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Abstract: The quadra t ic  isobaric mul t ip le t  mass  equa t ion  mus t  be replaced by an expression which 
is quar t ic  in T z i f  the  electrostatic interact ion is t reated in second-order  per tu rba t ion  theory.  
The  coefficients o f  the  cubic and  quar t ic  terms as well as the  correct ions to the cons tant ,  l inear 
and  quadra t ic  te rms  are related to the  off-diagonal  reduced C o u l o m b  mat r ix  elements .  A 
numer ica l  analysis o f  the exper imenta l  C o u l o m b  displacement  energies in the 1 p and  1 d2s shell 
in te rms  o f  Hech t ' s  (first-order) C o u l o m b  energy equat ions  showed systemat ic  deviat ions for 
the  T = ~] mult iplets ,  which were a t t r ibuted  to higher-order  per turbat ions .  For  the  A = 9 
quadruple t  the  major  per turba t ions  appear  to result  f rom a lower-lying T =  ~- state (or states) 
which increases the excitation energies o f  the  T = "} states in 9B and 9Be by about  105 and  
93 keV, respectively, while the energies o f  9C and  °Li are essentially unaffected. The  cons tan t  
and  l inear te rms  are changed  very little, bu t  the  quadra t ic  t e rm is decreased by about  15 %. 
Small cubic and  quart ic  terms are generated.  It  is concluded tha t  the quadra t ic  isobaric mul-  
tiplet mass  equa t ion  often works well, no t  because first-order per turba t ion  theory  is a good 
approx imat ion ,  bu t  because h igher-order  per turba t ions  are most ly  absorbed  by the  three 
coefficients. Part icularly the  coefficient o f  the  quadra t ic  te rm m a y  be affected considerably.  

1. introduction 

Recently, Hecht 1,2) has derived several Coulomb energy equations for states of 
good isospin T. The equations were derived in first-order perturbation theory for 
simple shell-model states in two extreme coupling schemes. A comparison between 
the experimental and calculated Coulomb displacement energies in the lp shell, the 
the ld2s shell and the lf~ shell showed very good agreement 3-5) except for a few 
cases. These cases included the precisely measured 6,7) A = 9 isobaric quadruplet. 
The agreement with the calculated energies was very poor. The attempt to interpret 
this discrepancy was the major motivation for the present study. 

2. The quadratic isobaric multiplet mass equation 

The energies of the 2T+ 1 members of an isobaric multiplet are shifted relative to 
each other mostly because of  the electrostatic interaction between the protons in the 
nucleus. For all charge-dependent two-body forces of tensorial rank of two or less, 
one obtains in first-order perturbation theory the well-known quadratic isobaric 
multiplet mass equation 8) 

M(A, T, Tz) = a(A, T)+b(A~ T)Tz+c(A, T)T). (1) 

t Work supported in part by the U.S. Atomic Energy Commission. 
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The T~ dependence is factored out with the use of the Wigner-Eckart theorem. The 
coefficients a(A, r),  b(A,r)  and c(A, T) are related to the scalar, vector and tensor 
Coulomb energies E(°)(A, T), E(1)(A, T)  and E(2)(A, T), which are simply related 
to the diagonal reduced matrix elements of the scalar, vector, and tensor Coulomb 
energy operators. Eq. (1) has been successfully applied to many isobaric multiplets 7). 

3. The quartic isobaric multiplet mass equation 

In a second-order perturbation treatment of the electrostatic interaction (and of 
all other charge-dependent interactions of tensorial rank of two or less), the correc- 
tion term 

AM(A, T, Tz) = ~ AMT,_T(~, T, T~) = - ~ @T'TdHc[TT~>2 (2) 
e(°)(cq T ' ) - -  ~(°)(T) 

T'=T,T+I ,T+_2 T '=T ,T+. I ,T+2  

has to be added to eq. (1). The energy denominators represent the unperturbated 
energy separations between the perturbing states and the analogue state under con- 
sideration. It should be noted that the energy denominators are independent of T.. 
The Coulomb energy operator H c leads to a strong ~ dependence, but the coefficients 
of the T~ dependent terms are essentially independent of T and ~. The quantity a 
stands for all quantum numbers other than T' and T~ of the perturbing states (which, 
of  course, must have the same spin and parity as the members of the isobaric multiplet). 
The contributions come from states with the same isospin and from states which 
differ in isospin by one and by two units. States with T' = T contribute through 
the isoscalar, isovector, and isotensor Coulomb energy operators, while states with 
T' = T ±  1 contribute only through the isovector and isotensor operators, and states 
with T'  = T _ 2  contribute only through the isotensor operator. The T z dependence 
in eq. (2) can be factored out with the use of the Wigner-Eckart theorem, and the 
following expressions for the five cases with T ' - T  = - 2 ,  - 1 ,  0, 1, 2 are obtained: 

