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Abstract: Exact solutions for the pairing interaction problem in the LST scheme are formulated in 
terms of the matrix elements of pair creation and annihilation operators for pairs coupled to zero 
orbital angular momentum. General expressions are given for these matrix elements for states 
with seniority v = 0 and 1. This makes it possible to study an orbital pairing interaction with 
different spin singlet and triplet strengths acting in mixed configurations of several single-particle 
levels. The mathematical formulation of the problem is based on the eight-dimensional quasispin 
group which is broken down according to the decomposition 0(8) D 0(6) ~ [0(3)× O(3)], 
where 0(6) corresponds to the usual Wigner supermultiplet symmetry group. A sample 
calculation for a simple two-level configuration, and states with v~= v2 = 0, nucleon numbers 
of 4, 6, 8, 10, shows (i) that the pairing interaction is very effective compared with the single- 
particle excitations, and (ii)that it tends to make more stable those states built from the largest 
possible number of s-like grouping of 4 particles. 

1. Introduction 

The quas isp in  m e t h o d  was first app l ied  to p rob lems  in nuclear  physics by K e r m a n  1) 

in his t r ea tment  o f  the pa i r ing  in teract ion.  Quas isp in  ope ra to r s  are  bui l t  f rom pa i r  

c rea t ion  and  ann ih i l a t ion  opera to r s  involving nucleon pairs  coup led  to zero angular  

m o m e n t u m .  In the j - j  coupl ing  scheme o f  the shell model ,  involving conf igurat ions  

o f  ident ical  nucleons  (neutrons  only or  p ro tons  only),  the quasispin  opera to r s  

have the c o m m u t a t i o n  proper t ies  o f  convent iona l  ( three-d imens ional )  angu la r  

m o m e n t u m  opera tors .  Genera l i za t ion  o f  the quas ispin  me thod  to conf igura t ions  with 

bo th  neut rons  and  p ro tons  leads to ope ra to r s  o f  more  compl i ca t ed  Lie algebras.  

The  quas isp in  g roup  for  fermions  o f  a rb i t r a ry  isospin was s tudied by  Helmers  2). 

The  quas isp in  groups  for  conf igurat ions  o f  bo th  neut rons  and  p ro tons  in the conven-  

t iona l  JT and  LST schemes o f  nuclear  physics  have been identif ied by  F lowers  and  

Szpikowski  3) and  others  4) as ro ta t iona l  groups  in abs t rac t  spaces o f  5 and 8 d imen-  

sions,  respectively.  In  the LST scheme there  are six pa i r  c rea t ion  opera to r s  coupled  

to  orb i ta l  angu la r  m o m e n t u m  L -- 0 (with spin and  i sospin  S = I, T = 0; or  S = 0, 

T = 1) and  a s imilar  set o f  six pa i r  ann ih i l a t ion  opera tors .  F lowers  and  Szpikowski  

have shown tha t  these 12 opera to r s  toge ther  with the number  ope ra to r  and  the 

15 opera to r s  which are the SU(4)  super  mul t ip le t  opera to r s  o f  Wigner  fo rm the in- 
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finitesimal generators for an orthogonal group in eight dimensions. They have also 
evaluated the eigenvalue of the pairing Hamiltonian for the pure confguration l N 
in terms of the Casimir operators of 0(8)  and SU(4). 

In this investigation matrix elements are evaluated for the L = 0 pair creation and 
annihilation operators in the seniority scheme in order to find exact solutions to the 
pairing problem in the LST scheme by matrix diagonalization techniques. This 
approach makes it possible to study the pairing interaction with different strengths 
for the S = 1 (T = 0) and S = 0 (T = 1) pairs, as well as for mixed configurations 
of several single-particle levels. It is thus possible to study the competition between 
pairing effects and single-particle excitations. Although the LST scheme may be a 
good zeroth approximation for some light nuclei, a two-body interaction approximat- 
ed by a simple pairing interaction is not sufficient to describe the excitation spectra 
and binding energies of such nuclei. The present work is therefore intended mainly 
as a model study to further elucidate the properties of pairing interactions. 

In the present work the group chain of 0(8)  ~ 0(7)  ~ 0(6)  is used, where 0(6)  
can be identified with SU(4) and the representations of the Wigner supermultiplets, 
while the four numbers needed to specify the irreducible representations of the rank 
4 group 0(8)  can be identified with the quantum numbers of the seniority scheme. 
Although the irreducible representation labels of both 0(8)  and 0(6)  thus have ready 
physical significance, the quantum numbers of 0(7)  have no easily identified physical 
meaning. Even worse, the nucleon number operator is in general not diagonal in a 
scheme based on the group chain 0(8)  m 0(7)  ~ 0(6).  To make the nucleon num- 
ber, N, a good quantum number it is necessary to find specific linear combinations 
of the 0(7)  representations allowed by the 0 ( 8 ) a n d  0(6)  quantum numbers. A 
similar problem occurs when the Wigner supermultiplet representations of 0 (6)  
are further reduced to S and T. In the canonical group chain 0(6)  = 0(5)  ~ 0(4)  

0(3)  --, 0(2)  only one of the quantum numbers, either S or T, can be identified 
with the irreducible representation of 0(3).  Because of these difficulties it has not been 
possible to give a completely general algebraic expression for the matrix elements of 
the pair operators, valid for all irreducible representations. However, if the seniority 
number v is restricted to 0 or 1 the single quantum number N is sufficient to completely 
specify the states of the 0(8)  to 0(6)  chain, while the states of the possible 0(6)  
representations for these cases are fully identified by S and T only. Since the seniority 
v gives the number of  unpaired nucleons (entirely free of L = 0 coupled pairs), states 
of lowest seniority such as v = 0 and v = 1 are precisely those of greatest interest in 
problems dominated by a pairing interaction. 

In evaluating the matrix elements of  the pair creation and annihilation operators 
it is useful to characterize these operators as irreducible tensors according to the 
group decomposition O(8) = 0 (6)  = [0(3) × 0(3)].  This makes it possible to factor 
the matrix elements into separate pieces. The 0 (8 ) /0 (6 )  factor for states of  seniority 
v = 0 and 1 is evaluated in the present work. The 0 ( 6 ) / [ 0 ( 3 ) ×  0(3)]  factor can be 
identified as a reduced Clebsch-Gordan coefficient for the Wigner supermultiplet 
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scheme. These reduced 0 ( 6 ) / [ 0 ( 3 ) x  O(3)1, (or alternately SU(4)/[SU(2)x SU(2)]), 
coefficients will be used frequently in this paper. Tabulations of these coefficients will 
be given in a companion paper on SU(4) and the Wigner supermultiplet scheme 8). 
Finally, since the two sets of  commuting 0(3)  generators correspond to the spin and 
isospin operators, the two 0 (3 ) /0 (2 )  factors for the matrix elements of the pair 
operators are ordinary spin and isospin angular momentum coupling coefficients 
which carry the dependence on Ms and Mr .  

In sect. 2 the properties of 0(8)  and 0 (6)  are reviewed. The correspondence is 
established between the quasispin operators and the infinitesimal generators of the 
orthogonal groups; the ways of characterizing the irreducible representations of 0(8)  
and 0(6)  are reviewed; and the irreducible tensor classification of the pair operators 
is given. In sect. 3 the 0 (8 ) /0 (6 )  factors for the matrix elements of the pair operators 
are evaluated for states with v = 0 and I. To accomplish this the transformation 
must first be made from the 0(8)  --, 0 (7)  ~ 0(6)  scheme to one in which the nucleon 
number operator, N, is diagonal. In sect. 4 the applications to the pairing problem 
are given. The effect of a pairing interaction with different strenghts for the (S = 1, 
T = 0) and (S = 0, T = 1) pairs is discussed in detail for the case of one isolated 
single-particle level. The techniques for calculating the matrix elements of the most 
general pairing Hamiltonian for a nuclear system with many single-particle levels 
are developed. Finally, results of a sample calculation are given for a system with a 
single-particle spectrum similar to that of the s-d shell and a pairing interaction which 
(for convenience of analysis) is assumed to have state and spin independent strength. 
The needed diagonalizations have been done numerically by computer; lesults are 
shown for nucleon numbers of 4, 6, 8 and 10. 

An alternate technique for finding solutions for the eigenvalues of a charge, spin 
independent pairing Hamiltonian has recently been given by Richardson 5). However, 
Richardson's approach is very different from the present one. It requires the solution 
of  a system of coupled algebraic equations with subsidiary conditions. With general 
expressions for the matrix elements of the pair operators, the present method (as 
emphasized before) can treat the case with different spin triplet and singlet pairing 
strengths and makes it easier to consider perturbation treatments for the weak or 
strong pairing limits. 

