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Abstract: Exact solutions for the pairing interaction problem in the LST scheme are formulated in
terms of the matrix elements of pair creation and annihilation operators for pairs coupled to zero
orbital angular momentum. General expressions are given for these matrix elements for states
with seniority » = 0 and 1. This makes it possible to study an orbital pairing interaction with
different spin singlet and triplet strengths acting in mixed configurations of several single-particle
levels. The mathematical formulation of the problem is based on the eight-dimensional quasispin
group which is broken down according to the decomposition O(8) > O(6) = [0(3) x O(3)],
where O(6) corresponds to the usual Wigner supermultiplet symmetry group. A sample
calculation for a simple two-level configuration, and states with v,= v, = 0, nucleon numbers
of 4, 6, 8, 10, shows (i) that the pairing interaction is very effective compared with the single-
particle excitations, and (ii) that it tends to make more stable those states built from the largest
possible number of «-like grouping of 4 particles.

1. Introduction

The quasispin method was first applied to problems in nuclear physics by Kerman 1)
in his treatment of the pairing interaction. Quasispin operators are built from pair
creation and annihilation operators involving nucleon pairs coupled to zero angular
momentum. In the j-j coupling scheme of the shell model, involving configurations
of identical nucleons (neutrons only or protons only), the quasispin operators
have the commutation properties of conventional (three-dimensional) angular
momentum operators. Generalization of the quasispin method to configurations with
both neutrons and protons leads to operators of more complicated Lie algebras.

The quasispin group for fermions of arbitrary isospin was studied by Helmers 2).
The quasispin groups for configurations of both neutrons and protons in the conven-
tional JT and LST schemes of nuclear physics have been identified by Flowers and
Szpikowski *) and others #) as rotational groups in abstract spaces of 5 and 8 dimen-
sions, respectively. In the LST scheme there are six pair creation operators coupled
to orbital angular momentum L = 0 (with spin and isospin S = 1, T'= 0; or S = 0,
T = 1) and a similar set of six pair annihilation operators. Flowers and Szpikowski
have shown that these 12 operators together with the number operator and the
15 operators which are the SU(4) super multiplet operators of Wigner form the in-
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finitesimal generators for an orthogonal group in eight dimensions. They have also
evaluated the eigenvalue of the pairing Hamiltonian for the pure configuration /7
in terms of the Casimir operators of O(8) and SU(4).

In this investigation matrix elements are evaluated for the L = 0 pair creation and
annihilation operators in the seniotity scheme in order to find exact solutions to the
pairing problem in the LST scheme by matrix diagonalization techniques. This
approach makes it possible to study the pairing interaction with different strengths
for the S =1 (T =0) and S = 0 (T = 1) pairs, as well as for mixed configurations
of several single-particle levels. It is thus possible to study the competition between
pairing effects and single-particle excitations. Although the LST scheme may be a
good zeroth approximation for some light nuclei, a two-body interaction approximat-
ed by a simple pairing interaction is not sufficient to describe the excitation spectra
and binding energies of such nuclei. The present work is therefore intended mainly
as a model study to further elucidate the properties of pairing interactions,

In the present work the group chain of O(8) > O(7) = O(6) is used, where O(6)
can be identified with SU(4) and the representations of the Wigner supermultiplets,
while the four numbers needed to specify the irreducible representations of the rank
4 group O(8) can be identified with the quantum numbers of the seniority scheme.
Although the irreducible representation labels of both O(8) and O(6) thus have ready
physical significance, the quantum numbers of O(7) have no easily identified physical
meaning. Even worse, the nucleon number operator is in general not diagonal in a
scheme based on the group chain O(8) = O(7) = O(6). To make the nucleon num-
ber, N, a good quantum number it is necessary to find specific linear combinations
of the O(7) representations allowed by the O(8) and O(6) quantum numbers. A
similar problem occurs when the Wigner supermultiplet representations of O(6)
are further reduced to S and T. In the canonical group chain O(6) = O(5) = O(4)
> 0O(3) = O(2) only one of the quantum numbers, either S or T, can be identified
with the irreducible representation of O(3). Because of these difficulties it has not been
possible to give a completely general algebraic expression for the matrix elements of
the pair operators, valid for all irreducible representations. However, if the seniority
number v is restricted to 0 or 1 the single quantum number N is sufficient to completely
specify the states of the O(8) to O(6) chain, while the states of the possible O(6)
representations for these cases are fully identified by S and 7 only. Since the seniority
v gives the number of unpaired nucleons (entirely free of L = 0 coupled pairs), states
of lowest seniority such as v = 0 and v = | are precisely those of greatest interest in
problems dominated by a pairing interaction.

In evaluating the matrix elements of the pair creation and annihilation operators
it is useful to characterize these operators as irreducible tensors according to the
group decomposition O(8) > O(6) = [O(3) x O(3)]. This makes it possible to factor
the matiix elements into separate pieces. The O(8)/O(6) factor for states of seniority
v = 0 and 1 is evaluated in the present work. The O(6)/[O(3) x O(3)] factor can be
identified as a reduced Clebsch-Gordan coefficient for the Wigner supermultiplet
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scheme. These reduced O(6)/[O(3) x O(3)], (or alternately SU(4)/[SU(2) x SU(2)]),
coefficients will be used frequently in this paper. Tabulations of these coefficients will
be given in a companion paper on SU(4) and the Wigner supermultiplet scheme 2).
Finally, since the two sets of commuting O(3) generators correspond to the spin and
isospin operators, the two O(3)/O(2) factors for the matrix elements of the pair
operators are ordinary spin and isospin angular momentum coupling coefficients
which carry the dependence on Mg and M.

In sect. 2 the properties of O(8) and O(6) are reviewed. The correspondence is
established between the quasispin operators and the infinitesimal generators of the
orthogonal groups; the ways of characterizing the irreducible representations of O(8)
and O(6) are reviewed; and the irreducible tensor classification of the pair operators
is given. In sect. 3 the O(8)/O(6) factors for the matrix elements of the pair operators
are evaluated for states with v = 0 and 1. To accomplish this the transformation
must first be made from the O(8) = O(7) = O(6) scheme to one in which the nucleon
number operator, N, is diagonal. In sect. 4 the applications to the pairing problem
are given. The effect of a pairing interaction with different strenghts for the (S = 1,
T =0)and (S = 0,T = 1) pairs is discussed in detail for the case of one isolated
single-particle level. The techniques for calculating the matrix elements of the most
general pairing Hamiltonian for a nuclear system with many single-particle levels
are developed. Finally, results of a sample calculation are given for a system with a
single-particle spectrum similar to that of the s-d shell and a pairing interaction which
(for convenience of analysis) is assumed to have state and spin independent strength.
The needed diagonalizations have been done numerically by computer; 1esults are
shown for nucleon numbers of 4, 6, § and 10.

An alternate technique for finding solutions for the eigenvalues of a charge, spin
independent pairing Hamiltonian has recently been given by Richardson *). However,
Richardson’s approach is very different from the present one. It requires the solution
of a system of coupled algebraic equations with subsidiary conditions. With general
expressions for the matrix elements of the pair operators, the present method (as
emphasized before) can treat the case with different spin triplet and singlet pairing
strengths and makes it easier to consider perturbation treatments for the weak or
strong pairing limits.

