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NOMENCLATURE 
heat-transfer coefficient [Btujh ftx”F] ; 
dimensionle~ heat-transfer coelllcient, = H~~/k~; 
thermal conductivity [Btu/hft”F] ; 
conductivity ratio, = krJk,; 
dimensionless heat flux, = Q/2nk,T,; 
radial and axial coordinates [ft] ; 
outer radius [ft] ; 
dimensionless radial and axial coordinates, = 
(r - ri)/ri and z/ri; 
length of cylinder [ft] ; 
temperature E”F] ; 
time [hr] ; 
dimensionless time, = T,k,t/pLrf ; 
material property, = L/CT,; 
fusion front position [ft] (see Fig. 1) : 
dimensionless fusion front position =(t - r,)/ri; 
fusion front slope, [rad.] (see Fig. 1); 
dimensionless temperature, (T - T&T,. 

Subscripts 

F, fusion condition ; 

L, 
inner radial boundary ; 
liquid phase ; 

0, initial temperature ; 
‘s, solid phase; 
a, ambient condition. 

INTRODUCTION 

MOST of the analyses available for describing the freezing or 
melting of cylinders [l-10] are based on the assumption 
that heat transfer and temperature variations in the axial 
direction are negligible. The validity of this assumption must 
be known, however, before applying the results of such 
simplified ~Icuiations to practical problems. Therefore, an 
attempt is made here to establish the conditions under which 
the heat transfer rates and the fusion front motions may be 
calculated with reasonable accuracy by neglecting all axial 
gradients. 

Due to the complexity of the problem numerical solutions 
are obtained only for the problem where the material under- 
going the phase change is contained between two concentric 
cylinders of finite radius ratio and of finite length. Solutions 
to such problems are of interest in heat exchangers and in 
heat storage systems. Although such applications are of 
prime concern in this anatysis, the results are sufficiently 
general so as to be useful in other problems of similar 
geometry. 

THE PROBLEM 
A given material with a distinct fusion temperature, Tr, is 

contained between two concentric cylinders (Fig. 1). 
Initially (t < 0) only one phase is present and its temperature 
T, is constant. At t > 0 a known temperature distribution, 
T,(z), is imposed along the inner cylindrical surface. T, may 
vary along z but is independent of the angular coordinate 
and time. Heat is transferred in or out of the material 
through the inner radial surface, resulting in melting or 
freezing. The fusion front moves towards the outer radius. 
The outer cylindrical surface and the ends of the cylinder 
are assumed to be adiabatic. The problem is to determine 
the heat transfer rates and the positions of the fusion front 
as functions of time. For homogeneous materials with 
constant thermal properties and for the assumption that 
heat is transferred through the material by conduction only, 
Fourier’s equation for the liquid and solid phases gives 

(1) 

By taking the densities of the two phases to be equal 
(pL = ps = p) a heat balance at the interphase yields 
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FIG. 1. Physical model used in the analysis. 

In equations (if and (2) 0: is the thermal diffusivity, L the be in the range 1%5.0. In most applications the minimum 
latent heat of fusion All other symbols are detined iu the value of r$ is approximately 2 : 1 while the lower limit for S* 
nomenclature. The positive and negative signs are for melting is about 10: 1. Solutions have been obtained for parameters 
and freezing respectively. The initial and boundary condi- selected from the ranges indicated above using the numerical 
tions are : techniques described in [ 1 l]. 

t<o 
T = Y& = TL = To and 5 = 0 

at ri < r < R and 0 < ZC S 

RESULTS 

t>o 
T = T,(z) and H = H(z) 

atr = r, and 0~s C S 

(3) 

i?T/& = 0 atr=R and O,<zCS 

aTja2 = 0 atz = 0 and z = S 

and rigr<R. 

Denoting by AT the temperature difference between T, 
and the temperature of the medium at I = ri the heat flux 
per unit length through the inner boundary is Q = 2rrrJfAT. 

Equations (lH3) were transformed into dimensionless 
form using the parameters r*, [*, z*, S*, t*, 0, 8, K, H* and 
Q* as defined in the nom~clature. The eight parameters 
that must be specified prior to the solution are &, pL, I(, ffO, 
em, H*, R* and S*. It is important to choose for the calcula- 
tions those values of these parameters which include condi- 
tions likely to occur in practice. For most common materials 
Bs and fiL range from 0.5 to 2.0, and K from 05 to l@ [IO], 
with the exception of water, for which the average values 
are Bs g 9.5, /3L g 45 and K z 0.3. The initial temperature 
of the liquid may lie between the fusion and the boiling 
temperatures. The ambient temperature along the boundary 
must be less than the boiling temperature during melting. 
In freezing processes ambient temperatures are not likely to 
exceed the value of - I.0 except for ice formation, where it 
may be lower. Along the inner boundary H* is expected to 

The problems described by equations (lH3) may be 
divided into two groups: (I) the axial temperature gradients 
and the fusion front slope are zero at all points inside the 
material aT/az = 0 and Qj = 0), and all parameters depend 
only on r, and (2) aT/dz # 0 and 4 # 0. Here problems in 
the second group will be investigated. The aim is to deter- 
mine the conditions under which axial heat transfer effects 
are insignificant, because the results of simpler calculations 
performed for aT/dz = 0, 4 = 0 could then be applied to 
the more difficult problems where aT/az # 0, d, # 0. 
Fu~hermo~, an attempt IS made to establish simulated 
boundary conditions which (when used in place of the 
actual boundary conditions) would permit the use of the 
simpler analyses (group (1) above) for calculating heat- 
transfer rates and fusion front positions in the more complex 
three dimensional problems (group (2)). 