2. The eight-dimensional quasispin group 

In an LST scheme the quasispin operators are built from the pair operators which 
create or annihilate pairs of nucleons coupled to total orbital angular momentum, 
L = O. These can be constructed from the creation and annihilation operators for 
single nucleons which are characterized by the single-particle spatial quantum 
numbers (nlm); and sms, tmt; (with s ½, t = ½, mt = +½ ( - ½ )  for neutron (and 
proton), respectively). The operators 



500  SING CHIN PANG 

2s+"2r+ 'A t (Ms ,  Mr)  = ~', x / l+~(Iml--mlOO)(½mt½m;lTMr)  
ms, tat, rn 

(n,O 

x (½ms½m'slSMs>a~t . . . . .  a~,-,,ta,,m,,, (2.1) 

2s+ i, 2T+,A(Ms, Mr)  = (2s+ 1, 2 T +  1 A t ( M s ,  MT))"f ,  (2.2) 

are, in addition, coupled to total spin and isospin, S and T; where, with L = 0, the 
anticommutation properties of  a + restrict the S T  values to be either 10 or 01. The 
commutators of A t with A lead to 16 number preserving operators. These include 
the number operator, which appears naturally in the combination 

O0 = (-½Xop+f2),  (2.3) 

where f2 = spatial degeneracy number; (e.g. f2 = 2 l +  1 for a single level, and 
~'~ = Za  (21a dr- 1) for a set of  degenerate single-particle levels of orbital angular mo- 
menta ia). The remaining number preserving operators are the three components of 
the spin and isospin operators S and T, and the 9 components of the operator E 

Eab = 2 <(ms+a)(mt+b)laazblm~mt>a~tm(m~+a)(m~+b) a.' . . . . . . .  (2.4) 
(nl)mmsmt 

where a a and % are spherical components of the single-particle Pauli spin and isospin 
operators. The 15 operators S, 7", and E are the Wigner supermultiplet operators 
which generate the group SU(4), or alternately an orthogonal group in dimensions. 

The full set of 28 quasispin operators A +, A, Qo, S, T and E are the infinitesimal 
operators which generate the group 0(8).  The detailed correspondence between the 
quasispin operators and the generators of 0(8)  has been given by Flowers and 
Szpikowski 3). It is shown in table 1. Besides the four self-adjoint operators Q0, So, 
To, and E o 0, only 12 other operators are shown explicitly, since the remaining 12 can 
be obtained from these by hermitian conjugation. 

The n dimensional orthogonal groups are generated by a set of ½n(n- 1) operators 
J,a. These generators are governed by the commutation rule 

Jpq = -Jqp ,  p , q  = 1,2 . . . . .  n. 

J~. = Jp,, (2.5) 

The rank of the group, which is the number of mutually commuting operators and 
also the number of integers or half-integers required to specify the irreducible represen- 
tations, is k for n = 2k and n = 2k + 1. For  example, 4 numbers are required to specify 
the irreducible representation of O(8), where as only 3 are needed for both 0(6)  and 
o(7). 

To completely specify the states of a given irreducible representation of O(n), a 
set of ½ ( ½ n ( n - 1 ) - k )  additional quantum numbers or commuting operators are 
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TABLE 1 

Infinitesimal operators  of  0 ( 8 )  

50I 

Eight  dimensional  
Quasispin "angular  m o m e n t u m "  
operators  Flowers-Szpikowski operators  P P" P "  

3 1 A * ( 1 , 0  ) Q+p ½ [ - ( J 1 7 + i J z 7 ) w i ( J 1 8 + i J 2 8 ) ]  1 0 0 

1 " n p - - i ( J 3 7 - i J 3 8 )  1 0 0 31A*(0, 0) (Q+- ,/2 

3 1 A t ( _ l ,  0)  Q + n - p  ½ [ - ( J 1 7 - i J z 7 ) - I - i ( J l s - i J 2 8 ) ]  l 0 0 

a3A*(0 ,  1) Q n + - n  ½ [ i ( J 5 7 + i J 6 7 ) + ( J s s W i J 6 s ) ]  1 0 0 

1 " p n ~n p. ( J47- - i J4s )  1 0 0 
I3A*(0 ,  0)  , 7 2 ( Q ~ - -  + t 2 + -  ) 

42 
I 3 A t ( 0 , - - 1 )  Qp+-p ½ [ i ( J s T - i J 6 7 ) + ( J s s - i J 6 8 ) ]  1 0 0 

Qo = f 2 - ½ N  --Z~01/'flnn'q!-/'lPP'q-[)-rl-n"~/'l-P-P'~-~-~"~~0 ~ 0  ~ 0  ) J78  0 0 0 

So ½(Qno"+QgP-Qo'~-"-QoP-P) Jlz 1 1 0 

1//~nn /-~pp l_ /-) -- n -- n /ql--P--P~ J 5 6  1 1 0 To :~,~o - ~ o  ~o - ~ o  j 
i /g ' lnn - -  t')PP - -  ¢"1 -- n-- n L t"l -- P-- P'~ J 3 4  1 1 0 Eoo 2\~z~ 0 -'~0 .~0 TY-,O ] 

1 1 (J13._}_iJ23) 1 1 0 
S +  4-~  ( o ; - n  + Q g  - p  ) 4-- ~ 

1 - np n p" l ( J ~ , 5 +  i j 4 6 )  1 1 0 r+  (eo - ) 

Ell Q~-p ½[(J15q-iJ25)-t- i(J16q-iJ26)] 1 1 0 

El_l Q~-n l[-(J15+iJzs)+i(J16-t-iJ26)]" 1 1 0 

1 i (j14+iJ24) 1 1 0 E10 4-2 ( o g - - n  __ e g -  P) %/--2 

1 -i(j3s+iJa6) 1 1 0 E°I x/-2 (Qgp - Qo" -  P) x/~ 

a) The  quasispin opera tors  are defined by eqs. (2.1)-(2.4).  No te  tha t  E_a,_b = E+b, S_ = S++, T_ = T + . 

b) Q•? = ~m(__l)t-ma~m_~a+t_r,p, Q#_C~ = (O~+#)+, O~ # = Zman+tmantmp" 
where ~ and  fl are specified by m s and  m t (e.g., 0t = - -p  s tands for a " sp in  down"  proton) .  For  several degenerate 
single-particle levels the sum over m is replaced by a sum over nbn. 

e) The  eight-dimensional  " angu la r  m o m e n t u m "  operators  satisfy eqs. (2.5). The vectors S and  T have been chosen 
to span the 1, 2, 3 and  4, 5, 6, subspaces respectively. 

a) 0 ( 6 )  irreducible tensor  character  of  the operators .  
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needed. The physics of the applications generally forces specific choices for certain 
of these operators. The mathematically most natural way to completely specify the 
state vectors, however, is given by the Weyl, Gelfand-Zetlin scheme, based on the 
canonical chain of subgroups O(n) = O ( n - 1 )  ~ O ( n - 2 )  = . . .  = 0(2) ;  where 
tbe k ( l n ( n - - 1 ) - - k )  quantum numbers are given by the labels which specify the 
irreducible representations of all the subgroups in the chain. For 0(8)  a basis vector 
in this scheme is characterized by the Gelfand pattern 

m a t  m82 

m71 /7"/72 

F/~/61 /T/62 

/T/51 /T/52 

//'/41 ///'/42 

m31 

/'H21 

m83 

m73 

/T/63 

/T/84 

(2.6) 

where m , i  are the irreducible representation labels for the subgroup O(n). E. g., m61 , 
m62 , m63 are the three numbers needed to specify the irreducible representations of 
0(6).  The irreducible representation labels m,i satisfy the branching rule 6): 

~" toni  r Y l n + l , i  ~ ~ / T / n + l , i + l .  (2.7) 

The integers or half-integers m,~ are positive with the exceptions of m 2 k  ' k which can 
be both positive and negative. (In the branching rule m z k  ' k must be replaced by its 
absolute value.) 

In the above basis for O(8), however, the number operator and the isospin operators 
T 2 and To are in general not diagonal t. The Gelfand basis is therefore not the physi- 
cally relevant one for the pairing problem of nuclear physics. However, since the 
matrix elements of J,a are known in the Gelfand basis 6), we shall often return to the 
scheme (2.6). 

Although the full Gelfand state vector is not directly useful for the physical applica- 
tions, the 0 ( 6 ) a n d  0(8)  irreducible representation labels m61 and m8~ can be related 
to the Wigner supermultiplet and seniority quantum numbers, respectively. 

2.1. THE IRREDUCIBLE REPRESENTATIONS OF 0(6) 

The irreducible representations of 0(6)  are specified by the highest weights, that 
is by the largest possible eigenvalues of the 3 commuting operators So, Eoo, To. 
Since 0(6)  and SU (4) have Lie algebras of the same structure, the irreducible repre- 
sentations can also be labeled according to the notation standard for the special 
unitary group associated with the four-dimensional spin-isospin space. It is conve- 
nient to include the number operator (or Qo) which commutes with the 15 operators 

t By the specific choice of operators made in the present work, (see column (c) of table 1), the 
quantum numbers S M S correspond to maim21. 
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S, T, E,¢, and together with them generates a group U(4), so that the irreducible 
representations can be specified by the symmetries of n-nucleon spin-isospin functions. 
These symmetries are characterized by Young tableaus or partition numbers 

[flf2f3f4] o n  N objects where f i  are integers such that ( f l  + f 2  +f3 +f4 = N) with 
O > f l  > f2 > f3 > f4 > 0. The partition number f i  specifies the length of the ith 
row of the Young tableau. In a spin, isospin function with symmetrycharacterized by 
the f i ,  there can be at most f l  neutrons with spin up, and subject to this restriction at 
most f2 additional protons with spin up etc . . . . .  The largest possible eigenvalues 
of  the 3 commuting operators So, Eoo, To are thus specified by the partition numbers 
fl-  Independent of the ordering of the single-particle states. The highest weights 
which define the 0(6)  irreducible representations are thus characterized by 

P = ½(fl +f2--f3--f4), 

P'  = {( f l - - f2  +f3--f4),  

P "  = ½(fl --f2 --f3 +js,). (2.8) 

These P, P' ,  P "  are the Wigner supermultiplet quantum numbers. They also corre- 
spond to the standard labels of the Gelfand scheme, that is (P P '  P " )  = (m61 m62m63). 
To avoid confusion in the following, standard 0(6)  labels will always be enclosed by 
round parentheses, standard U(4) or SU(4) labels by square brackets, (the latter 
enclosing 4 or 3 numbers for U(4) or SU(4), respectively). 