2. The eight-dimensional quasispin group

In an LST scheme the quasispin operators are built from the pair operators which
create or annihilate pairs of nucleons coupled to total orbital angular momentum,
L = 0. These can be constructed from the creation and annihilation operators for
single nucleons which are characterized by the single-particle spatial quantum
numbers (n/m); and smy, tm,; (with s = 4, t = 4, m, = +1 (—=1) for neutron (and
proton), respectively). The operators
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WL AN Mg, My) = Y, JI+EIml—m|00)Gm dm| | TM 1)

ms(,nr’n;im
X <%ms%m;|SMS>aIlmmsmt azl—mm’s m'y s (21)
25+1,2T+ IA(MS , MT) — (ZS+1, 2T+ lAT(MS s MT))T, (22)

are, in addition, coupled to total spin and isospin, S and T; where, with L = 0, the
anticommutation properties of a* restrict the ST values to be either 10 or 01. The
commutators of A7 with 4 lead to 16 number preserving operators. These include
the number operator, which appears naturally in the combination

0 = (=N, +9Q), (2.3)

where Q = spatial degeneracy number; (e.g. @ = 2/+1 for a single level, and
Q =3, (21,+1) for a set of degenerate single-particle levels of orbital angular mo-
menta /,). The remaining number preserving operators are the three components of
the spin and isospin operators S and T, and the 9 components of the operator E

E, =("l)'§,n i {(ms+a)(m,+b)la, ty|m mt>aIlm(ms+a)(m,+b) Antinmgme » (2.4)
where o, and 7, are spherical components of the single-particle Pauli spin and isospin
operators. The 15 operators S, T, and E are the Wigner supermultiplet operators
which generate the group SU(4), or alternately an orthogonal group in dimensions.

The full set of 28 quasispin operators 4¥, 4, Q,, S, T and E are the infinitesimal
operators which generate the group O(8). The detailed correspondence between the
quasispin operators and the generators of O(8) has been given by Flowers and
Szpikowski ?). It is shown in table 1. Besides the four self-adjoint operators Q, Sy,
T,,and E,,, only 12 other operators are shown explicitly, since the remaining 12 can
be obtained from these by hermitian conjugation.

The n dimensional orthogonal groups are generated by a set of 1n(n—1) operators
J.s. These generators are governed by the commutation rule

[Jpq s ‘Irs] = i(ésp Jrq + 5rq ‘Isp - 5rp qu - 5SLI er)’
Jpg = —J
J;q = Jp> (2.5)

p,g=12,...,n

qp?

The rank of the group, which is the number of mutually commuting operators and
also the number of integers or half-integers required to specify the irreducible represen-
tations, is k for n = 2k and n = 2k + 1. For example, 4 numbers are required to specify
the irreducible representation of O(8), where as only 3 are needed for both O(6) and
Oo(7).

To completely specify the states of a given irreducible representation of O(n), a
set of $(3n(n—1)—k) additional quantum numbers or commuting operators are
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TaBLE 1
Infinitesimal operators of O(R)
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a) h) c) d)
Eight dimensional
Quasispin “angular momentum”
operators Flowers-Szpikowski operators P P P’
1471, 0) ¥ H—(J 7+ i27)+i(J 15 +id25)] 100
1 - - — i(J —iJ3g)
31 4% n—p np 37 38
A'(0,0 — + _ 7 1 00
HAl(-1,0) Q" "P -y —iJy)+i(J15—iJzs)] 1 0
12470, 1) 3 i s1+iJe7)+(Tss+igs)] 1t o0
13A1'(0’ 0) L (Qr-’;-_n'l’Q:-_p) (J47—l']48) 1 00
42 NE
240, ~1) Q%" HiUs7—iJe)+(Iss—iJes)] 1 0 O
Qo =Q-IN —HOF+QF+Q5" "+Q5" )+ J2s 000
So HOT"+0 =00 " " —=Q"7") Jiz 110
Ty O -0 +Q0" " =007 P) Js6 110
Eqo O —0F—00" " +Q6"P) J3a 110
1 n-n - 1 )
S, —(Q5 "+0537") — (J13+id23) 110
J2 N
L wp  A—n-p 1 .
T, — (2" +Q"77) — (Jas+1J 46) 110
2 N
E, o © 3[(J15+125)+i(J 16+ 26)] 110
E, o " H-Uys+idys)+i(Je+iJe)] 1 1 0
U a-n - i .
Eqo — (05 "=057") — (Jiati34) 110
2 NG
1 n —-n— —i :
Eoy \/"E(Qop—Qo ?) \—/_2(J35+1J36) 110
3) The quasispin operators are defined by egs. (2.1)-(2.4). Note that E_, 5 = Ejp, S_. = S;,T. =T, .
b) Qiﬁ = Em(_l)l_ma:lm—aa;l—mﬂ’ Qlia = (Qaff +; Qgﬁ = Emar:’lmazanlmﬂ5
where o and § are specified by mg and m, (e.g., & = —p stands for a “spin down” proton). For several degenerate

single-particle levels the sum over m is replaced by a sum over nlm.

¢) The eight-dimensional ““angular momentum’ operators satisfy egs. (2.5). The vectors S and T have been chosen
to span the 1, 2, 3 and 4, 5, 6, subspaces respectively.

4) O(6) irreducible tensor character of the operators.
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needed. The physics of the applications generally forces specific choices for certain
of these operators. The mathematically most natural way to completely specify the
state vectors, however, is given by the Weyl, Gelfand-Zetlin scheme, based on the
canonical chain of subgroups O(n) > O(n—1) > O(n—~2) > ... > O(2); where
the $(3n(n—1)—k) quantum numbers are given by the labels which specify the
irreducible representations of all the subgroups in the chain. For O(8) a basis vector
in this scheme is characterized by the Gelfand pattern

Mqy M7 Mys
Mgy Mgy Mgy

Mgy Mgy Mgy Mgy
(2.6)
Msy Msy
Mgy My,
M3y ]
my, |

where m,; ure the irreducible representation labels for the subgroup O(n). E. g., mg,,
mg,, Mg are the three numbers needed to specify the irreducible representations of
O(6). The irreducible representation labels m,; satisfy the branching rule °):

Myit1,i 2 My 2 My iy (2-7)

The integers or half-integers m,,; are positive with the exceptions of m,, , which can
be both positive and negative. (In the branching rule m,, , must be replaced by its
absolute value.)

In the above basis for O(8), however, the number operator and the isospin operators
T? and T, are in general not diagonal’. The Gelfand basis is therefore not the physi-
cally relevant one for the pairing problem of nuclear physics. However, since the
matrix elements of J,; are known in the Gelfand basis ), we shall often return to the
scheme (2.6).

Although the full Gelfand state vector is not directly useful for the physical applica-
tions, the O(6) and O(8) irreducible representation labels mg; and mg; can be related
to the Wigner supermultiplet and seniority quantum numbers, respectively.

2.1. THE IRREDUCIBLE REPRESENTATIONS OF O(6)

The irreducible representations of O(6) are specified by the highest weights, that
is by the largest possible eigenvalues of the 3 commuting operators Sg, Ego, 7.
Since O(6) and SU (4) have Lie algebras of the same structure, the irreducible repre-
sentations can also be labeled according to the notation standard for the special
unitary group associated with the four-dimensional spin-isospin space. It is conve-
nient to include the number operator (or Q) which commutes with the 15 operators

t By the specific choice of operators made in the present work, (see column (c) of table 1), the
quantum numbers S Mg correspond to ny, my; .
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S, T, E,;, and together with them generates a group U(4), so that the irreducible
representations can be specified by the symmetries of #-nucleon spin-isospin functions.
These symmetries are characterized by Young tableaus or partition numbers
[fif2f3/2] on N objects where f; are integers such that (f;+/f,+/3+/f, = N) with
Q=1 2f, 2/ 2fy 0. The partition number f; specifies the length of the ith
row of the Young tableau. In a spin, isospin function with symmetry characterized by
the f;, there can be at most f; neutrons with spin up, and subject to this restriction at
most f, additional protons with spin up etc. . ... The largest possible eigenvalues
of the 3 commuting operators Sg, Eqq, T, are thus specified by the partition numbers
fi;- Independent of the ordering of the single-particle states. The highest weights
which define the O(6) irreducible representations are thus characterized by

P = Yfi+fr=f3~14)

P =3(fi—f2+f5—14),

P’ = {(fi~fa=fs+1s). (2.8)
These P, P’, P'" are the Wigner supermultiplet quantum numbers. They also corre-
spond to the standard labels of the Gelfand scheme, thatis (P P’ P"") = (mg, mg, mg;).
To avoid confusion in the following, standard O(6) labels will always be enclosed by
round parentheses, standard U(4) or SU(4) labels by square brackets, (the latter
enclosing 4 or 3 numbers for U(4) or SU(4), respectively).