AM_2(a, T, T~) = - 

AM_ l(a, T, T~) = -- 

AMo(~, T, T~) = - 

A M + , ( a ,  T ,  T~) = - 

(2) [e-2(~, 

Ee(o°)(~, 

(1) [e+ l(C~, 

[e(2)fa 
+ 2 \  , AM+2(o % T, T~) = -- 

T)x/T~-T~2x/(T- 1)2 - T)32 (3) 

e(o)(~, T _  2)_e(O)(T) 

T ) x / ~ -  .r2,z - ~ - 1 \  ~,0(2)/~' r)T~x/r2 - Tz2] 2 (4) 

e(o)(a, T -  1 ) - , ( ° ) (T )  

T)+e(°l)(~' T)T~+e(°2)(~' T)(3T~Z- T(T + I))]2 (5) 

~(°)(a, T ) - , ( ° ) ( r )  

T)x/(r+ 1) 2 -- T~ - o(2)t-, T)T,x/(T+ 1) 2 - T~] 2 
+ 1~,~, (6) 

~(o)(e, T +  1)-~(°)(T) 

T)x / (T  + 2) 2 - T 4iW+ 1) 5 - (7) 
~(o)(e, T+2)_ , (O)(w)  
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The quantities ~r' °(°)- rt~,r~" T), ~r'°~l)- T( ~, T) and "-r'°(2)- r~,r" T)  are related to the off- 
diagonal reduced matrix elements of the isoscalar, isovector and isotensor Coulomb 
energy operators, respectively. The relationships are similar to those between 
E(°)(A, T), E(~(A, T) and E(Z)(A, T) and the diagonal reduced matrix elements. 

The combination ofeqs.  (3)-(7) and eq. (2) immediately leads to the result that in a 
second-order perturbation treatment the quadratic isobaric multiplet mass equation 
(1) has to be replaced by the quartic isobaric multiplet mass equation 

M(A, T, T )  = ~7(A:~ T)+b(A, T)Tz+~(A, T)Tz2+d(A, T)T~a +~(A, T)T~*. (8) 

The coefficients of the cubic and quartic terms as well as the corrections to the coeffi- 
cients of the constant, linear and quadratic terms (Aa = a-a ,  Ab = ~-b,  Ac = ~-  c) 
are related to off-diagonal reduced Coulomb matrix elements. 

The main perturbing effect will result from states which are energetically close and, 
at the same time, have relatively large connecting Coulomb matrix elements. Only 
states with T'  = T - 2 ,  T'  = T - 1  and possibly T' = T can be energetically close. 
O f  these, only states with T' = T - 1  are likely to give rise to large matrix elements 
for the following reasons. States with T' = T - 2  are connected only through off- 
diagonal matrix elements of the tensor Coulomb energy operator which are presum- 
ably much smaller than those of the vector Coulomb energy operator (in analogy 
to the relative magnitudes of E~2~(A, T) and E(t~(A, T)). Nearby states with T' = T 
cannot  generate large matrix elements because the states are orthogonal in spin and 
space, and the Coulomb energy operator has only a weak spatial dependence. We 
have (alHc[b) ~ const (alb) = 0. The conclusion therefore is that the most likely 
source for departures from the results of a first-order perturbation calculation are 
nearby states with the same J~ and with T' = T - 1 .  Since e ~ ( ~ ,  T)  is probably 
much smaller than eQ~(c~, T), one can see from eq. (4) that the predominant effect is 
likely to be a change in the quadratic term of the isobaric multiplet mass equation 
(increase or decrease for ~(0~(~, T - 1 ) - d ° ~ ( T )  ~ 0, respectively) while large cubic 
or  quartic terms are probably not generated *. 