2.2 THE IRREDUCIBLE REPRESENTATIONS OF 0(8) 

The irreducible representations of 0(8)  are specified by the highest weights, defined 
by the largest possible eigenvalues of the 4 commuting operators Qo, To, Eoo,So. 
In a state of specified seniority v, there must be at least v nucleons (the number entirely 
free of pairs coupled to L = 0). The highest possible eigenvalues of the generator 
Qo = J78 --  Q l No p is therefore 

(2 = ~ - ½ v .  

Subject to the restriction to the highest possible Q0, the highest eigenvalues of 
So, Eoo, and T o are therefore specified by the symmetry of a v nucleon spin-isospin 
function characterized by partition numbers [/11/12/13/14] on v objects, where 
/11 "~-/12 +/1"/3 + / 1 4  = V and where the/1i are again integers, satisfying 

½t~> > > > < 0 .  = /11 = /12 = /13 = /1, 

Among the set of v nucleons corresponding to the highest weight state there can 
again be at most/11 neutrons with spin up, and subject to this restriction at most/12 
additional protons with spin up, etc . . . . .  The highest eigenvalues of S o, Eoo, T o 
in the highest weight state of 0(8)  are therefore specified by 

P = "}(/11 " t - / 1 2 - - ] ' / 3 - / 1 4 - ) ,  

P' = ½(/11 - /12  +/1a - /14) ,  

P"  = ½(/11 --/12 -/13 +/14), (2.9) 
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and in standard Gelfand form the 0(8) irreducible representations are specified by 
(m81mszmsams4) = (f2-½v, p p' p"). 

The p, p', p"  are called reduced supermultiplet quantum numbers. They are the 
supermultiplet quantum numbers of the v nucleons free of pairs coupled to L = 0. 
The highest weight state with N = v nucleons must satisfy the relation 

2s+I'2T+IA(Ms, MT)IN = V, pp'p") = O. (2.10) 

The remaining states of the 0(8) irreducible representation charactelized by v, p, p' p"  
corresponding to nucleon number N are obtained by acting on the state IN = v,pp'p") 
with ½(N-v)  operators A + 

2.3. DECOMPOSITION OF 0(8) INTO 0(6) 

A specific 0(8) irreducible representation denoted by (f2-½v, p, p', p"),  decomposes 
into different irreducible representations of the subgroup 0(6) characterized by 
(P, P',P"). This decomposition is due to the fact that the ½(N-v) operators A ÷ 
with 0(6) irreducible tensor character (100) can be coupled to the 0(6) representa- 
tions (p, p', p")  in many different ways. 

For fixed (f2-½v, p, p', p")  and (P, e ' ,  P" )  the decomposition from 0(8) to 0(6)  
is not unique. For the 0(8) ~ 0(7) ~ 0(6) chain it can be seen that three other 
quantum numbers which specify the representations of O(7) are needed to identify the 
"parent" of 0(6). Unfortunately these three quantum numbers have no easily deter- 
mined physical content. 

A similar problem occurs in the decomposition of 0(6) into the direct product 
[0(3) x 0(3)] of the spin and isospin groups. Once again the set of (e, P',  P" )  and 
(SMs, TMT) are not sufficient to give a unique decomposition. Two other quantum 
numbers are needed to completely specify a state. Although Moshinsky and Nagel 7) 
have succeeded in finding the needed operators, they are of third and fourth degree 
in the infinitesmal operators of 0(6) and the physical content of these two operators 
is again obscure. 

The present work tries to do without these additional quantum numbers at the cost 
of limiting the scope of interest to include only states of low seniority. Since these are 
precisely the states of greatest interest for problems in pairing theory, this is not a 
severe restriction. 

In the most general case a state vector for a specific 0(8) irreducible representation 
would be completely specified by 16 quantum numbers 

I(Q = f2-½v, p, p', p"), (m71mTzm73), (PP'P"), SMsTMT, to~). 

Where, for example, co and q5 could be chosen as the eigenvalues of Moshinsky and 
Nagel's third and fourth degree 0(6) operators, while (m71 m72m73 ) are the repre- 
sentation labels of the group 0(7) in the group chain 0(8) ~ 0(7) ~ 0(6). The 
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general branching law, eq. (2.7), requires 

Q > m71 > p, P > > = = = m72 = p', 

rn71 => P, P > > , = rrt72 = P ,  

p '  > > '~ 
~--- 1'Y/73 ~--- P , 

P ' >  m 7 3  > IP"[.  (2.11) 

If  the seniority v is restricted to be either 0 or 1, p p' p" are restricted to the values 
0 0 0 or 5 ½ ½, respectively. In these special cases the remaining quantum numbers are 
therefore also severely restricted as indicated in table 2. 

TABLE 2 

F o r v = 0  F o r v ~  1 

0 (8) = (Qpp'p") (.Q000) ( - (2-  ½,½ ½ ½) 

0 ( 7 )  = (m7lmTznTa) (mOO) (m '  ½ ½) 

0 ( 6 )  = (PP'P") (n00) ( n - k ,  ½, Yc½) 

m - i n t ege r  m '  = ½-integer 

.Q > m >_ n .Q-½ > m' > n - ½  

In both cases therefore only a single 0(7)  quantum number is needed to completely 
specify the states. However, the quantum numbers m have no ready physical signifi- 
cance. Even worse, a state of definite m is not a state of a definite number of  nucleons, 
N. The number operatoi is in general not diagonal in the 0(8)  ~ 0(7)  ~ 0(6)  scheme. 
(The highest weight state is an exception.) Since it can be shown that the number 
of distinct eigenvalues of the number operator is equal to ~ -  n + 1, which is equal to 
the number of distinct valaes of m (or m') in the above two cases, the number opera- 
tor itself can be used, in place of an operator whose eigenvalues determine m, as the 
additional operator which makes the decomposition of 0 ( 8 ) i n t o  0(6)  unique in 
these two cases. Restriction of v to either 0 or 1 implies a restriction to the 0(6)  
representations (n00) or (n-½,  5 5) and (n-½,  ½, - 5 ) .  It has been shown 8) that the 
decomposition of 0(6)  into [0(3) x 0(3)]  is unique in these special cases, so that the 
quantum numbers SMs TMr are sufficient to completely specify the states of 0(6).  

The matrix elements of the pair operators are to be calculated by a generalized 
Wigner-Eckart theorem so that it is important to characterize these operators as 
irreducible tensors according to the group decomposition 0(8)  ~ 0(6)  ~ [0 (3 )x  
x 0(3)].  The 28 infinitesimal operators transform according to the regular represen- 

tation (1100) of 0(8).  A single 0(7)  label again suffices to specify the states in this 
representation. In place of the 0(7)  label, however, the operators can be characterized 
by the change ANwhich they induce in the nucleon number. In place of AN it will be 
convenient to use A2 where 2 is the eigenvalue of the operator (~-SNop).  Ob- 
viously, AN - -t-2, 0; or A). = -T- 1, 0; for A t, A, and the number preserving opera- 
tors, respectively. Since the operators A t, (A) create (or annihilate) a pair of nucleons 
with antisymmetric spin, isospin functions, their SU(4) tensor character is [110] 
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which corresponds to the self-conjugate representation (100) of 0(6).  Finally, the 
15 infinitesimal operators S, T, and E which generate 0(6)  transform according to 
the regular representation (110), while the operator Qo is a scalar, 0 (6)  representation 
(000). In all of  these 0(6)  representations the quantum numbers SMs, TMr are suffi- 

"7"(1100) cient. The irreducible tensors can thus be characterized by laa, cvp,p,, ), SMs, TMr. 
The 0(6)  character is indicated in table 1. The SMs, TMr character follows directly 
from the notation. In particular 

2s+*,2r+aA+(Ms, Mr ) ,tO 1oo) 
* - -  1, (100) ,  S M s ,  T M T r  • (2.12) 

3. The 0(8) /0 (6)  part of the pairing problem 

In order to find solutions to the pairing problem, the matrix elements of the pair 
creation and annihilation operators are to be evaluated. By the tensor classification 
according to 0(8)  ~ 0(6)  D [0 (3)×  0(3)]  these can be factored into segments. 
The 0 (8 ) /0 (6 )  segment is to be evaluated in this section. The 0(6)  --, [0(3) x 0(3)]  
segment can be identified as a reduced Wigner supermultiplet Clebsch-Gordan coeffi- 
cient. These 0 ( 6 ) ~  [0 (3 )x  0(3)]  coefficients are calculated and tabulated in a 
companion paper on the Wigner supermultiplet scheme. 8) 

To calculate the 0 (8 ) /0 (6 )  factors of the matrix elements it is first necessary to 
make a transformation to a basis in which the number operator is diagonal. This 
physically meaningful basis is constructed as a linear combination of the basis vec- 
tors for the mathematically natural or canonical group chain 0(8)  ~ 0(7)  D 0(6).  
For  the case of states with seniority v = 0 or 1, the requirement that nucleon number 
N be a good quantum number is sufficient to determine the coefficients in this expan- 
sion. The details for the case v = 0 will be shown in subsect. 3.1. The calculations 
for v = 1 are similar (see also ref. 9)). The technique used for the calculation of 
the matrix elements of the pair operators is again illustrated in detail only for the 
case v = 0, in sect. 3.2. Results for the case v = 1 are given in subsect. 3.3. 