2.2 THE IRREDUCIBLE REPRESENTATIONS OF O(8)

The irreducible representations of O(8) are specified by the highest weights, defined
by the largest possible eigenvalues of the 4 commuting operators Qq, Ty, Eo,So.
In a state of specified seniority v, there must be at least v nucleons (the number entirely
free of pairs coupled to L = 0). The highest possible eigenvalues of the generator
Qo = J;3 = Q—% N,, is therefore

Q =Q—1v.

Subject to the restriction to the highest possible Q,, the highest eigenvalues of
So, Ego, and T are therefore specified by the symmetry of a v nucleon spin-isospin
function characterized by partition numbers [u;p,usp,] on v objects, where
Uy +pa+ 13+, = v and where the y, are again integers, satisfying

W2y 2p 220

Among the set of v nucleons corresponding to the highest weight state there can
again be at most u; neutrons with spin up, and subject to this restriction at most y,
additional protons with spin up, etc. .... The highest eigenvalues of S, Eqq, T o
in the highest weight state of O(8) are therefore specified by

P =3 s —uy),

P =3 — o+ ps—py),
= $(py — py— 3+ pa), 2.9

4]
|



504 SING CHIN PANG

and in standard Gelfand form the O(8) irreducible representations are specified by
(mgymgymezmg,) = (—4v, pp' p").

The p, p’, p"' are called reduced supermultiplet quantum numbers. They are the
supermultiplet quantum numbers of the v nucleons free of pairs coupled to L = 0.
The highest weight state with N = v nucleons must satisfy the relation

25+1,2T+ IA(MS, MpIN = v, pp'p""> =0. (2.10)

The remaining states of the O(8) irreducible representation characterized by v, p, p’ p”’
corresponding to nucleon number N are obtained by acting on the state [N = v,pp’p’">
with 3(N—v) operators A™.

2.3. DECOMPOSITION OF O(8) INTO O(6)

A specific O(8)irreducible representation denoted by (2—1v, p, p’, p”’), decomposes
into different irreducible representations of the subgroup O(6) characterized by
(P, P’, P""). This decomposition is due to the fact that the $(N—uv) operators 4™
with O(6) irreducible tensor character (100) can be coupled to the O(6) representa-
tions (p, p, p”’) in many different ways.

For fixed (2—14v, p, p’, p”’) and (P, P’, P"") the decomposition from O(8) to O(6)
is not unique. For the O(8) o O(7) > O(6) chain it can be seen that three other
quantum numbers which specify the representations of O(7) are needed to identify the
“parent” of O(6). Unfortunately these three quantum numbers have no easily deter-
mined physical content.

A similar problem occurs in the decomposition of O(6) into the direct product
[0(3) x O(3)] of the spin and isospin groups. Once again the set of (P, P, P”’) and
(SMg, TM7) are not sufficient to give a unique decomposition. Two other quantum
numbers are needed to completely specify a state. Although Moshinsky and Nagel 7)
have succeeded in finding the needed operators, they are of third and fourth degree
in the infinitesmal operators of O(6) and the physical content of these two operators
is again obscure.

The present work tries to do without these additional quantum numbers at the cost
of limiting the scope of interest to include only states of low seniority. Since these are
precisely the states of greatest interest for problems in pairing theory, this is not a
severe restriction.

In the most general case a state vector for a specific O(8) irreducible representation
would be completely specified by 16 quantum numbers

l(Q =Q~3%v,p,p, P”), (m71 msq, m73), (PP'P”), SMsTMr, wd).

Where, for example, @ and ¢ could be chosen as the eigenvalues of Moshinsky and
Nagel’s third and fourth degree O(6) operators, while (m,,m;,m,;) are the repre-
sentation labels of the group O(7) in the group chain O(8) > O(7) = O(6). The
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general branching law, eq. (2.7), requires

Qzmyzp, pzmpzp, pzmpizp
mq Z P, P2my, 2P, P zmgz P (2.11)
If the seniority v is restricted to be either 0 or 1, p p’ p”’ are restricted to the values

000 or 1 %1%, respectively. In these special cases the remaining quantum numbers are
therefore also severely restricted as indicated in table 2.

TABLE 2
Forv=0 Forv=1
O@®) = (Qpr'p") (£2000) Q-5
O(7) = (myymzangs) (m00) m §d)
0(6) = (PP'P”) (00) (n—%, 4%, =9
m = integer m’ = §-integer
Q=m=n Q—-1=2m =n-%

In both cases therefore only a single O(7) quantum number is needed to completely
specify the states. However, the quantum numbers m have no ready physical signifi-
cance. Even worse, a state of definite 1 is not a state of a definite number of nucleons,
N. The number operator is in general not diagonal in the O(8) = O(7) = O(6) scheme.
(The highest weight state is an exception.) Since it can be shown that the number
of distinct eigenvalues of the number operator is equal to 2 —n+ 1, which is equal to
the number of distinct valaes of m (or m’) in the above two cases, the number opera-
tor itself can be used, in place of an operator whose eigenvalues determine m, as the
additional operator which makes the decomposition of O(8) into O(6) unique in
these two cases. Restriction of v to either 0 or 1 implies a restriction to the O(6)
representations (n00) or (n—%, 4 1) and (n—1%, 4, —%). It has been shown ?) that the
decomposition of O(6) into [O(3) x O(3)] is unique in these special cases, so that the
quantum numbers SMg TM; are sufficient to completely specify the states of G(6).

The matrix elements of the pair operators are to be calculated by a generalized
Wigner-Eckart theorem so that it is important to characterize these operators as
irreducible tensors according to the group decomposition O(8) = O(6) = [O(3) x
x O(3)]. The 28 infinitesimal operators transform according to the regular represen-
tation (1100) of O(8). A single O(7) label again suffices to specify the states in this
representation. In place of the Q(7) label, however, the operators can be characterized
by the change AN which they induce in the nucleon number. In place of AN it will be
convenient to use 44 where A is the eigenvalue of the operator (2—1N,,). Ob-
viously, AN = +2,0; or AL = F1,0; for A%, 4, and the number preserving opera-
tors, respectively. Since the operators A, (4) create (or annihilate) a pair of nucleons
with antisymmetric spin, isospin functions, their SU(4) tensor character is [110]
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which corresponds to the self-conjugate representation (100) of O(6). Finally, the
15 infinitesimal operators S, T, and E which generate O(6) transform according to
the regular representation (110), while the operator Q, is a scalar, O(6) representation
(000). In all of these O(6) representations the quantum numbers SMg, TM are suffi-
cient. The irreducible tensors can thus be characterized by T$; $ppr, SMs, TM;.
The O(6) character is indicated in table 1. The SMg, TM character follows directly
from the notation. In particular

25+1,2T+1 4+ 1100
A* (Mg, M) = T W), sus, Tvr - (2.12)

3. The O(8)/0O(6) part of the pairing problem

In order to find solutions to the pairing problem, the matrix elements of the pair
creation and annihilation operators are to be evaluated. By the tensor classification
according to O(8) = O(6) > [O(3) x O(3)] these can be factored into segments.
The O(8)/0(6) segment is to be evaluated in this section. The O(6) = [0O(3) x O(3)]
segment can be identified as a reduced Wigner supermultiplet Clebsch-Gordan coeffi-
cient. These O(6) > [O(3) x O(3)] coeflicients are calculated and tabulated in a
companion paper on the Wigner supermultiplet scheme. °)

To calculate the O(8)/O(6) factors of the matrix elements it is first necessary to
make a transformation to a basis in which the number operator is diagonal. This
physically meaningful basis is constructed as a linear combination of the basis vec-
tors for the mathematically natural or canonical group chain O(8) = O(7) = O(6).
For the case of states with seniority v = 0 or 1, the requirement that nucleon number
N be a good quantum number is sufficient to determine the coefficients in this expan-
sion. The details for the case v = 0 will be shown in subsect. 3.1. The calculations
for v = 1 are similar (see also ref. ?)). The technique used for the calculation of
the matrix elements of the pair operators is again illustrated in detail only for the
case v = 0, in sect. 3.2. Results for the case v = 1 are given in subsect. 3.3.