4. Analysis of the A = 9 isobaric quadruplet 

It was mentioned in sect. 1 that a least-squares analysis a-5) of the experimental 
Coulomb displacement energies in the lp shell, the ld2s shell and the If~ shell in 
terms of Hecht's first-order Coulomb energy equations 2,2) showed essentially very 
good agreement typically to within +_ 10 keV. It was observed, though, that meaning- 
ful fits in the lp shell were obtained only if the precise data 6,7) for the A = 9 qua- 
druplet were excluded from the analysis. Using the two-body Coulomb interaction 
energies obtained from a least-squares fit to the T = ½ and T = 1 data only, the dis- 
placement energies as well as the various coefficients for the A = 9 quadruplet 
which are expected in first-order perturbation theory can be predicted. The depar- 

t The  ra ther  large value obta ined by I-Iensley 9) for the  cubic te rm o f  the  A = 21 quadrup le t  is 
no t  in agreement  with this  expectat ion.  
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t u r e s  o f  t h e  e x p e r i m e n t a l  f r o m  t he  c a l c u l a t e d  d i s p l a c e m e n t  ene rg i e s  a re  d e n o t e d  b y  

B i ,  R2,  R3 a n d  R 4 = R~ + R z + R 3 .  T h e  r e s i d u a l s  R i a re  s c h e m a t i c a l l y  i n d i c a t e d  in  

fig. 1, a n d  t h e  n u m e r i c a l  va lues  a re  g iven  in  t a b l e  1. T h e  ene rg i e s  o f  t h e  T = ~ s t a t e s  

in  9B a n d  9Be a re  i n c r e a s e d  b y  a b o u t  100 keV,  wh i l e  t h e  d i s p l a c e m e n t  e n e r g y  b e t w e e n  

9C a n d  9Li a p p e a r s  to  be  o n l y  l i t t l e  af fec ted .  T h e  r e s i d u a l s  will b e  r e l a t e d  to  t h e  

c o n t r i b u t i o n s  o b t a i n e d  in  a s e c o n d - o r d e r  p e r t u r b a t i o n  t r e a t m e n t .  I 14.39 

9Li 

13.72 
I 1.52 i 

R~ 14;s7 R~I 

R] ....................................... -£,T-~-3" _a 

3- I 

I2 06 

9Be 9 B 
Fig. 1. Schematic representation of the departures of the experimental energies for the A = 9 isobaric 
quadruplet from the energies expectedin first-order perturbation theory. (Read 11.82 instead of 11.52). 

TABLE 1 

Experimental and calculated residuals R~ and coefficients of  the quadratic and quartic isobaric 
multiplet mass equation for the A = 9 isobaric quadruplet 

Exp. a) Calc. a) 

R1 + 81.24-20.6 + 92.9 ±4.9 
R2 -}- 10.6± 7,1 + 11.7 ±4.2 
R3 --105.94- 7,2 -- 104.6 ±5.1 
R 4 -- 14.1 4-25,0 0.0 

a 3080 (approx.) b) 
b --1321.6 ±5.0  
c + 312.9 ±1.2 

Aa + 111.0 ±4.5 
Ab -- 12.5± 8.7 -- 13.1 :k9.5 
Ac -- 49.0 ±2.0  
d' -}- 7.2zk 4.3 -}- 5.8 _k4.2 
g -- 0.17±0.18 
,dc+~g -- 46.84- 5.8 -- 49.5 4-2.0 

a) All values in keV. 
b) Contribution from Coulomb energy only. 
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The three residuals R1, R 2  and R 3 make it possible to determine three combinations 
of  the five corrections quantities Aa, Ab, Ae, ~ and ~ in the quartic eq. (8). The com- 
binations are 

A b = - R 2 +-J4 (R3 - 2R 2 + R~), (9) 

a e + ~  = + 1 ( R 3 - R 1 )  , (10) 

~l = ---}(R3-2R2 + R1). (11) 

Table 1 shows in the column denoted by exp the numerical values of  the derived 
quantities of  eqs. (9)-(11). Additional information about  the remaining quantities, 
the quartic coefficient for example, can only be obtained if the above information 
is supplemented by theoretical arguments. 

It was pointed out at the end of  sect. 3 that the most likely source for perturbations 
are states with T = 1. I f  this is true, one can immediately see from eq. (4) that the 
residual R 4 must be zero. This is indeed the case within the experimental uncertainty. 
Therefore, the simplifying assumption will be made that the major  contributions to 
the energy shifts as shown in fig. 1 are only caused by states with J= = 3 -  and T = ½. 
Such an assumption is only reasonable if it leads to acceptable conclusions. Ulti- 
mately, a direct theoretical confirmation based on known wave functions of  the per- 
turbed and perturbing states is, of  course, desirable. 