3.1. THE BASIS WHICH DIAGONALIZES THE NUMBER OPERATOR 

For v = 0, the 0(8)  representations are characterized by ((2000) and the possible 
0(6)  representations by (n00). The possible values of N (nucleon number) for fixed (2 
and n can be determined by counting the number of nodes in the possible Young 
tableau for (n00), that is SU(4) representation [nn0]. These Young tableaus must 
consist of n columns of 2 nodes and a possible additional set of i columns of 4 nodes, 
where i = 0, l, 2 . . . . .  f2 -n .  (The maximum number of columns in the tableau is 
limited by ~, the spatial degeneracy.) The possible values of N are thus given by 
N = 2n+4i.  The corresponding eigenvalues of Qo are 2 = (2-n-2i .  

The 0(7)  representations are characterized by (mOO) where n <= m <= f2. There 
are altogether ( ( 2 - n +  1) different values of m. On the other hand, Qo or JTs have 
just ( O - n  + 1) distinct eigenvalues, so that nucleon number can be used in place of m. 
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A state vector in the 0(8) ~ 0(7) m 0(6) basis can be written in an abbreviated 
form of eq. (2.6) by 

I2 0 0 0 
rn 0 0 

(P~m. = n 0 0 (3.1)  

I 

where all the quantum numbers that specify the subspace of 0(6) are omitted. (They 
can have any arbitrary value.) An eigenbasis for the number operator is given by the 
expansion 

~ ) ,  = Z D(mZ2q)~ ... .  (3.2) 
m = n  

which must satisfy 

where 

j w(~) 2e .  5u~x), (3.3)  7 8 - - A n  

= a - l  U = ( a - , O -  2i, i = o, 1 , 2 , . . . , ( a - , ) .  

The matrix elements of Jk-t  k in the canonical basis are known. 6 )  Operating with 
J7s on a state vector of the canonical basis 0(8) ~ 0(7) ~ 0(6) gives 

d78(P~m, = As~m.+ q~.Qm+ln-I'-A.Qmn- (POm-ln, (3.4a) 

where the coefficients are 

V!f2- m)(f2 + m + 6)(m + n + 5)(m - n + 1)1 +, 
An,m+ = - i  i_ (2m+5)(2m+7)  

F(f2- m + 1)(I2 + m + 5)(m +_ _n + 4)(m - n)l { 
Ao,,._ = i k (2m + 3)(2m + 5) / 

(3.4b) 

From eqs. (3.2), (3.3) and (3.4) we get the recursion relations 

D(a, [ ( m + n + 4 ) ( m - n ) ( 1 2 + m + 5 ) ( f 2 - m + l ) ]  "~ 
, . - i .  " (2m+3)(2m+5)  

= n(,~) I ( r n + n + 5 ) ( m - n + l ) ( f 2 + m + 6 ) ( f J - m ) l  ~ ,-.~) 
~m +1,. (2m + 5)(2m ~ A + i2o,.z,,... 

(3.s) 

Not all D(~2 are needed for the latter work, in fact only two are required. Solution of 
the recursion relation and normalization gives 



5 0 8  S ING C H I N  P A N G  

D~a2 = [ ( 2 + ~ _ n ) .  (f2_(~___+2i~ 4)!(12- n)[(12 + 2)!(12 + 2)! ] ~ r  
_ . , (O+n22+4) l (O+n22+4)! (2 f2+4)!  , 

(3.6) 

(O+n22+4) , ( f2+n22+4) , (2 f2+4) ,  

(3.7) 
3.2. MATRIX ELEMENTS OF At, A FOR v = 0 STATES 

The pair creation and annihilation operators A t and A are linear combinations of 
the operators J i 7  and JiB, with i = 1, 2 , . . . ,  6; (see table 1). From the point of  view 
of  the canonical chain 0(8)  - ,  0(7)  -~ (6) ~ . . .  by far the simplest of these opera- 
tors are the combinations (J67 + iJ6s). By using the irreducible tensor classification 
for the pair operators A t (A) and applying the Wigner Eckhart theorem, it will be 
sufficient to calculate the matrix elements of (J67-+ iJ6a) since the matrix elements of 
the remaining pair operators are simply related to these by known factors which are 
functions only of  the O(6), spin, and isospin quantum numbers. From table 1 and 
eq. (2.12) it can be seen, in particular, that 

--(J67 --ij68) = (13At( 0, 1)-13A*(0, - 1)) 

/'T(1100) T(1100) 
= k ~t -- 1,  ( 1 0 0 ) ,  0 0 , 1 1  - -  a -- 1,  ( 1 0 0 ) ,  0 0 , 1  -- 1 ) "  (3.8) 

The matrix element of a component of the irreducible tensor operator T (~ 1 o0) can 
be factored by the Wigner Eckart theorem. In general 

! r t  t r t  ( 1 1 0 0 )  
<(QPp P )22(P2 P2 P2 ) S 2  Ms2 T2 Mr2] T)a, (1 ore, SoMs o, TOMTo[ 

× (Qpp'p")Al(P 1P~ P'I')S1 Ms, T1 Mr 1) 
~ -  . t p !  ! t t  F((Qpp'p");21,22, (P1 P1 f l  ), (PEP2 f2 ) )  

/(PIP~P'~') (100) ( f  2P'2P'2')~ 
x ~ S1T1 ; SoTo S2T2 / 

x (S~ Ms, So MsolS2 Ms2)(T1 Mr, To Mro[ T2 Mrs). (3.9) 

The F factor which carries the sole dependence on the 0(8)  quantum numbers and 
nucleon number (2), and depends on the 0(6)  quantum numbers, is the product of  
the reduced matrix element of the operator and the reduced Wigner coefficient for the 
0 (8) /0 (6)  segment in the group decomposition. The double-barred coefficient is a 
reduced Wigner coefficient for the 0(6)  ~ [0(3) x 0(3)]  segment, of the type calcu- 
lated in ref. 8). The Ms and M r dependent factors are ordinary angular momentum 
Wigner coefficients for spin and isospin space. For the case v = 0 both the 0(8)  and 
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0(6) representations are specified by a single integer; (Qpp'p") = (D000), (PP 'P")  = 

(nO0). It will therefore be convenient to use an abbreviated notation for the F factor. 
In this case eq. (3.9) is written 

<( 000) 2(n200)s2 (,1 oo) T2 MT2[ T3~.. (, oo), SoM~oroMTo l( aOOO)2,(n~ O0)S~ Ms~ 7'1 Mr1> 

/ [ n ~ n , 0 ] .  [110] [n2n20]~  
= F ( D ; 2 ~ , 2 2 ; n t , n 2 ) ~  S~T,  ' SoTo $2T2 , /  

× (S1 Ms, So MsolS2 Ms2>(rl MT 1 To MTo[ T2 Mr2>. (3.10) 

In the double-barred (Wigner supermultiplet) coefficients, the 0(6) representation 
labels, (e.g., (n,00)), have been replaced with their SU(4) equivalent, ([n~n~0]), 
since the tabulations of ref. s) make use of the SU(4) notation for the Wigner super- 
multiplet scheme. To calculate the desired F factors any simple choice of spin and 
isospin quantum numbers can be made. In the 0(6) representation (n00) the highest 
weight state, S = Ms = n, T = MT = 0, and its "nearest neighbor", S = Ms = n -  1, 

T = M r  = 1, will be sufficient. In terms of the 0(8) ~ 0(7) ~ 0(6) ~ . . .  ~ 0(2) 
state vectors as defined in (2.6), these two states have a very simple form. The highest 
weight state is given by 

](D000)2(n00), S = Ms = n, T = M T = O> = Z D~Z). 
m m n  

D 

in 
t2 

n 
H 

tl 

n 

0 0 0 
0 0 
0 0 
0 (3.11) 
0 

The state with S = M  s = n - 1 ,  T = M  r =  1, can be obtained from the highest 
weight state by acting on it with the appropriate step-down operator, (as defined in 
ref. 8)), if the latter is expressed in terms of the J,z. 

[(DOOO)2(nO0), S = M s = n - l ,  T = M T = 1> 

D 0 0 

m 0 0 

n 0 0 

n 0 

n - 1  0 

n - 1  

n - 1  

+ i  

D 0 0 
m 0 0 
n 0 0 

n - 1  0 
n - 1  0 
n - 1  
n - 1  

(3.12) 

To calculate the F factor F(D; 2, 2 - 1 ;  n - 1 ,  n), for example, we use eqs. (3.8) and 
(3.10) with the above choices for spin and isospin quantum numbers. 
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((f2000), 2--1, (n00)S2 = Msz = n- l ,  T2 = Mr2 = l[i(J67-iJ68)[ 

(f2000), 2, ( n -  1, 0, 0)S, = Ms1 = n -  1, 7", = Mr ,  = O) 

. / [ n - 1  n - l O ] .  [110] [ n n O ] \  
= F ( t ? ; 2 ( 2 - 1 ) ; n - l , n ) ~  n - l , O  ' 01 n - 1  1 / "  

x [ < n - 1  n - 1 0 0 l n - 1  n- l><O011] l l>  

- < n - l ,  n - 1  00[ n - i n - l > < 0 0  1 -  l l l l>] .  