3.1. THE BASIS WHICH DIAGONALIZES THE NUMBER OPERATOR

For » = 0, the O(8) representations are characterized by (2000) and the possible
O(6) representations by (#00). The possible values of N (nucleon number) for fixed Q
and n can be determined by counting the number of nodes in the possible Young
tableau for (n00), that is SU(4) representation [#n0]. These Young tableaus must
consist of # columns of 2 nodes and a possible additional set of i columns of 4 nodes,
where i = 0, 1, 2, ..., Q—n. (The maximum number of columns in the tableau is
limited by €, the spatial degeneracy.) The possible values of N are thus given by
N = 2n-+4i. The corresponding eigenvalues of Q, are A = Q—n—2i.

The O(7) representations are characterized by (m00) where n £ m < Q. There
are altogether (2—n+1) different values of m. On the other hand, @, or J;53 have
just (Q—n+1) distinct eigenvalues, so that nucleon number can be used in place of m.
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A state vector in the O(8) = O(7) = O(6) basis can be written in an abbreviated
form of eq. (2.6) by

oo o

(3.1)

Pomn =

= IR
c oo

!
i

where all the quantum numbers that specify the subspace of O(6) are omitted. (They
can have any arbitrary value.) An eigenbasis for the number operator is given by the
expansion

o
lp.g;x) = Z DSrfn)goﬂmn s (3'2)
which must satisfy
J78 lf’g;l) = j'.Qn .Pgtx)a (33)

where

o = Q—3N =(Q—n)—2i, i=0,1,2,...,(Q-n).

The matrix elements of J,_, , in the canonical basis are known. ®) Operating with
J75 on a state vector of the canonical basis O(8) > O(7) > O(6) gives

J78(P!2mn = Aan+ (me+1n+A!2mn— DPom—1n> (3.43)

where the coefficients are

Ao = i [(Q—m)(9+m+6)(m+n+5)(m—n+1)}*’
(2m+5)2m+17)
Ay =i [(Q—m+1)(Q+m+5)(m+n+4)(m—n)Tv. (3.4b)
(2m+3)(2m+5)
From egs. (3.2), (3.3) and (3.4) we get the recursion relations
pw [(m+n+4)(m—n)(9+m+5)(9—m+1)r
o (2m +3)(2m+5)
_ o [(mEn+S)(m—nt+1)(Q+m+6)(Q-m)]* . p
=Dyls1n [ (am+5)2m+7) :| +idg, DY, (3.5)

Not all D{? are needed for the latter work, in fact only two are required. Solution of
the recursion relation and normalization gives
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(2+n+4)(Q2—-n)N(2+2)(Q+2)!

D§?,3=[(,1+§2 n) (Q ; A) (Q+n;w1+4)!(Q+n2—/1+4)!(29+4)I ,
(3.6)

pY =,-;[ (Q+n+3)(Q—n—1)I(Q+2)!(22+3)! s
; (Q—n+ﬂ.)! (Q—n—l)! (Q+n+l+4)! (Q+n—/1+4)!(2g+4)!i| _

2 2 2 2
(.7)

3.2. MATRIX ELEMENTS OF Af, 4 FOR v = 0 STATES

The pair creation and annihilation operators A" and A4 are linear combinations of
the operators J;; and Jig, with i = 1,2, .. ., 6; (see table 1). From the point of view
of the canonical chain O(8) > O(7) = (6) ... by far the simplest of these opera-
tors are the combinations (Jg; 4 iJsg). By using the irreducible tensor classification
for the pair operators A% (4) and applying the Wigner Eckhart theorem, it will be
sufficient to calculate the matrix elements of (Js; +i/s5) since the matrix elements of
the remaining pair operators are simply related to these by known factors which are
functions only of the O(6), spin, and isospin quantum numbers. From table 1 and
eq. (2.12) it can be seen, in particular, that

_(J67"‘iJ68) = (13AT(0 1)_13AT(0 _1))
(T 111(2(1)00) 00,11 T—1 (100) 00,1-1 (3-8)

The matrix element of a component of the irreducible tensor operator 7¢11%% can
be factored by the Wigner Eckart theorem. In general

{Qpr'p ”)}'Z(PZPZPIZ’)SZMSZ TZMTZITAiI(OI%O) SoMs,, TOMTOI
x(Qpp'p'")21(Py P{PY)S, Ms, T, My
= F((QPP’ ”) AysAas (P P P”) (P2P2 2/))

o < (PLPLPY)  (100) || (Po Py PY)N
ST, ; 80T, S, T,
XS Ms,SoM;s,|S; Mg, >{T; My, ToMzp | T, Mr,>. (3-9)

The F factor which carries the sole dependence on the O(8) quantum numbers and
nucleon number (1), and depends on the O(6) quantum numbers, is the product of
the reduced matrix element of the operator and the reduced Wigner coefficient for the
O(8)/O(6) segment in the group decomposition. The double-barred coefficient is a
reduced Wigner coefficient for the O(6) > [O(3) x O(3)] segment, of the type calcu-
lated in ref. 8). The My and My dependent factors are ordinary angular momentum
Wigner coefficients for spin and isospin space. For the case v = 0 both the O(8) and
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O(6) representations are specified by a single integer; (Qpp'p”’) = (2000), (PP'P") =
(n00). 1t will therefore be convenient to use an abbreviated notation for the F factor.
In this case eq. (3.9) is written

((82000)25(n,00)S; My, T, M| TS o), sovts, rone, [(2000)4, (1, 00)S; Mg, T, My, >

— . . /[nyn, 0] [110] [”2"20}\
_F(QollalanlanZ)\ SlTl 3 S()To S2T2 //
x {S; Mg, SoMsolszMsz><T1 My, TOMTOITZMT2>' (3-10)

In the double-barred (Wigner supermultiplet) coefficients, the O(6) representation
labels, (e.g., (n,00)), have been replaced with their SU(4) equivalent, ([#,n,0]),
since the tabulations of ref. ®) make use of the SU(4) notation for the Wigner super-
multiplet scheme. To calculate the desired F factors any simple choice of spin and
isospin quantum numbers can be made. In the O(6) representation (#00) the highest
weight state, S = Mg = n, T = My = 0, and its “nearest neighbor”, S = Mg=n—1,
T'= My=1, will be sufficient. In terms of the O(8) > O(7) 2 O(6) > ... 2 0(2)
state vectors as defined in (2.6), these two states have a very simple form. The highest
weight state is given by

Q 000
m 0 0
o n 0 O
[(2000)4(n00), S = Mg =n,T =M; =0 =3YDX1n 0 (3.11)
m=n n 0
n
n

The state with S = Mg=n—1, T= M =1, can be obtained from the highest
weight state by acting on it with the appropriate step-down operator, (as defined in
ref. ®)), if the latter is expressed in terms of the J,,.

|(Q000)A(n00), S = Mg = n—1, T = My = 1>

Q 000/ | @ 00 ol
. m 0 0 'm0 0
1 ol n 00 n 0 0 (3.12)
B ﬁmgnD""’ n 0 t n—1 0
n—-1 0 n—1 0
n—1 n—1
n—1 n—1

To calculate the F factor F(Q; A, A—1; n—1, n), for example, we use egs. (3.8) and
(3.10) with the above choices for spin and isospin quantum numbers.
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<(QOOO), /1—1, (nOO)SZ = MS2 = n—l, Tz = MT2 = III(J67_iJ68)I
(2000), 4, (n—1,0,0)S, = Mg, = n—1, T, = My, =0)

—1n-10] [110]
n—1,0 01

x[{(n—1n-100/n—1n—-1><0011]11>
—<n—1,n—-100ln—1n—1>{00 1 —1|11}].