It  the above assumption is correct, the three residuals as well as all the coefficients 
can be expressed by two quantities only as will be shown below. Using the abbrevia- 
tions Ae(~) = ~(o)(~, ½)_~(o)(_}) and e~(c~) = e~(a ,  {), we have 

i l  = _ ~ ,  2[e~(e)-lo(2)r-~122 c _  1 ,~} j  
' 

4e [~(e)e(__2~(e) 
= - Y', ' 

(1) & (2) 2 2[e-l(~)+ze-,(~)] 
Ra = + Z~ Ae(~) ' 

Aa = - £ 9[e~{(e)]2 

4Ae(~) ' 

( , )  (2) 9e_,(~)e_l(=) 
Ab = + ~  Ae(~) ' 

Ac = + y '  [e°l(e)]2 E 9[e~2~(e)]2 

(1) (2) a = - Z 2e_l(~)e_,(e)  

(12) 

(13) 

(14) 

( 1 5 )  

(16) 

(17) 

(18) 



Q U A R T I C  I S O B A R I C  M U L T I P L E T  637 

= + Z [e(-2l(c0]z, (19) 

[eQl(a)]z [e(--zl(c~)] z (20) = + Z + Z 
A~(~) 4A~(~) 

The three residuals Ra, R2 and 173 c a n  be reproduced exactly by properly adjusting 

the three quantities 

~ {  [ e~  (~)]2/A~(00}, Z~{ [e(--2 ~ (cQ]2/A~(°0} and ~ {  [e(__al (~)e(__2~ (cQ]/Ae(cQ}. 

The corrections Act, Ab, Ac and the coefficients a and ~ for the quartic isobaric 
multiplet mass equation (8) can then be calculated. However, it is even sufficient 
to assume that the major perturbation results from a single state only. All sums in 
eqs. (12)-(20) are reduced to one term, and by properly adjusting the two quanti- 
ties e~(~)/,,/lAe(~)l and e(_2~(~)/~/lAe(~)[ with A~(~) < 0, it is indeed possible to 
reproduce the three residuals R 1 ,  R 2 and R 3 and again to calculate the corrections 
Aa, Ab, Ac and the coefficients cl and ~ for the quartic isobaric multiplet mass 
equation (8). The comparison for this case is shown in table 1, andthe agreement 
is very good. The calculated values show that the relative changes of the coefficients 
a (contribution from Coulomb energy only) and b are only about 3 ~ and 1 ~ ,  
respectively. The coefficient c, however, is decreased by about 15 ~.  The cubic and 
quartic coefficients are quite small. 

An inspection of the level schemes of 9Be and 9B shows that there are two pairs 
of states xo) which are possible candidates for perturbing the 3- ,  T = 3 analogue 
states at E. = 14390 and 14670 keV, respectively. One pair of states with unknown 

TABLn 2 

D i a g o n a l  a n d  o f f - d i a g o n a l  m a t r i x  e l e m e n t s  o f  the  vec to r  a n d  t e n s o r  C o u l o m b  ene rgy  o p e r a t o r s  for  
the  m e m b e r s  o f  the  A = 9 i s o b a r i c  q u a d r u p l e t  in  the  p re sence  o f  p e r t u r b i n g  T = ½ s ta tes  a t  l o w e r  

e x c i t a t i o n  e n e r g y  ( T  z = 4-½) 

E m I T  = ,~) = 2104 .14-5 .0  

E~2~( T = 3) = 104.34-t-0.4 

<~, 4-½lnca,]. L _L½> = 4-1052 .04-2 .5  

<,}, : k ~ l H c ' l ' l ~ ,  4-::}> = :t= 3156.14-7 .5  

(3 ,  4-½1Hc~2~1~, 4-½) = - -  312.94,-1.2 

<3, q--~]Hc~2~[,~}, 4-~r) = ÷ 312 .94-1 .2  

A e  = - - 5 0 0  - -2500  

e(.l~(~, T = 3) = 1 5 7 . 1 ± 4 . 5  351.34-10.1  

e()~(o:, T = 3) = 9 . 2 ± 6 . 7  2 0 . 6 ± 1 5 . 0  

(o : ,½,  ± ½ 1 H c m [ . ~ ,  4-4-½) = 222.1 L6.3 4 9 6 . 6 ± 1 4 . 1  

1 (2) 3 <~, ½, ± ~ [ H  c 1~, -4-½) = - T 6 . 6 ~ 4 . 7  ~ 1 4 . 8 ± 1 0 . 5  

4-½ 9Be 
~o = 1.0 7)IT = 3) 

7) = o~7)(T = ~ ) + f l T ) ( T  = ½) 

7) = o~'7)(T = { ) + f l g p ( T  = ½) 

7) = 1.0 7)IT = 3) 

/32 = 15.7 ~ 3.6 

fl,z = 17.3 ~ 4.0 }'o 

Al l  ene rg ies  in  keV.  