(3.13) 

On the right hand side, all but the F factor are known coefficients. (The ordinary 
angular momentum coupling coefficients all have the value + 1, with the exception 
of  (00 1-1111)  which is of course equal to zero.) The left hand side of eq. (3.13) 
can be calculated from the known matrix elements 6) of J67 and J78 in the canonical 
basis of 0(8)  - ,  0 (7)  - ,  0 (6)  ~ . . . .  The matrix element of (J67 - i J6a )  in this basis 
must be diagonal in the quantum numbers for 0 (5)  and its subgroups, and is a func- 
tion only of the quantum numbers for 0(8)  through O(5), inclusively. It is thus 
convenient to use the short hand notation 

J2 

7t~n)p =- Z D~Z)n~Pamnp ~ E D ~ 2  
m=tl m=n 

f2 0 0 
m 0 0 
n 0 0 
p 0 

(3.14) 

where, in the last term, all the quantum numbers for the subspace of 0(5)  are omitted 
since, for present purposes, they can have any arbitrary value. 

The matrix elements of J78 and J67 in the q~a,,,p scheme are known 

J7  8 qgt2mnp = Aomn + qga m + a np+ A ~ m n -  q)t2 m-- 1 np , 

J67  ~O~mnp = Bmnp + ¢Pt2m n + a p + B m n p -  ~D.Qm n -  1 p '  (3.15) 

where the coefficients A have been given in eq. (3.4), and 

i I ( n - - p + l ) ( n + p + 4 ) ( m - - n ) ( m + n + 5 ) l  ~, 
B .v+ = - (n + 2)(n + 3) 

B,,,p_ = i_ [ ( n - p ) ( n + p +  3 ) ( m - n +  1) (m+n+4) l~"  (3.16) 
2 (n + 1)(n + 2) 

To calculate -/67 +_iY6s we use the commutation relations (2.5), 

J67 ~ i j 6 8  = J67 +(a78J67 -J67 J78), (3.17) 
which, with 

J78 = (3 .18)  
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gives 

with 

and 

( J 6 7 +  . . . .  (,z) ~+  trl(x+ i) ± ~ -  ~ ( ~ +  1) i j68 )  ~ l ' D n p  ~-- t ' X ~ n p  Jt D ( n  + 1 ) p  T ~ 2 D n p  a ~ ( n - -  1)p 

. . . .  (2) k +  u t ( ~ - l )  ± h -  t v ( 2 - I )  
( J 6 7  - -  i J68)  "t"Onv = ~'afanp ~ ( n  + 1 ) p "  t"aI2np X O ( n  -- 1 ) p ,  

+ 
C 2~np~z : - -  --  

i I ( n - - p + l ) ( n + p + 4 ) ( 1 2 + n + 2 + 6 ) ( f 2 - n - 2 ! l ~  ' 

2 (n+2) (n+3)  

- i I ! n - p ) ( n + p + 3 ) ( f 2 - n + 2 + 2 ) ( f 2 + n - 2 + 4 ) ] ~  ' 

c;'~"v = 2 (n + 2)(n + 1) 

(3.19) 

(3.20) 

(3.21) 

ba+~,v = - c (z -  ~ )~(, + 1)v, 

b~-... + (3.22) : - -  c ( x -  1).Q(n- 1)p" 

With eqs. (3.11), (3.12), (3.14), (3.20), and (3.22), it can be seen that the left hand 
side of eq. (3.13) has the value 

i ( - - ' l  
x/2 ) b;fa(n- x)P=(n- l) -- -- _ _  

1 
/2  c(z- 1 ) I 2 n p = ( n -  1) • 

Using the tabulated value s) for the SU(4) Wigner coefficient of the right hand side of 
eq. (3.13), we obtain 

F(Q; 2, 2 - 1 ;  n - l ,  n) = - [ ½ n ] ~ c ~ _ i ) ~ , p = t , _ l )  

1 5)]* 
= 2 [_ ~ (3.23) 

The other F factors are obtained by similar techniques. The results are tabulated in 
table 3. 

TABLE 3 

F factors  fo r  v = 0 s tates  

1 
F ( O ;  2 - -1 ,  2; n - - l ,  n) = 

1 
F ( O ;  2 - -1 ,  )~; n + l ,  n) = 

1 
F(zQ; 2 + 1 ,  ~; n - - l ,  n) = 

1 
F(.Q; 2 + 1 ,  ).; n + l ,  n) : 

E n ( O + n + 2 ÷ 4 ) ( . Q - n - 2 + 2 )  7 ½ 

E ( n + 4 ) ( O ÷ n - - 2  +6)(O--n+.~)~ 
( n + 2 )  

[,,(~-,,+~+2)(~+,,-z+4) 7 
• ~ -J 

E (n+4)(f2 + n +  2 +6) (O- -n - -  2)q 4_- 
• ~ -J 
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3 . 3 .  T H E  F F A C T O R S  F O R  v = 1 S T A T E S  

The technique used to calculate the F factors for the v = 1 states is similar to that 
for the v = 0 states. The  main difference comes  from the fact that the 0 ( 8 )  irreducible 
representation which,  for v = 1 is characterized by ( ~ - 1 ,  1 ,1~  contains  two  possible 222,/ 
types o f  0 ( 6 )  representations,  namely  (n +½,  ½½) or (n + ½, ½, - ½ )  corresponding  to 
the S U ( 4 )  representation In + 1, n, 0] and [n + 1, n +  1, 1 ], which are conjugate  to 
each other. The corresponding  U ( 4 )  representations which give the total number  o f  
nuc leons  are [ n +  1 + i ,  n + i ,  i, i] and [ n +  1 + i ,  n +  1 + i ,  i +  1, i], respectively; where 
i = 0, 1, 2 . . . .  ( O - n - 1 ) .  The nuc leon  numbers  are therefore given by: N = 2n + 

l 1 1 1 1 + 1 + 4 i  for (n+½,  z z ) ,  and N = 2 n + 3 + 4 i  for ( n + 2 ,  z - : ) .  The corresponding  
eigenvalues,  2, o f  the operator  Qo = J78 = ( (2-½Nop)  are 

for ( n + ½ ,  ½, ½); 2 = ~ - n - 2 i  1 2~ 

for (n ' 1 . . . .  + > : ,  - ½ ) ;  2 = - f 2 + n + 2 i + ½ ,  i = O, 1, 2, ( O - n - l ) .  (3.24) 

TABLE 4 

F f a c t o r s  f o r  v = 1 s t a t e s  

F(.Q; ,~--1, 2; n--l ,  n) 

F(.Q; ).-- 1, ~.; n*, n) 

F(~Q; 2--1, 2; n+ l ,  n) 

F(~;  2+1, 2; n--l ,  n) 

F(~Q; 2+1, 2; n*, n) 

F(~Q; 2+1, 2; n+ l ,  n) 

F(Q; 2--1, ~.; (n--l)*, n*) = 

= 1 En(20--2n--22+3)(2.Q+2n+22+9)l 
(n+2) 

i F(2£2+2n+22+9)(2~2--2n--22+11)7 & 
= 2  L ~ d 

1 [(n+5)(2Q+2n--22+11)(2~Q--2n+2,~--3)l ~- 
= 4 " (n+3) 

1 [n(20+2n--22+7)(2~2--2n+22-?l)] -~ 
= 4 (n+2) 

i F(2~--2n+22+l)(2~--2n--2~--l)7 
=2L- ~ ~  _I 

1 [(n+5)(2O--2n--2Z--1)(2Q+2n+22+13)] ½ 
= 4 " (n+3) 

1 [n(2.O--2n--2R+l) (2.Q+2n+22+7)]'~ 
(n+2) 

--i F(2.Q--2n+22--1)(2.Q--2n--22+l)-] ~- 
F((2; 2--1, 2; n, n*) = ~ -  L" 2 ~ n + ~  A 

1 [(n+5)(ZD+Zn--22+13)(2D--2n+22--1)] ~: 
F(Q; 2--1, 2; (n+l)*, n*) = ~  (n+3) 

1 [n(2~Q--2n+22+3)(2#2+2n--2a+9)~½ 
F(O; a + l ,  2; (n--l)*, n*) = a (n+2) 

--i F(2~Q +2n-¢-22-¢- 11) (2~Q--2n-- 2~.+ 9)1 
F(.Q; 2 + l, 2; n, n*) = -2- 1_." ~ '_1 

1 E(.+s)(20-2n-2,-3)(20+2.+2z+11)~ ~ 
F(.Q; 2+1, a; (n+l)*, n*) = ~ (n+3) 
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that is, the two sets of eigenvalues for the conjugate 0(6) representation in (g2- ½, ½½½) 
are of opposite sign but equal in magnitude. The expansion coefficients, D, 
analogous to those of eq. (3.2), therefore, have the property: the coefficient D for 

1 1 1 1  (n+~, 7, -½) and - 2  is the complex conjugate of the coefficient D for (n+½, 32) 
and +2. Details are given in ref. 9). Techniques similar to those of subsect. 3.2 give 
the F factors for the v = 1 states. The results are shown in table 4. In the argument for 
the Ffactors Q is now short hand notation for the 0(8) label t o _ ±  xx±~ \ " "  Z ,  2 2 2 ] ,  n stands for 
the 0(6) representation (n+½, ½½) or SU(4) representation [n+ l ,  n, 0]; while n* 
stands for the conjugate representation (n+½, ½, -½)  or its SU(4) equivalent 
[n + I, n + 1, 1 ]. With the F factors of table 4, and the table of SU(4) Wigner coeffi- 
cients of ref. 8), the matrix elements of A + can again be obtained by the use of eq. 
(2.12) and the Wigner Eckart theorem, eq. (3.9). 