Lm0 (3.13)

= F(Q; MA-1);n—1, ")<[n n—-11/

On the right hand side, all but the F factor are known coefficients. (The ordinary
angular momentum coupling coefficients all have the value +1, with the exception
of (00 1—1|11> which is of course equal to zero.) The left hand side of eq. (3.13)
can be calculated from the known matrix elements ) of J¢, and J,4 in the canonical
basis of O(8) = O(7) = O(6) = . ... The matrix element of (J4; —iJeg) in this basis
must be diagonal in the quantum numbers for O(5) and its subgroups, and is a func-
tion only of the quantum numbers for O(8) through O(5), inclusively. It is thus
convenient to use the short hand notation

Q2 2]
A A — A
Wg)n)p = Z Dgnn)q)!?mnp = Z Dsnn)

m=n m=n

(== = R o]

, (3.14)

8 3R
SO O OO

where, in the last term, all the quantum numbers for the subspace of O(5) are omitted
since, for present purposes, they can have any arbitrary value.
The matrix elements of J;4 and J44 in the ¢g,,,, scheme are known

J18Pamnp = Aomn+ Com+1npT Aomn— Pam—1nps

J67 ¢anp = anp+ (P.an+1p+anp—- (p.an—lpa (315)

where the coefficients 4 have been given in eq. (3.4), and

Bops = — i [(n—p+1)(n+p+4)(m—n)(m+n+5)]%’
2 (n+2)(n+3)
Bonp— =_i [(n—p)(n+p+3)(m—n+1)(m+n+4):|%. (3.16)
2 (n+1D(n+2)

To calculate Jg, +iJgg we use the commutation relations (2.5),

JertiJeg = J67i(J78J67—J67=’73), (3-17)
which, with
J18¥onp = 2P0y » (3.18)
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gives
(Js7+1768) Py = Ciionp Ploins 1o T Cromp Pon-11p (3.19)
(J67_i‘]68)ql.(0};|)p = b;—f)np T})jin'f}l)p_{_blﬂnpgl!?(n Dp» (320)
with
b i [(n p+1)n+p+a)(Q+n+i+6)(Q—n— /1)}
Aanp 2 (n+2)(n+3) ’
- i [(n=p)n+p+3)(Q—n+i+2)(Q+n—Ai+4)]*
Cronp = = R (3.21)
2 (n+2)(n+1)
and
+ —
ionp = T CL-10Mm+1)p>
b}._!)np = _c(-;.—l).Q(n—l)p' (3-22)

With egs. (3.11), (3.12), (3.14), (3.20), and (3.22), it can be seen that the left hand
side of eq. (3.13) has the value

i(—1) 4 1

7{ b}.Q(n—I)p=(n—1) = - ﬁc(l—l)ﬂnp=(n—l)'

Using the tabulated value ) for the SU(4) Wigner coefficient of the right hand side of
eq. (3.13), we obtain

F(Q9 j’: /1_“1: n_]7 n) = _[%n]%c(—l—l)ﬂnp=(n—1)

_ 1 n(@—n+i+1)(Q@+n—i+5)]?
_2[ }. (3.23)

(n+2)

The other F factors are obtained by similar techniques. The results are tabulated in
table 3.

TABLE 3
F factors for v = 0 states

n(R2+n+A+4)(Q—-n—A+2)7+

F(Q2;A—1, A; n—1, n)‘—[

(n+2)
) 1 Mn+H)(@+0—A+6)(R—n+A)4
F(.Q, A— 1 /», Il+1 n) (n+2)
) . 1 n(Q—n+A+2)(R+n—A+4)%
F(42; Z+1,l,n—1,n)—2 [ =2 :I

(n—|—4)(.Q—'rn+ﬂ.+6)(.Q~n—l):|i~

1
F(Q;}-+1,1;n+l,n)=§[ i)
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3.3. THE F FACTORS FOR v = 1 STATES

The technique used to calculate the F factors for the v = 1 states is similar to that
for the v = 0 states. The main difference comes from the fact that the O(8) irreducible
representation which, for v = 1 is characterized by (Q— 1, 111) contains two possible
types of O(6) representations, namely (n+1%, 33) or (n+1, 4, —3%) corresponding to
the SU(4) representation [n+1,#n,0] and [2+1, n+1, 1], which are conjugate to
each other. The corresponding U(4) representations which give the total number of
nucleons are [n+ 141, n+1i,i,i] and [n+1+i, n+ 1+ i+1,i], respectively; where
i=0,1,2,... (—n—1). The nucleon numbers are therefore given by: N = 2n+
+1+4i for (n+4%,1%), and N = 2n+3+4i for (n+1,+—1). The corresponding
eigenvalues, A, of the operator Q, = J;3 = (?—1N,,) are

for (n+4,4,4); A =Q—n—-2i—14,

| = 2,..,(Q—n-1). (3.24
for (n43, 4, —4); 4 = —Qbnt2ity, = 0L s(@-n=1). (3.24)

TABLE 4
F factors for v = 1 states

F@ A1, kin—1,nm — % ["(29 ‘2”"27~Jgn3)+(22)-(2+2n+21.+9)]a
F(2;A—1, 23 n+1, n) - ‘_i ("+5)(2Q+2”_2(};‘:_131))(29~2n+21—3)j| 3
F(Q; 241, 45 n—1, n) :% ”(29+2"—21;7J)r(22;f#2n+21+1) 3
F(2; A1, 2 n+1, n) _ % (n+5)(29~2n~2(/1n—+13))(29+2n+27,+13)] i
F(Q;A—1, 4; (n—1)%, n*) :% [”(29*2n—21ﬂ:’2r(22)!2+2n+21+7) 3
F(Q;4—1, 2 (n+1)%, %) ;‘_11 [("+5>(29+2"—2(/1:33))(29—2n+2/1—1):I%
F(@; A+1, 4 (n—1)*, n*) =‘_1‘ [n(29—2n+2A(:J3r)2()29+2n—2z+9) 3
R e |

1 [(n+5)(2!2—2n—21—3)(29+2n+21+11) %
4

F2; 341, 4 (n+1D*, n*) = (n+3)
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that is, the two sets of eigenvalues for the conjugate O(6) representation in (2—1,114)
are of opposite sign but equal in magnitude. The expansion coefficients, D,
analogous to those of eq. (3.2), therefore, have the property: the coefficient D for
(n+%,4, —1%) and —21 is the complex conjugate of the coefficient D for (n+14, 13
and + 4. Details are given in ref.®). Techniques similar to those of subsect. 3.2 give
the Ffactors for the v = 1 states. The results are shown in table 4. In the argument for
the Ffactors Q is now short hand notation for the O(8) label (2 —1, 111), n stands for
the O(6) representation (n+1%, 33) or SU(4) representation [n+1, n, 0]; while n*
stands for the conjugate representation (n+1%,%, —%) or its SU(4) equivalent
[7+1, n+1, 1]. With the F factors of table 4, and the table of SU(4) Wigner coeffi-
cients of ref. ®), the matrix elements of A* can again be obtained by the use of eq.
(2.12) and the Wigner Eckart theorem, eq. (3.9).

4. Some applications of the quasispin method

With the matrix elements of the pair creation and annihilation operators calculated
in the last section, exact solutions can be found for the pairing problem involving
states of seniority v = Q or 1.