638  J. JANECKE 

spin and parities has excitation energies of  E. = 13720 and 14010 keV, respectively. 
Another pair of  states with spin and parities of  ½- or ~-  has excitation energies of  
E x = 11820 and 12060 keV, respectively. The latter state is populated by a fl+-decay 
branch from 9C. We now assume unperturbed energy separations of about Ae = 
- 5 0 0  keV or - 2 5 0 0  keV and obtain from the values of  table 1 the relevant off- 
diagonal matrix elements and the amount  of isospin mixing. The results are given in 
table 2 with the corresponding diagonal matrix elements which were calculated from 
the quantities b(A, T )  and c(A, T).  The magnitude of the off-diagonal matrix elements 
seems to indicate that a second-order perturbation treatment may not be sufficient 
and an even higher-order treatment is needed. Both assumptions given above lead 
to reasonable results. I f  the states which are energetically closer (As = - 5 0 0  keV) 
cause the perturbation, the amount  of  isospin mixing exceeds 15 % which appears 
somewhat high. It  should be possible experimentally to detect such a large amount  
of isospin mixing. I f  the other pair of  states cause the perturbation, the amount  of  
isospin mixing is only 4 %, but the off-diagonal matrix-element of  Hc (~) of  about 
500 keV appears somewhat high. For both  cases, the off-diagonal matrix elements 
of  Hc (~) are of the order of  the diagonal matrix elements of  Hc (2), while the off-diagonal 
matrix elements of  H(c z) are considerably smaller. It  would be very desirable to know 
more about the wave functions of  the perturbing states and to hopefully confirm the 
above numbers by a direct calculation. 

5. Analysis of other selected isobaric multiplets 

Other isobaric quadruplets in the lp shell and the ld2s shell have been analysed 
similarly. A trend is apparent  even though the experimental uncertainties are consider- 
ably larger. Perturbations do exist, and they affect mostly the coefficient of  the qua- 
dratic term of the isobaric multiplet mass equation. Moreover, the quantity Ae is 
essentially independent of  A and always negative. We have approximately Ae ~ - 5 0  
keV. The perturbations must therefore result mostly from one or several states with 
T = ½ at lower excitation energies. This result is confirmed by fig. 2, which shows a 
plot of  the experimental tensor Coulomb energies E t2) ( =  ½g) for the isobaric 
quadruplets as a function of A. The A-dependence is smooth, and there are definitely 
no fluctuations of  the order of  +_ 15 % or ___ 17 keV. It  is not quite clear why there is 
such a regular behavior. One might have expected that perturbing states with T = ½ 
are sometimes lower and sometimes higher in excitation energy. 

A possible explanation 11) of the effect can be obtained in a simple-minded model. 
Using fourfold degenerate Nilsson-like or Hartree-Fock single-particle levels, the 
structure of the T = ~ analogue states can be described as follows. I f  A = 4 k +  1 
( =  4k' + 5), there are three nucleons in the first unfilled orbit and two in the second 
unfilled orbit. The former are coupled to T = ½, the latter are coupled to T = 1. 
Both groups of nucleons then couple to T = ~ to form the analogue state. Similarly, 
if A = 4 k +  3, there are two nucleons in the first unfilled orbit and one in the second 
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unfilled orbit. The former couple to T = 1, the latter nucleon has T = 1. Again, the 
nucleons couple to T = ~2 to form the analogue state. It  is clear from the above 
description that in both cases the nucleons of  the two unfilled orbits may as well 
couple to T = ½ with the same J~ as the T = ~ state. These states are presumably 
somewhat lower in energy. They have a very similar space structure and may there- 
fore lead to relatively large connecting matrix elements of  the Coulomb energy 

operator. 
The experimental displacement energies of  several isobaric triplets also showed 

departures f rom the expectations of  the first-order calculations. The departures 
essentially consisted of an energy shift by about 50-100 keV of the T, = 0 members  