4. Same applications of the quasispin method 

With the matrix elements of the pair creation and annihilation operators calculated 
in the last section, exact solutions can be found for the pairing problem involving 
states of seniority v = 0 or 1. 

4.1. THE PAIRING HAMILTONIAN 

The general nuclear Hamiltonian is assumed to have the form 

H = H s . p . + H 2 _ b o d y  , (4.1) 

where the single-particle Hamiltonian is given by 

H s p  = ZgiN~ with N i ~ a + . (4.2) • • ' : f m i m s m t  a i r n i m s m t  
i m i m s m t  

The indices i characterize the single-particle levels, and e~ are the single-particle 
energies. The spatial degeneracy of the levels is given by t2 i = ~m, 1, for example 
f2~ = 21 i + 1 if i denotes li. In pairing model studies the general two-body interaction is 
replaced by a pairing Hamiltonian. In the ~2ST scheme the pairing Hamiltonian 
acting on states of a nuclear configuration consisting of several single particle energy 
levels can be written in the most general form as 

Hp, lr,,g = Y~ g~Jl Y, 3~A~(Ms, 0)3~A~(/s, 0) 
i ,  j M s  

+ ~ g~3 ~ I3A+(0, MT)laAj(O, Mr). (4.3) 
i , j  M T  

The ~J g(2s+a)(2T+l) give the strength of the pairing interaction between a pair of 
particles coupled to L = 0, ST, in the ith single-particle level and a similar pair of 
particles in the j th  single-particle level. Since this Hamiltonian is a scalar in both 
spin and isospin space, its eigenvalues are independent of Ms and Mr ,  and the total 
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S and T of the system are good quantum numbers. In general, however, the Hamil- 
tonian (4.3) can be off-diagonal in the Wigner supermultiplet quantum numbers. If  
a further degeneration is made in the pairing Hamiltonian by setting 9~i~ = fli3, the 
Hamiltonian becomes an O(6), (or SU (4)), scalar as well. In this case the total 
Wigner supermultiplet is a good quantum number, and the eigenvalues of (4.3) are 
independent of S and T. The different S, T states of  a given Wigner supermultiplet 
become degenerate. Since the A + and Aj are infinitesimal operators for O(8), the 
Hamiltonian is diagonal in the seniority quantum numbers for the various single- 
particle levels i; that is, v~p,p',p~' are good quantum numbers for all i. Finally, if 
both the parameters 9 u and el are independent of i and j, the overall 0 (8)  quantum 

1 t t t  numbers (f2--~v, pp p ) become good quantum numbers, where the ((2-~v,  pp . . . .  ) 
describe the 0(8)  representations obtained from the direct products of the 0(8)  

t ' ~  1 ! t t X  representations k~t~- ~v i, P~PtP~P~ ) for the various single-particle levels. 
Since our interest is in the most general case, the base vectors in this investigation 

are to be designated by the seniority, Wigner supermultiplet, spin, and isospin 
quantum numbers for the individual single-particle levels i. Applications will be illu- 
strated in detail for systems with even nucleon number and individual single-particle 
level seniorities v~ = 0. For  such a state 

Z [f2,(2,-1)[n, niO]S, Ms,, "r ~t xnn,(z,-t),,s,~r~,r,Mr, (4.4) 
~ n i S f M s  t Jt i l ~ l  T i / 2 1 ~ i . ~ i n , i S , i M , s i T , i M , T t  , 

T i M T  l 

with ni = n~___ 1. From the results of sect. 3 

n~/[n'n'O]. [110] [nn0]~ 
An(~-t)'smsrmTa~,'s'm'sr'M'r = F ( f 2 ; 2 , 2 - 1 " n ' , ,  ) ~  S 'T '  ' SoTo S T  / 

t t v t × ( S  MsSo m s o l S m s ) ( T  M r  To Mrol T m r ) ,  (4.5) 

where level subscripts i have been omitted. The needed F factors are given in table 3, 
and the SU(4) Wigner coefficients in the tables of the appendix of ref. 8). Matrix 
elements of the pair annihilation operators A can be obtained from the matrix ele- 
ments of A + by hermitian conjugation. 

4.2. THE SINGLE LEVEL CASE, v = 0 

As the simplest example, the problem of a pairing interaction with different spin 
singlet and triplet strengths acting on a system with a single well isolated single-particle 
level will be treated first. The matrix element of the pairing Hamiltonian is diagonal in 
all but the 0(6)  quantum number, and for v = 0 has the form 



E X A C T  S O L U T I O N  OF T H E  P A I R I N G  P R O B L E M  5 1 5  

= ~(SMs)(TMr) Hpairing (SMs)(TMT)/ 
A ~ J . n S M s T M T  A ~ 2 n S M s T M T  

---- g31 Z.. z a ~ ) .  + 1 n"S"Ms , ,  T M T  ZaQ). + I n ' S " M s , ,  T M T  
S ' , M s , , n .  

+g13 ~ A~)'nSMsTMT A'Q)'nSMsTMT (4.6) 
riO)- + 1 n " S M s  T ' M " T  ~-XQ). + 1 n " S M s  T " M T , ,  " 

T " M T , , n "  

Since A + (m A) connect n to n + l  only, g can have the values n, n+2 ,  and n - 2 ;  and 
there are three types of matrix elements. 

(a) Pairing Hamiltonian connection n ~ ~ = n. 

t(g2 + n + 2_+ 6)(~'2- n -  2) 
H,.  = g,3 ( S (n+2) (n+3)  

x I (S+I)(n+S+T+4)(n+S-T+B)+S(n-S+T+B)(n-S-T+2)]2S+I 

+ (fa-n+ 2 + 2)(f2 +n-2  +4) 
8(n + 1)(n + 2) 

x I (S+I) (n-S+T+I) (n-S-T)+S(n+S-T+I) (n+S+T+2)I}  
2S+ 1 

x [(T+I)(n+S+T+4)(n-S+T+g)+T(n-T+S+3)(n-S-T+2)I2T+I 

+ ( £ 2 - n + 2 + 2 ) ( Q +  n-- ) .+4)  

8(n + 2)(n + 1) 

x [(T+I)(n-T+S+I)(n-S-T)+T(n+T-S+I)(n+S+T+2)I}'(4"7)2T+I 

(b) Pairing Hamiltonian connection n -+ ~ = n + 2 

1 I!g2 + n + ). + 6 ) ( ~  + n - ). + 6 ) ( ~  - n + 2)(Y2-- n - 2)  

n.+2, .  = (g3 , -g l3)  G + 3 3  - (n+e)(n+3) 

x (n +S+ T+4)(n+S-  r + 3 ) ( n - S +  r + a ) ( n - S -  r + 2 )  , 

and H._2. . = H,,,-2. 
The size of  the matrix depends on the nucleon number N, (or 2 = I2-½N), and the 

specific values of  S and T. The possible Wigner supermultiplets and their S, T values 
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for  some of  the smaller nucleon numbers  are shown in table 5. For  N = 4, for  exam- 
ple, it can be seen tha t  the Hami l ton ian  matr ix  is 1 x 1 for  the (ST) values (20), (11), 
and  (02), but  is 2 x 2 for  (ST) = (00). Fo r  N = 4, (ST) = (00), the Hami l ton ian  
matr ix  (4.7) has the specific fo rm 

where 

+ ,2 [ f2 + 2 A [½(a + 2) (0  - 1)1 ~) 
npa i r i ng  = (913  9 3 1 )  ~A[½(a+2)(f2_l)] ~ 0 - 1  ' 

A - 2 ( g 3 1 - g 1 3 )  

g 3 1 + g 1 3  

(4.8) 

For  N = 4 and v = 0, the pair ing energies therefore have the values 

N = 4  E(oo) = ½(g13 +g31){(2f2+ 1) + [ ( 2 0 +  1)2--4(~2+2)(Q - 1)(1 -- 3-}A2)]~}, 

N = 4  
E(2o) = (9,3 + 0 3 1 ) ( O -  1 ) ( l - A ) ,  

N = 4  
E¢o2  = (o13 

E~/ll~ ---- (013 "}-g31)( ~'2- 1). 

For  general nucleon n u m b e r  N, v = 0, the pair ing Hami l ton ian  will give rise to a 
k x k matr ix  for  (ST) values such tha t  S+T = ½N-2(k-  1). 