4.1. THE PAIRING HAMILTONIAN

The general nuclear Hamiltonian is assumed to have the form
H = Hs.p.+H2—bodya (41)
where the single-particle Hamiltonian is given by

Ho, =Y &N,  with Ny =Y aimm Gimmm, - (4.2)
i mimshte

The indices i characterize the single-particle levels, and ¢ are the single-particle
energies. The spatial degeneracy of the levels is given by Q; = Y m: 1, for example
Q; =2[;+1if i denotes /;. In pairing model studies the general two-body interaction is
replaced by a pairing Hamiltonian. In the QST scheme the pairing Hamiltonian
acting on states of a nuclear configuration consisting of several single particle energy
levels can be written in the most general form as

Hpairing = Zggle 31Ai+(MS’ O)SIAj(Ms’ O)
i, J 5
+ 3 g1y Y, 1247 (0, MT)13AJ(0a My). (4.3)
i, J Mt

The gszﬁ 12r+1) give the strength of the pairing interaction between a pair of
particles coupled to L = 0, S7, in the ith single-particle level and a similar pair of
particles in the jth single-particle level. Since this Hamiltonian is a scalar in both
spin and isospin space, its eigenvalues are independent of Mg and M, and the total
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S and T of the system are good quantum numbers. In general, however, the Hamil-
tonian (4.3) can be off-diagonal in the Wigner supermultiplet quantum numbers. If
a further degeneration is made in the pairing Hamiltonian by setting g%, = ¢'/;, the
Hamiltonian becomes an O(6), (or SU (4)), scalar as well. In this case the total
Wigner supermultiplet is a good quantum number, and the eigenvalues of (4.3) are
independent of S and 7. The different S, T states of a given Wigner supermultiplet
become degenerate. Since the A4;" and A; are infinitesimal operators for O(8), the
Hamiltonian is diagonal in the seniority quantum numbers for the various single-
particle levels i; that is, v;p,pip;" are good quantum numbers for all i. Finally, if
both the parameters g and g; are independent of i and j, the overall O(8) quantum
numbers (2~1v, pp’p’") become good quantum numbers, where the (Q2—1v, pp'p”’)
describe the O(8) representations obtained from the direct products of the O(8)
representations (Q;—1v;, p;p;pip;’) for the various single-particle levels.

Since our interest is in the most general case, the base vectors in this investigation
are to be designated by the seniority, Wigner supermultiplet, spin, and isospin
quantum numbers for the individual single-particle levels i. Applications will be illu-
strated in detail for systems with even nucleon number and individual single-particle

level seniorities »; = 0. For such a state

Al (Msy, M)l A[nini0]SiM¢ , T/M7,>

= 3 194—1[nn,0]S; Ms,, T;MT,>A2:;%;—‘SIms;?lrs:;&:n, (4.4)
niSiMs,; i
TiMTi

with n; = n; + 1. From the results of sect. 3

n'n'0]  [110]
S’Tl ’ SO TO

[nn0]\

i , [
ARG — F(0; 1, 5= 150, m) >

X {8'M§SoMg,|SMsy{T' My TyMp|TMz), (4.5)

where level subscripts i have been omitted. The needed F factors are given in table 3,
and the SU(4) Wigner coefficients in the tables of the appendix of ref. 8). Matrix
elements of the pair annihilation operators A can be obtained from the matrix ele-
ments of 4 by hermitian conjugation.

4.2. THE SINGLE LEVEL CASE, v = 0

As the simplest example, the problem of a pairing interaction with different spin
singlet and triplet strengths acting on a system with a single well isolated single-particle
level will be treated first. The matrix element of the pairing Hamiltonian is diagonal in
all but the O(6) quantum number, and for v = 0 has the form
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Qi Qin
T N\(SM)(TMy) (SM)(TMy)/

_ QAnSMsTMT QinSMsTM ¢
=493 Z AQ}.+ 1n"S"MgsTMT A.Q).+1n"S”Ms~TM—r

H Hpairing

S"Mg:m”

QIASMsTM T QinSMsTM~r
Z AQ}.+ 1n"SMsT"M"1 A!)}.+ 1n"SMsT "M * (46)
T'"Mzn”

+4di3

Since A" (or 4) connect nto n41 only, 7 can have the values n, n+2, and n—2; and
there are three types of matrix elements.

(a) Pairing Hamiltonian connection n — i = n.

H, = 13F9+n+l+6xg—n—m
8(n+2)(n+3)
X[6+D@+S+T+®@+S—T+$+S@—S+T+$@—S—T+a}
25+1
(Q—n+A+2)(Q+n—-2+4)
8(n+1)n+2)
X[@+DM—S+T+U@—S—THSM+S—T+D@+S+T+a“
2S+1
+y31FQ+§+1+6XQ—n—l)
(n+2)(n+3)
8 FT+DM+S+T+®@—S+T+$+T@—T+S+$@—S—T+a}
2T +1
(R—n+i+2)(Q+n—Ai+4)
8(n+2)(n+1)
y FT+U@—T+S+D@—S—T}Hﬂn+T—S+Um+S+T+m 47)
2T +1 ]}' '

(b) Pairing Hamiltonian connection n — i = n+2

Hoyian = (031-912) — [(9+"+1+6><9+n—i+6>(a—n+z><sz—n—»

8(n+3) (n+2)(n+3)
3
x@+S+T+®@+S—T+$@—S+T+$@—S—T+n],
a‘nd Hn-—Z,n = nn—2-

The size of the matrix depends on the nucleon number N, (or A = Q—1N), and the
specific values of S and T. The possible Wigner supermultiplets and their S, T values
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for some of the smaller nucleon numbers are shown in table 5. For N = 4, for exam-
ple, it can be seen that the Hamiltonian matrix is 1 x 1 for the (ST values (20), (11),
and (02), but is 2x2 for (ST) = (00). For N = 4, (ST) = (00), the Hamiltonian
matrix (4.7) has the specific form

Q+2 A[HQ+2)(Q— 1)]%)

O Ve A

(4.8)

where

A= 2(931"913) .
g31+913

For N = 4 and v = 0, the pairing energies therefore have the values
Efooy = 3(g13+93){22+ 1) £[(20+1)*—4(@+2)(Q2-1)(1 —34°)]*},
Eflz?ﬁt =(913+9:)(Q-1)(1-4),
Etoey = (913 +93,)(@—1)(1+4),
E?,1=1;1 =(g913+93,)(Q-1).

For general nucleon number N, v = 0, the pairing Hamiltonian will give rise to a
k x k matrix for (ST) values such that S+7 = {N—-2(k—1).

TABLE 5
Wigner supermultiplet classification of the v = 0 states for particle numbers N = 2, 4, 6 and 8

sSU®)
N A u4) n (S, )
2 -1 [1] 1 10)(01)
[11n 0 00)
4 0-2
[22] 2 (20)(11)(02)
(00)
[2211] 1 (10)(01)
6 Q-3 [33] 3 (30)(21)(12)(03)
(10)(o1)
[2222] 0 (00)
3311] 2 (20)(11)(02)
(00)
8 -4 [44] 4 (40)(31)(22)(13)(04)
(20)(11)(02)

(00)
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When g¢,; = g5, the pairing Hamiltonian has higher symmetry. The Wigner
supermultiplet number becomes a good quantum number. The Hamiltonian matrix
(4.7) becomes diagonal in », and the matrix elements are independent of S and 7, so
that the various states (ST) of a given supermultiplet become degenerate. In the case
d13 = 931 = ¢, eq. (4.7) contracts to

Egn = 49(Q*+6Q—n*>—4n—1>—64). (4.10)

For example, the five energy levels of eq. (4.9) for N = 4 collapse into two as 4 — 0,
namely

ENT} =2g(Q—1)  with (ST) = (20), (11), (02), (00),

ENZ$ =29(Q+1)  with (ST) = (00). (4.11)

The result (4.10) can also be expressed in terms of the Casimir invariants of O(8)
and O(6)
Egu = 39(C(8)—C(6)—4*-64), (4.12)

which agrees with the result derived by Flowers and Szpikowski ?).