In order to establish a temperature gradient in the 
material an ambient temperature varying experimentally 
with z* is imposed along ri. Such a temperature variation 
may exist for instance when a secondary fluid flows in the 
axial direction adjacent to the boundary [12]. Using the 
freezing process as a sample and allowing a variation in the 
coolina temperatures from 0 = 1.0 (at z* = 0) to tI = -0.25 
(at z* = S*), 6, = - 10 exp ( - I .34 z*/S*). For this ambient 
temperature the effects of rz and S+, /?s, FL and K on the 
axial gradients can now be evaluated First, the fusion front 
slope was calculated, since 4 depends strongly on the axial 
heat conduction. The maximum values of 4 occur at z* = 0, 
for the above 8,. Thus (b was computed at z* = 0 at various 
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8,=- I.0 exp (-1.39Z*/S*) 

Fusion front positionr+ 

FIG. 2. The maximum fusion front slopes during a freezing process for B0 = 0, rt = 2: 1 

fusion front positions and for various S*, /?s, fiL and K 
values, for rz = 2: 1 and B0 = 0.0. From Fig. 2 It can be 
sen that as the fusion front moves towards the outer radial 
boundary 4 increases. However, even for the extreme values 
01 the parameters used in the calculations the slope is small 
(4 = WY). The maximum slope and consequently the 
maximum axial heat conduction effects occur when js = 
/IL = 2.0, K = 0.75, and H* = 1.0, and these values will be 
used in the further computations. Note that the fusion tront 
slope is rather insensitive to the material properties, but 
strongly depends on the length. When S* is increased from 
10: 1 to 20: 1, the maximum slope is reduced by about a 
factor of two (Fig. 2). 

The calculated fusion front positions rat z* = 0 and at 
z* = S* are shown in Fig. 3 as a function of time. 5* was 
also calculated at these same two axial positions by neg- 
lecting axial temperature gradients and by taking the 
ambient temperatures to be equal to those that exist at these 
positions, (i.e. at z* = 0, 0, = - 1.0 and at z* = S*, 0, = 
-0.25). The results for the complete and approximate 
analyses agree well. Thus, the fusion front position may be 
calculated with reasonable accuracy from appropriate two 
dimensional analyses by first breaking up the cylinder into 
suitably small elements and then replacing the axially 
varying ambient temperature distribution with the average 
value of 8, that exists at the boundary surface of this 
element. 

In Fig. 4 is presented the heat transfer through the inner 
boundary of the cylinder, when 0, varies along z*. By 
dividing into two equal parts the arc length of the ex- 
ponential curve connecting tJm at z* = 0 and em at z* = S* 
a constant “equivalent temperature” has also been obtained 
which, when applied uniformly along rir yields the same heat 
transfer rate as the axially varying em. The results computed 
with these temperatures are in good agreement with those 

2.0 

- em = -1.0 exp. (-1.39 Zx/S*) 

0 &=-I.0 

0 em=-0.25 

0.ll-i 

Time, t* 

FIG. 3. Fusion front positions calculated for axially 
varying ambient temperature distribution (solid 
1ines)andfor constant ambient temperatures (circles). 
(js = /IL = 2.0, K = 0.75, H* = 1.0, S* = lO:l, 

rf = 2: 1, eO = 0). 

calculated from the nonuniform axial temperature distri- 
bution. 

It may be concluded now that in many cylindrical freezing 
and melting problems of practical interest the heat transfer 
and fusion front positions can be calculated by neglecting 
the axial heat conduction and temperature gradients, 
provided that appropriate boundary conditions are used. 
Suitable approximate solutions obtained by neglecting 
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* Cooling temp: 

2 60 - 0, = - I.0 exp. (-1.39 tiS*) 

o 8, = -055 (Const. along inner bound) 
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FIG. 4. Heat transfer through inner boundary surface of the 
cylinder calculated for axially varying temperature distribu- 
tion (solid lines) and for constant “equivalent” ambient 

temperatures (circles). (5* = lO:l, rt = 2: 1, 8, = 0). 

axial heat-transfer effects for various initial and boundary 
conditions are given in [l-3] and [&lo]. 
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NOMENCLATURE A constriction alleviation factor, defined as the ratio 
of the actual resistance to that of the disc con- 

temperature ; 
total heat flow; 

striction resistance when bounded by a semi 

temperature drop due to one side of constriction 
infinite conductor; 

(see Fig. l(a)) ; 
u, t, dummy variables of integration. 

thermal resistance of one side of constriction AT/Q ; 
thermal conductivity; 

INTRODUCTION 

radius of metallic contact spot (see Fig l(b)); IN THE study of the thermal resistance of metallic contacts it 
radius of cylindrical region feeding the contact ; is usual to model the conductors as a series of cylindrical 