TABLE 5 

Wigner supermultiplet classification of the v = 0 states for particle numbers N = 2, 4, 6 and 8 

su(4) 
N 2 U(4) n (S, T) 

2 2 - - 1  [111 1 (10)(01) 

[11111 0 (00) 
4 .Q--2 

[221 2 (20) (11 ) (02) 
(00) 

6 0 - - 3  
[22111 1 (10)(01) 

[331 3 (30)(21)(12)(03) 
(10)(01) 

8 ~2--4 

[2222] 0 (00) 

[3311 ] 2 (20)(11)(02) 
(00) 

[44 ] 4 (40) (31 ) (22) (13 ) (04) 
(20)(11)(02) 

(00) 
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When g13 = 931 the pairing Hamiltonian has higher symmetry. The Wigner 
supermultiplet number becomes a good quantum number. The Hamiltonian matrix 
(4.7) becomes diagonal in n, and the matrix elements are independent of S and T, so 
that the various states (ST) of  a given supermultiplet become degenerate. In the case 

g 1 3  = 0 3 1  = g ,  eq. (4.7) contracts to 

Ea, z = ½g(O 2 q- 60- -  n z --4n - , ~ 2  _ 62). (4.10) 

For example, the five energy levels of eq. (4.9) for N = 4 collapse into two as A ~ 0, 
namely 

En=zlV=4 = 29(0-1)  with (ST) = (20), (11), (02), (00), 

E.=/7=4o = 2 9 ( 0 +  1) with (ST) = (00). (4.11) 

The result (4.10) can also be expressed in terms of the Casimir invariants of 0(8)  
and 0(6)  

Eo, z = ½9 (C(8) - C ( 6 ) -  2 z - 62), (4.12) 

which agrees with the result derived by Flowers and Szpikowski 3). 

4.3.  F O R M U L A T I O N  O F  T H E  M A N Y  L E V E l .  P R O B L E M  

To study the competition between the pairing interaction and the single-particle 
excitations, the case of a system with several single-particle levels connected by a 
pairing interaction must be studied. The case of a system with two single-particle 
levels will be studied in detail. Both the effects of the pairing interaction within 
individual levels and between different levels must be taken into consideration. 

The two-level case, seniority zero. There are many ways of coupling the two wave 
functions for N 1 nucleons of seniority v 1 = 0 in level 1 and N2 nucleons of seniority 
v2 = 0 in level 2. One could couple the two 0(8)  representations to a resultant 0 (8)  
representation specified by overall seniority and reduced supermultiplet quantum 
numbers. This might be useful in the extreme strong pairing limit. Without coupling 
0 ( 8 ) ,  one could also couple the two 0(6)  representations so that the state vectors 
are specified by overall Wigner supermultiplet quantum numbers besides those for 
levels 1 and 2. This would be a useful coupling scheme if the Hamiltonian has enough 
symmetry to make the total supermultiplet good quantum numbers; but in this 
scheme the matrix elements would lead to expressions involving SU(4) Racah coeffi- 
cients which have not yet been calculated. Since the pairing Hamiltonian is diagonal 
in the total S and T, the most efficient coupling scheme is one in which $1 and $2 are 
coupled to total S, and T1 and T2 to total T. By such a coupling the size of the Hamil- 
tonian matrix is greatly reduced. Also, the SU(2) Racah coefficients which appear in 
the general expressions for the matrix elements in this coupling scheme are so well 
known that no additional mathematical complications are introduced as would be 
the case in the coupling of  the higher group representations. Of course, the simplest 
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formulation of the matrix elements could be made in the completely uncoupled 
scheme; but this would lead to unnecessarily large matrices. 

The coupling scheme chosen for the present work is therefore the one in which 
spins and isospins for the two levels are coupled, and the wave function is written as 

f2i f22 
2, 22 
/11 / ' /2 / • 

(S, T1) ($2 T2) / 
STMsMT / 

(4.13) 

The pairing Hamiltonian (4.3) can be separated into four parts 

H = ~ H u = H II +H22--[-H2a+H 12. (4.14) 
1,2  

The matrix elements for H a a and H 22 have already been calculated in subsect. 4.2. The 
matrix elements for H x i, for example, in the coupled scheme, eq. (4.13), are indepen- 
dent of 0 2 '~2//2 $2 T2 and the total SMsTMT and are given by eq. (4.7) if the quantum 
numbers (f22nST) in this equation are replaced by (f2a2anaS~T1). The matrix 
elements of H 21 and H 12 follow from the matrix elements of Ai + , Aj, and standard 
angular momentum recoupling techniques. For example 

~"~1 ~"~2 
2 i + 1  2 2 - 1  

t ¢ 
n a  n 2 

~ SI T; S'2 T~ 
STMsMT 

01 f22 
21 22 

E A~(Mso, Mro)Al(Mso, MTo) na n2 / 
M~°M~° S1 7", S2 T2 / 

STMsMT / 

= ( _ ) s ' , ÷  T', + s ' ,  + r'2 + S + T.[(2S~ + 1 ) (2S~  + 1)(27"1 + 1) (2T~ + 1)]  ~ 

[$2 S'2 Sot[T2 T~ To) xF(121;2i+l, 21;n,lnl) 
x ($1 Sa S JtZ[ 7"1 

, / [ n ~ n i 0 ] .  [11011 [nln,0]\ 
x F ( Q z ; 2 2 , 2 2 - 1 ; n 2 , n 2 ) , ~  S~T; ' So To, SaT1 / 

/ [ n 2 n 2 0 ]  . [110] 
$2T2 ' So To ll S'2 T~ / '  (4.15) 

where the quantities in curly brackets are standard 6-j symbols in spin and isospin 
space. 

If  the wave functions for either level 1 or level 2 have v = 1, the expression for 
the matrix element has the same form if the appropriate F factor and double-barred 
SU(4) coefficients are replaced by the analogous factors valid for the case v = 1. 

For the many level case the most useful coupling scheme is again the one where 
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the 0 (8 )  and 0(6)  representations for the various levels are left uncoupled, so that 
the basis is specified by the seniority and Wigner supermultiplet quantum numbers for 
each level i, as well as the spin and isospin quantum numbers Si T~, i = 1, 2, 3 . . . .  ; 
but it will again be useful to couple the S~ and Ti to total resultant S M  s and TMT. 
Matrix elements of  H ~J with i ~ j can now be related to those of  eq. (4.15) by standard 
angular momentum recoupling techniques. For a three-level problem, for example, 

employing a basis ]Q1 )'1 n l ,  ~ 2  ) '2/ ' /2 ,  ~3 )'3 n3; [($1 T~ S 2 T 2)S 12 T12, S3  T3 ]SMsTMr) 
the matrix element of  H E 1 follows directly from (4.15); but the matrix element of H 32, 

for example, would require a recoupling to an 1[$1 T1, ($2 T2 $3 T3)Sz3 T23]SMsTMr) 
basis with the same O(8), )', and 0(6)  quantum numbers as the above. 

4.4. COMPUTATIONS AND RESULTS 

As a specific example, a detailed computat ion has been carried out for a two-level 
problem to make it possible to study the effect of  the pairing interaction in the 
presence of single-particle excitations. The specific example chosen is one with f2x = 1 
and f22 = 5; that is one with an l = 0 level and a nearby 1 = 2 level, such as those 
found in the 2s - ld  shell of  real nuclei. For  simplicity all pairing strengths are put 
equal to 9. The energy reference point is chosen as the single-particle level 1, so that 
et can be put equal to zero. The full Hamiltonian can then be written as 

2 

H = eN 2 - 2 g  ~" [ ~, 31A+(MsO)31Aj(MsO)+ ~ 13A+(OMr)I3Aj(OMr)]. (4.16) 
i , j = l  M s  M T  

The energies for a fixed total number  of  particles N = N1 + N2, and fixed total S 
and T, can then be found by diagonalizing the matrix for the above Hamiltonian in a 
basis which, for seniorities vx = Vz = 0, can be characterized by the seven numbers 
N~ n 1 $1 7"1 n2 $2 T2. (N2 is not listed simply because Nz = N - N 1 ) .  For example, 
for N = 4, S = T = 0 the five states of  the basis are 

N1 nl $1 2"1 n2 $2 T2 

4 0 0 0 0 O 0 
2 1 1 0 1 1 0 
2 1 0 1 1 0 1 
0 6 0 0 2 0 0 
0 0 0 0 0 0 0 

The Hamiltonian for each N, S, Tis  then diagonalized to give the energies and wave 
functions for specific values of  the parameter  ~. Since the total Wigner-supermultiplet 
degeneracy is not removed by the Hamiltonian (4.16), with one common value for g, 
states with different ST values belonging to the same total Wigner supermultiplet 
will have to be degenerate. This can serve as a check on the numerical calculations 
which have been carried out for all ST. 