4.3. FORMULATION OF THE MANY LEVEIL PROBLEM

To study the competition between the pairing interaction and the single-particle
excitations, the case of a system with several single-particle levels connected by a
pairing interaction must be studied. The case of a system with two single-particle
levels will be studied in detail. Both the effects of the pairing interaction within
individual levels and between different levels must be taken into consideration.

The two-level case, seniority zero. There are many ways of coupling the two wave
functions for N nucleons of seniority v; = 0 in level 1 and N, nucleons of seniority
v, = 0 in level 2. One could couple the two O(8) representations to a resultant O(8)
representation specified by overall seniority and reduced supermultiplet quantum
numbers. This might be useful in the extreme strong pairing limit. Without coupling
O(8) , one could also couple the two O(6) representations so that the state vectors
are specified by overall Wigner supermultiplet quantum numbers besides those for
levels 1 and 2. This would be a useful coupling scheme if the Hamiltonian has enough
symmetry to make the total supermultiplet good quantum numbers; but in this
scheme the matrix elements would lead to expressions involving SU(4) Racah coeffi-
cients which have not yet been calculated. Since the pairing Hamiltonian is diagonal
in the total S and T, the most efficient coupling scheme is one in which S, and S, are
coupled to total S, and T, and 7, to total T. By such a coupling the size of the Hamil-
tonian matrix is greatly reduced. Also, the SU(2) Racah coefficients which appear in
the general expressions for the matrix elements in this coupling scheme are so well
known that no additional mathematical complications are introduced as would be
the case in the coupling of the higher group representations. Of course, the simplest
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formulation of the matrix elements could be made in the completely uncoupled
scheme; but this would lead to unnecessarily large matrices.

The coupling scheme chosen for the present work is therefore the one in which
spins and isospins for the two levels are coupled, and the wave function is written as

Ql 92

Ay e

n, n, . (4.13)
($:Ty) (5.Tr)

STMsM,

The pairing Hamiltonian (4.3) can be separated into four parts

H=Y HY=H"+H?+H*+H". (4.14)
i

The matrix elements for H! and H?2? have already been calculated in subsect. 4.2, The
matrix elements for H*1, for example, in the coupled scheme, eq. (4.13), are indepen-
dent of Q,4,n,8,T, and the total SMTM and are given by eq. (4.7) if the quantum
numbers (QAnST) in this equation are replaced by (€;4,;n,S,7T;). The matrix
elements of H2! and H'? follow from the matrix elements of 4;", 4;, and standard
angular momentum recoupling techniques. For example

Q, Q, Q
/ M+l A,—1 A Aa

ny ny 2 A (Mg, M1 )A (M5, , M1,) ny ny

ST, S,Ty | MseM7o STy S;T; /
\ STMgMy STMsMy

— (_)s'1+T'1+s'z+T’2+S+T_[(2SI+1)(25,2+1)(2T1+1)(2T2,+1)]*

{SZ 52 SO}:TZ T; T°} xF(Q,; A +1, A5 niny)

s, s, sj\ty T, T
: 1. . [ini0] | [110] | [nym, O]\
XF(Qb}vza/lz 1»"2,"2)\ SIT ° SoT, S, T,
[nan;0] | [110] |[n3n30]
\ Ssz ? SoTo S,2T2, ? (4’15)

where the quantities in curly brackets are standard 6-j symbols in spin and isospin
space.

If the wave functions for either level 1 or level 2 have v = I, the expression for
the matrix element has the same form if the appropriate F factor and double-barred
SU(4) coefficients are replaced by the analogous factors valid for the case v = 1.

For the many level case the most useful coupling scheme is again the one where
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the O(8) and O(6) representations for the various levels are left uncoupled, so that
the basis is specified by the seniority and Wigner supermultiplet quantum numbers for
each level i, as well as the spin and isospin quantum numbers S;T;,i = 1,2, 3,...;
but it will again be useful to couple the S; and T to total resultant SMg and TM.
Matrix elements of H with i # j can now be related to those of eq. (4.15) by standard
angular momentum recoupling techniques. For a three-level problem, for example,
employing a basis [Q, 1,1y, @, 4,15, Q343135 [(S, Ty S2T,)S12T12, Sy T3 1SMTM >
the matrix element of H?' follows directly from (4.15); but the matrix element of H32,
for example, would require a recoupling to an |[S; T, (S, T, S373)S23 153 1SMsTM )
basis with the same O(8), 4, and O(6) quantum numbers as the above.

4.4. COMPUTATIONS AND RESULTS

As a specific example, a detailed computation has been carried out for a two-level
problem to make it possible to study the effect of the pairing interaction in the
presence of single-particle excitations. The specific example chosen is one with 2, = 1
and Q, = 5; that is one with an / = 0 level and a nearby / = 2 level, such as those
found in the 2s-1d shell of real nuclei. For simplicity all pairing strengths are put
equal to g. The energy reference point is chosen as the single-particle level 1, so that
g; can be put equal to zero. The full Hamiltonian can then be written as

H =¢eN;—2g 22: [ 145 (Mg0)* 4)(Ms0)+ Y, 14 (0M )" 3 4,(0M7)]. (4.16)

i,j=1 Ms

The energies for a fixed total number of particles N = N, +N,, and fixed total S
and T, can then be found by diagonalizing the matrix for the above Hamiltonian in a
basis which, for seniorities v; = v, = 0, can be characterized by the seven numbers
Nyni8;Tyny S;T,. (N, is not listed simply because N, = N—N,). For example,
for N =4, S = T = 0 the five states of the basis are

N, ny Sy T, n; S, T,

(= R (SR S I
OO =D
cCo—~O0Q
(= S ]
oo =0
(=~ =]

The Hamiltonian for each N, S, T'is then diagonalized to give the energies and wave
functions for specific values of the parameter ;. Since the total Wigner-supermultiplet
degeneracy is not removed by the Hamiltonian (4.16), with one common value for g,
states with different ST values belonging to the same total Wigner supermultiplet
will have to be degenerate. This can serve as a check on the numerical calculations
which have been carried out for all ST.

Calculations have been carried out in particular for N = 4, 6, 8, and 10. The re-
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(4000}

(5100)

(6000)
(S100}
‘/q)/
| 1 L | 1 1 1
o] 0.2 04 06 08 10 08 06 04 02 0o
Strong Pairing Weak Pairing
Limit Limit

Fig. 1. N = 4: Pairing energy spectrum for four nucleons distributed over a spectrum of two single-
particle levels of [ = 0 (sor 2, = 1) and / = 2 (d or £2, = 5)-like character. Individual level seniori-
ties are zero, v; = 0, for the two levels. The energy of the first (s-like) level is considered as zero,
while the second level (d-like) is taken at energy e above the first level. The curves show the energies
(in units of g) as a function of &/g on the left side to the limit of g— 0, in which all the nucleons are
distributed in a degenerated s-d level (2 = 6). O(8) quantum numbers are used to denote the states
in that extreme limit. The curves also show the energies (in units of &) as a function of g/¢ on the right
side to the limit of g — 0, in which the N nucleons are not interacting. The SU(4) Young tableau
which is “a good quantum number” for all pairing strengths is shown for each level. For the scalar
representation U(4) is shown.
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sults are shown in figs. 1-4 where the energies are plotted for different values of the
parameter . For ; < 1 the energies are plotted in units of g versus ; on the left side;

N,=6
Ny 4
Np=2
E/g L
(4000)

i

(5100} @]

(5100) E

T

€

T

(6000)
H-
{5100)
N=6
E/g - —— g/E
1 | 1 It 1 1 1 |
(GOOO)O 0.2 0.4 06 08 1.0 0.8 0.6 0.4 0.2 6]
Strong Pairing Weak Pairing
Limit Limit

Fig. 2. N = 6: Pairing energy spectrum for N = 6, 2, =1, 2, = 5, v; = 0. The notation is the
same as that for fig. 1.

on the other hand, for £ > 1, the energies are plotted in units of ¢ versus £ on the right
side of the figures.