'1  keV 

IOO ~ i ~ O ~ O  ~ 

t 
8O 

[.o 
< 

4 0  

1.0 

20 

I ! I I I I I I 

0 I0 20 30 40 
A , 

Fig. 2. Plot of the experimental tensor Coulomb energies E c2~ ( =  ½g) for the isobaric quadruplets 
as a function of A. Experimental uncertainties are indicated if ~ 3 keV. The straight line was drawn 

simply to show the trend of the data points and to show the absence of irregularities. 

of  certain isobaric triplets, namely in 8Be, 18F, 2SSi and 42Sc. Eqs. (2)-(7) should 

be applicable if the departures are due to isospin mixing and if a second-order 
perturbation treatment is sufficient. Such a treatment is not adequate for the two 2 + 
states lo) in aBe at E x = 16628 and 16923 keV, but it confirms that there is practi- 
cally complete isospin mixing. The shift of  the 3 +, T = 1 state 12) at Ex = 9319 keV 
in 28Si can probably be attributed to the presence of the 3 +, T = 0 state at E x = 8587 
keV. A connecting vector Coulomb energy matrix element of  about 200 keV would 
account for the observed shift. There should be isospin admixtures of  about  17 ~ in 
intensity. The 0 +, T = 1 states in 18F and 42Sc at E x = 1045 and 0 keV, respectively, 
are shifted downward by about  40-50 keV for unknown reasons 3,4). I f  the shifts 
result from the presence of some higher excited 0 +, T = 0 states, it would require 
matrix elements of  about  200 keV ~/Ae (in MeV), where Ae is the energy separation 
between the states. The amount  of T -- 0 admixtures would be about 4 %/Ae (in MeV) 
in intensity. 
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6. Conclusions 

I t  has been shown tha t  even in l ight  nuclei  a f i rs t -order  pe r tu rba t ion  t rea tment  of  

the e lect ros ta t ic  in te rac t ion  may  not  be sufficient to descr ibe the exper imenta l  C o u l o m b  

d i sp lacement  energies.  The A = 9 i sobar ic  quadrup le t  seems to be pe r tu rbed  by  the 

presence o f  a lower- lying T = ½ state (T z = _+ ½) with the same spin and  pari ty .  

The quadra t i c  i sobar ic  mul t ip le t  mass  equat ion  has to be modif ied  i f  a second- 

o rde r  pe r t u rba t i on  t r ea tment  o f  the e lect ros ta t ic  in te rac t ion  is indicated.  The coeffi- 

cients o f  the constant ,  l inear  and  quadra t i c  terms are  affected, and  cubic  and quar t ic  

terms are generated.  However ,  the quadra t i c  i sobar ic  mul t ip le t  mass  equa t ion  of ten 

works  very well not  because f i rs t -order  pe r tu rba t ion  theory  is a good  a p p r o x i m a t i o n  

but  because  h igher -order  pe r tu rba t ions  are most ly  abso rbed  by  the three coefficients. 

Par t i cu la r ly  the coefficient of  the quadra t i c  t e rm m a y  be affected considerably .  

The knowledge  o f  good  wave funct ions inc luding p rope r  radi i  is i m p o r t a n t  to 

pe r fo rm precise C o u l o m b  energy calculat ions.  I f  a second-order  pe r t u rba t i on  t rea t -  

ment  is necessary,  the ana logue  states are no longer  connec ted  by  the isospin l adder  

opera to r s  T+.  This effect has also to be cons idered  in the calculat ions.  

Somet imes  the hope  is expressed tha t  a deta i led  c ompa r i son  between the exper-  

imenta l  and  ca lcula ted  coefficients o f  the quadra t i c  i sobar ic  mul t ip le t  mass  equa t ion  

can  yield in fo rmat ion  a b o u t  charge-dependen t  nuclear  forces. Here,  too,  one has to 

make  cer ta in  tha t  h igher -order  pe r tu rba t ions  are  small  or  p rope r ly  t aken  into  con-  
s idera t ion.  

M a n y  s t imula t ing  discussions wi th  K. T. Hecht  are  grateful ly  acknowledged.  

Noted added in proof" A more  precise measurement  13) o f  the mass  o f  9Li has  

been r epo r t ed  recently. The conclus ions  o f  the present  analysis  are  no t  affected. 
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