Calculations have been carried out in particular for N = 4, 6, 8, and 10. The re- 



520 S I N G  C H I N  P A N G  

(4000) 

E/g 

[ ]  

N2:4 

o / , , / / /  ~N2:O 

(5100) 

(5100) 
E/E 

[ ]  

(6ooo) 
(5100) 

J 1 
0.8 

L L ~ J -  J 
0 0.2 0.4 0.6 I 0 0.8 0.6 0 4  0.2 0 

Strong Pairing Weak Pairing 
Limit Limil 

Fig. 1. N = 4: Pairing energy spectrum for four  nucleons distributed over a spectrum of  two single- 
particle levels of  l = 0 (s or  Q1 = 1) and l = 2 (d or O~ = 5)-like character. Individual level seniori- 
ties are zero, v~ = 0, for the two levels. The energy of  the first (s-like) level is considered as zero, 
while the second level (d-like) is taken at energy e above the first level. The curves show the energies 
(in units of  g) as a function of  e/o on the left side to the limit of  g ~ co, in which all the nucleons are 
distributed in a degenerated s-d level (O = 6). 0 (8 )  quan tum numbers  are used to denote the states 
in that extreme limit. The curves also show the energies (in units of  e) as a function of  g/e on the right 
side to the limit of  g ~ 0, in which the N nucleons are not  interacting. The SU(4) Young tableau 
which is "a  good quan tum number"  for all pairing strengths is shown for each level. For  the scalar 

representation U(4) is shown. 
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sults are shown in figs. 1-4 where the energies are plotted for different values of the 
parameter ~. For ~ < 1 the energies are plotted in units of g versus ~ on the left side; 

-5 

E/g ~ 4-0 

N2=6 

N2=4 

N2=2 

B 

(4000) 

(5 i00 )  

FFFI 

FFFI 

Ele 

,,ooo)  B , / /  / 
- - 2 5  - 

I5100) 

- -30 

( 6 0 0 0 )  
0 2  0.4 0.6 0.8 1.0 0.8 0.6 0.4 0 2 0 

Strong Poiring Weak Pairing 
Limit Limit 

Fig. 2. N = 6: Pa i r ing  energy spec t rum for  N = 6, ~1 = 1, -('22 ~ 5, v~ ~ 0. The  n o t a t i o n  is t h e  
s ame  as tha t  for  fig. 1. 

on the other hand, for ~ > 1, the energies are plotted in units of e versus ~ on the right 
side of the figures. 

On the extreme right, that is with ~ = 0, the extreme limit of weak pairing is reach- 
ed; and the energies are degenerated to the single-particle energies, which depend 



5 2 2  SING CHIN PANG 

on ly  on the number  o f  particles in the second level. When  the pairing strength is 
, ,  i j  "'turned on,  the levels are split. Since all 0=~ are assumed to have one c o m m o n  

value in this calculation,  the total Wigner supermultiplet  is a good  quantum number  

E/g 

( 5 1 0 0 )  
L4ooo) 

(5t00) 

(6000) 
(4OOO) 

(5100) 
(5100} 

(5100) 

(5]00) 
(6000) 

(6000) 

5 

I I I I 
0 0.2 0.4 0.6 0.8 ].0 

Slrong P o i r i n g  
L i m i l  

--45 
/ 
"50 

1-55 
N:8 

N2=8 

N2=6 
N2=4 

El E 

[ I 
0.8 0.6 

I i 
O4 0::' 0 

W e a k  Pa i r ing  
L i m i l  

Fig. 3. N =  8: Pairing energy spectrum for N = 8, K2 x = 1, f2 2 = 5, v~ = 0. The notation is the same 
as that for fig. 1. 

for all values o f  ~. Levels with different total S and T belonging to the same Wigner 
supermult iplet  are degenerate,  and only the supermultiplet  labels are indicated. When  
the  pairing strength is turned on to such a great magnitude that ~ approaches zero,  all 
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single-particle effects disappear and the extreme pairing l imit  of  a single level with 

Q = 01  + f2 2 = 6 is reached. 

~ N2= I0 

N2=8 

-~5 / uz=6 

E/g F:FFm 

FFFt 

(4000)  

_ 

(5100) [  
(6000) 

(4000)  F 

P 
(5100) F. 
(.900), 

(51oo)p-f FFR 

Ft 

B 

E/~ 

1 
! 

i 
I 
! 

(5100) 
(5100) 

I 13 --5o 

N=IO m,~ g/,~ 

(6 O0 O) k,...'~ , , , , L . . . . . .  , 
0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 

Slrong Poiring 
Limil 

I 

o!4 o:2 o 
Weak Poirtng 

Limil 

Fig. 4. N = 10: Pairing energy spectrum for N = 10, f21 = 1, f2 2 = 5. v, = 0. The notation is the 
same as that for fig. 1. 

In this extreme pairing l imit,  the energies are complete ly  specified by the overall  
0 ( 8 )  representation labels and the total Wigner supermultiplet  quantum numbers,  
and in terms o f  these are given by eq. (4.12)  with t2 = 6. In order to understand this 
extreme pairing l imit,  the coupl ing o f  the s imple 0 ( 8 )  representations corresponding 
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to v = 0 states for levels with ~21 = 1 and ~'~2 = 5 must be worked out. The result 
gives the coupling rule 

(50000) × (1000) = (6000) + (5100) + (4000). 

In the extreme pairing limit, ~ = 0, therefore, the energies are completely specified 
by the overall 0(8)  representations (6000), (5100) or (4000) and the total Wigner 
supermultiplets (or 0(6)  representations) contained in these. The decomposition of  
(f2000) to representations of 0(6)  and nucleon number N is given in sect. 3. For the 
0(8)  representation (5100) this decomposition is shown explicitly in table 6. Certain 
of the levels show a two-fold Wigners supermultiplet degeneracy. These include all 
the two-fold cases for the 0(8)  representation (5100) listed in table 6, as well as some 
additional accidental degeneracies such as that between (6000) [220], and (5100) 
[000] for N = 4 (fig. 1), which can be seen from the strong pairing energy formula 
(4.12). 

TABLE 6 

Branching rule of (5100) -~ N, 0(6)  

N 0(6)  representations 

0 (24) (000) 
2 (22) (100) 
4 (20) (200) (110) (000) 
6 (18) (300) (210) (100) 2 
8 (16) (400) (310) (200) 2 

10 (14) (500) (410) (300) 2 
12 (51 O) (400) z (31 O) 

(110) (000) 
(210) (100) 2 
(200) 2 (110) (000) ~ 

In the intermediate coupling case, the total Wigner supermultiplet is a "good 
quantum number,"  and it is interesting to see how the various possible total Wigner 
supermultiplets for a given total N can be obtained from the coupling of the level 1 
supermultiplet (nl00) with the level 2 supermultiplet (nz00) .  This is illustrated in 
fig. 5 for the case N = 10 = (N1 = 2)+(N2 = 8). 

From the overall results illustrated by figs. 1 4 ,  some general conclusions may be 
drawn. 

(i) The pairing effect is predominant for all but the very smallest values of o 
Except for a small splitting of the levels which are degenerate in the extreme strong 
pairing limit, the spectra in all cases are qualitatively very similar to the strong pairing 

o limit down to a value of ~ ,~ 0.2. That  is, with the exception of the extreme weak 
pairing limit, the pairing effects win out over the effects arising from single-particle 
excitations. 

(ii) The pairing interaction is most effective in those Wigner supermultiplet states 
which are built from the largest possible number of columns of four. These columns 
of four have the general symmetry and S = T = 0 character of an s-cluster. The 
pairing interaction thus seems to favour states built from such clusters in that it tends 
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to make such states more stable. For example, for N = 10, the states with N 2 = 10 
in the weak pairing limit are split such that the supermultiplet [3322] = [110] is 
depressed much more than [4411 ] = [330] which in turn lies below [5500], and the 
supermultiplet [3322] = [110], is depressed to an energy level lower than some of the 
energy levels which grow out of  N2 = 8 after the pairing strength is increased only to 
0 _- 0.1. For the levels which grow out of  the weak pairing limit N2 = 8, a similar 
rule can be seen to hold, so that the energy levels corresponding to states in the first 
row of fig. 5 lie higher than those for the 2nd row, while those of the 3rd row built 
f rom states with two columns of four in level 2 are depressed to the lowest energies. 

Nl=2 N2=8 N=IO 

(100) x (400) (500) 

(~) (2) (3) 

(100) (200) (300) (100) (210) 
(4) (5) (6) 

(1001 x ( 0 0 0 )  ~ (100) 
(7) 

r e p r e s e n t a t i o n s  f o r  N = 10 o b t a i n e d  f r o m  t h e  c o u p l i n g  o f  s e n i o r i t y  ze ro  
m u l t i p l e t s  w i t h  N)  = 2 a n d  N2 = 8. 

F ig .  5. T h e  p o s s i b l e  U ( 4 )  

Within the first row the ordering of  energies, highest to lowest, is (3) > (1) > (2); 
that is the state with one column of four is lowest. Similarly, the energy ordering is 
(6) > (4) > (5); and the overall ordering of those levels which grow out of  the weak 
pairing limit N2 = 8 is given by (3) > (1) > (2) > (6) > (4) > (5) > (7) in the 
notation of fig. 5. 

Although the numerical calculations presented here have not been extensive, the 
calculations which have been carried out do seem to indicate two general results. 
The pairing interaction is very effective compared with the particle excitation energy, 
and pairing effects win out in the competition with single-particle excitations. Secondly 
the pairing interaction tends to make more stable those states built from the largest 
possible number  of  a-like groupings of  four particles, a "fouring" effect, which is not 
found and could not be understood in terms of a charge-independent pairing inter- 
action in the j- j  coupling scheme. 

The author is grateful to Professor K. T. Hecht for suggesting the problem, and 
his generous guidance through all the stages of  this work. The author also wishes to 
thank Dr. Paul J. Ellis for his help with the computer programming. 
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