ|\Gamma_i\rangle$ where v_{oct} is the octahedral field potential and i=6,7,8, can, in this way, be calculated. The only quantities in equation (6) which are not readily available in the literature are $\langle d^4v'S'L'||Y_4||d^4vSL\rangle$. The non-vanishing elements of this matrix are listed in Table 1.

^[8] G. RACAH, Phys. Rev. 62, 438 (1942).

^[9] D. M. BRINK and G. R. SATCHLER, Angular Momentum, Oxford University Press (1962).

^[10] R. FINKELSTEIN and J. H. VAN VLECK, J. Chem. Phys. 8, 790 (1940).

^[11] J. S. GRIFFITH, The Theory of Transition Metal Ions, Appendix 2. Cambridge University Press (1961).

^[12] WAI-KEE LI, Spectrochim. Acta 24A, 1573 (1968).

Table 1*. Non-vanishing reduced matrix elements $\sqrt{(\pi)}\ \langle v'S'L'\parallel\ Y_4\parallel vSL\rangle$

ν (π) (ν Β Π Γ ₄ νΒ Π)		
v'S'L'	vSL	$\sqrt{\left(\pi\right)}\left\langle v'S'L'\right\ Y_{4}\left\ vSL\right\rangle$
${}^5_{f 4}D$	$^{5}_{4}D$	$-3(14)^{1/2}/14$
$\overset{\circ}{H}$	3_4H	$(26)^{1/2}/7$
3H	${}^3_{f 4G}$	$-(78)^{1/2}/28$
${}^{3}H$	3 F	$(26)^{1/2}/7$
3_4H	3 F	$3(26)^{1/2}/28$
3_4H	3_4D	$(5)^{1/2}/7$
3_4H	$^{8}_{2}P$	$-(14)^{1/2}/7$
$^{8}_{4}H$	^{3}P	ì/7
${}^3_{m{4}}G$	3_4G	$-3(2002)^{1/2}/196$
3_4G	${}^{3}_{2}F$	$-2(66)^{1/2}/21$
3_4G	3_4F	$-(66)^{1/2}/84$
${}^{8}_{4}G$	^{3}D	$(1155)^{1/2}/98$
${}^{3}G$	$^{3}_{2}P$	$(21)^{1/2}/21$
${}^{3}G$	$^{3}_{4}P$	$-17(6)^{1/2}/84$
3_2F	$\hat{s}_{2}F$	$-(22)^{1/2}/14$
3 F	$^{3}_{4}D$	$10(7)^{1/2}/49$
${}^{3}_{2}F$	${}^{3}_{2}P$	$-1/\hat{7}$
3 F	$^{3}_{4}P$	5(14) ^{1/2} /49
$\frac{3}{4}F'$	3_4F	$3(22)^{1/2}/28$
3_4F	$^{\mathrm{s}}_{\mathtt{4}}D$	$15(7)^{1/2}/98$
${}^{8}_{4}F$	$^{rac{3}{2}}P$	5/7
${}^{3}_{4}F$	$^{3}_{4}P$	$-(14)^{1/2}/196$
3_4D	$^{8}_{4}D$	$-11(14)^{1/2}/98$
${}^{1}_{4}I$	${}^{1}_{4}I$	$2(1309)^{1/2}/77$
${}^{\bar{1}}_{f 4}I$	${}^{1}_{2}G$	$5(2)^{1/2}/7$
${}^{1}_{4}I$	${}^{1}_{4}G$	$-25(22)^{1/2}/308$
14I	${}^{1}_{4}F$	$-(2)^{1/2}/4$
${}^1_{m 4}I$	${}_{2}^{1}D$	$-(10)^{1/2}/7$
${}^{1}_{4}I$	$\frac{1}{4}D$	$(5)^{1/2}/7$
${}^{1}_{2}G$	${}^{1}_{2}G$	$(2002)^{1/2}/294$
${}^{1}_{2}G$	iG	$-10(182)^{1/2}/147$
${}^{1}_{2}G$	$^{1}_{3}D$	$5(77)^{1/2}/147$
${}^{1}_{2}G$	^{1}D	$5(154)^{1/2}/147$
${}^{1}_{2}G$	$_{b}^{1}S$	$(21)^{1/2}/7$
$\frac{1}{2}G$	iS	5/21
${}^{1}_{4}G$	$\hat{\mathbf{i}}_{4}G$	$17(2002)^{1/2}/6468$
${}^{1}_{4}G$	$\frac{1}{4}F$	$-15(2)^{1/2}/28$
${}^{\scriptscriptstyle 1}_{\scriptscriptstyle m 4}G$	$\frac{1}{2}D$	$5(7)^{1/2}/147$
${}^{1}_{4}G$	$\frac{1}{4}D$	$-65(14)^{1/2}/588$
${}^{1}_{4}G$	is	$2(11)^{1/2}/21$
¹ / ₄ F'	$\frac{1}{4}F$	$-(22)^{1/2}/28$
1 F	$\frac{1}{2}D$	$(35)^{1/2}/7$
$\frac{1}{4}F$	$\frac{1}{4}D$	$(70)^{1/2}/196$
$\frac{1}{2}D$	$\frac{1}{2}D$	$2(14)^{1/2}/49$
$\frac{1}{2}D$	$\frac{1}{4}D$	$10(7)^{1/2}/49$
$\frac{1}{4}D$	$\frac{1}{4}D$	$-8(14)^{1/2}/49$

^{*} The values here are calculated using formulas (4.17) and (5.21) of Ref. [9].

Acknowledgment—The authors would like to thank Professor T. M. DUNN for his continuing assistance and stimulation in the course of these calculations.