On the extreme right, that is with 2 = 0, the extreme limit of weak pairing is reach-
ed; and the energies are degenerated to the single-particle energies, which depend
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only on the number of particles in the second level. When the pairing strength is
“turned on,” the levels are split. Since all g}, are assumed to have one common
value in this calculation, the fofal Wigner supermultiplet is a good quantum number

g

(5100}
(4000)

(5100}

{6000)
{4000)

(5100)
(5100)

(5100}

(5100)
(6000) -

{6000}

&g -—

L

+-a5

1

N, 8
N,=6
Ny=4

/e

0

Strong Pairing
Limit

0.2

04

0.6

0.8

02

o

Weak Pairing
Limit

Fig. 3. N =8: Pairing energy spectrum for N = 8, 2, = 1, 2, = 5, v; = 0. The notation is the same
as that for fig. 1.

for all values of ;. Levels with different total S and T belonging to the same Wigner
supermultiplet are degenerate, and only the supermultiplet labels are indicated. When
the pairing strength is turned on to such a great magnitude that ; approaches zero, all
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single-particle effects disappear and the extreme pairing limit of a single level with
Q = Q,+Q, = 61is reached.

N,=10
N,=8
N,z €
- -5 72
E
/g
| HH 17 |
L5 _

(5100}

(4000
-5 4

(5100)
(6000)

b

€

-25

(4000)

// JE/
T
I HH

(5100)
(5100)

(5100}

——— L

(6000) E]
(5100}
(5100)

L -+-55 N
N=10

E/g - —
. 1
(60005 02 04 06 08 0 08 06 04 02 0

Strong Pairing Weak Pgiring
Limit Limit

Fig. 4. N = 10: Pairing energy spectrum for N = 10, 2, = 1, , = 5. v; = 0. The notation is the
same as that for fig. 1.

In this extreme pairing limit, the energies are completely specified by the overall
O(8) representation labels and the total Wigner supermultiplet quantum numbers,
and in terms of these are given by eq. (4.12) with @ = 6. In order to understand this
extreme pairing limit, the coupling of the simple O(8) representations corresponding
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to v = O states for levels with @, = 1 and Q, = 5 must be worked out. The result
gives the coupling rule

(50000) x (1000) = (6000)-+ (5100)-+ (4000).

In the extreme pairing limit, g = 0, therefore, the energies are completely specified
by the overall O(8) representations (6000), (5100) or (4000) and the total Wigner
supermultiplets (or O(6) representations) contained in these. The decomposition of
(Q000) to representations of O(6) and nucleon number N is given in sect. 3. For the
O(8) representation (5100) this decomposition is shown explicitly in table 6. Certain
of the levels show a two-fold Wigners supermultiplet degeneracy. These include all
the two-fold cases for the O(8) representation (5100) listed in table 6, as well as some
additional accidental degeneracies such as that between (6000) [220], and (5100)
[000] for N = 4 (fig. 1), which can be seen from the strong pairing energy formula
(4.12).

TABLE 6
Branching rule of (5100) — N, O(6)

N 0O(6) representations
0 24) (000)
2 (22) (100)
4 (20) (200) (110) (000)
6 (18) (300) (210) (100)2
8 (16) (400) (310) (200)2 (110) (000)
10 (14) (500) 410) (300)2 (210) (100)2
12 (510) (400)2 (310) (200)2 (110) (000)?

In the intermediate coupling case, the total Wigner supermultiplet is a “good
quantum number,”” and it is interesting to see how the various possible total Wigner
supermultiplets for a given total N can be obtained from the coupling of the level 1
supermultiplet (7, 00) with the level 2 supermultiplet (n,00). This is illustrated in
fig. 5 for the case N = 10 = (N; = 2)+(N, = 8).

From the overall results illustrated by figs. 1-4, some general conclusions may be
drawn.

(i) The pairing effect is predominant for all but the very smallest values of ?.
Except for a small splitting of the levels which are degenerate in the extreme strong
pairing limit, the spectra in all cases are qualitatively very similar to the strong pairing
limit down to a value of ¢ & 0.2. That is, with the exception of the extreme weak
pairing limit, the pairing effects win out over the effects arising from single-particle
excitations.

(ii) The pairing interaction is most effective in those Wigner supermultiplet states
which are built from the largest possible number of columns of four. These columns
of four have the general symmetry and S = T = 0 character of an a-cluster. The
pairing interaction thus seems to favour states built from such clusters in that it tends
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to make such states more stable. For example, for N = 10, the states with N, = 10
in the weak pairing limit are split such that the supermultiplet [3322] = [110] is
depressed much more than [4411] = [330] which in turn lies below [5500], and the
supermultiplet [3322] = [110], is depressed to an energy level lower than some of the
energy levels which grow out of N, = 8 after the pairing strength is increased only to
¢ = 0.1. For the levels which grow out of the weak pairing limit N, = 8, a similar
rule can be seen to hold, so that the energy levels corresponding to states in the first
row of fig. 5 lie higher than those for the 2nd row, while those of the 3rd row built
from states with two columns of four in level 2 are depressed to the lowest energies.

N2 Np=8 N =10
' RN

H EBEB o E N . 17
(100) «x (400) (500) I {300} L1{410)
m “ (2) (3)
B 11 111 ] [l
« I . T

— - —— ——4—
(100) (200) (300) (100) (210

(4) (5) (6)

i.H

(l00) x (000) — (100}
{7)

Fig. 5. The possible U(4) representations for N = 10 obtained from the coupling of seniority zero
multiplets with N; = 2 and N, = 8.

Within the first row the ordering of energies, highest to lowest, is (3) > (1) > (2);
that is the state with one column of four is lowest. Similarly, the energy ordering is
(6) > (4) > (5); and the overall ordering of those levels which grow out of the weak
pairing limit N, = 8 is given by (3) > (1) > (2) > (6) > (4) > (5) > (7) in the
notation of fig. 5.

Although the numerical calculations presented here have not been extensive, the
calculations which have been carried out do seem to indicate two general results.
The pairing interaction is very effective compared with the particle excitation energy,
and pairing effects win out in the competition with single-particle excitations. Secondly
the pairing interaction tends to make more stable those states built from the largest
possible number of a-like groupings of four particles, a “fouring’ effect, which is not
found and could not be understood in terms of a charge-independent pairing inter-
action in the j—j coupling scheme.

The author is grateful to Professor K. T. Hecht for suggesting the protlem, and
his generous guidance through all the stages of this work. The author also wishes to
thank Dr. Paul J. Ellis for his help with the computer programming.



526 SING CHIN PANG

References

1) A. K. Kerman, Ann. of Phys. 12 (1961)
2) K. Helmers, Nucl. Phys. 23 (1961) 594
3) B. H. Flowers, and S. Szpikowski, Proc. Phys. Soc. 84 (1964) 193; 84 (1964) 673
4) J. C. Parikh, Nucl. Phys. 63 (1965) 214;

M. Ichimura, Progr. Theor. Phys. (Kyoto) 32 (1964) 757; 33 (1965) 215;

H. J. Lipkin, Lie groups for pedestrians (North-Holland Publ. Co., Amsterdam, 1965);
J. N. Ginocchio, Nucl. Phys. 74 (1965) 321;

K. T. Hecht, Phys. Rev. 139 (1965) B794; Nucl. Phys. 102 (1967) 11

5) R. W. Richardson, Phys. Rev. 159 (1967) 792, also part II, to be published
6) I. M. Gelfand, R. A. Minlos and Z. Ya. Shapiro, Representations of the rotation and Lorentz
groups and their application (The Macmillan Company, New York, 1963) p. 353;
S. C. Pang and K. T. Hecht, J. Math. Phys. 8 (1967) 1233
M. Moshinsky and J. G. Nagel, Phys. Lett. 5 (1963) 173
K. T. Hecht and S. C. Pang, J. Math. Phys., in press
S. C. Pang, Univ. of Michigan, technical report (November, 1967)



