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The polarized neutron method of determining the magnetic form
factor of magnetic materials ts examined in detail with specral
attention given to the way in which statistical errors are propa-
gated Because of the nonlinear relation between the polarizing
efficiency of a crystal and the magnetic scattering length, the
usual methods of linear error theory will not work. However, this

1. Introduction

The primary use of a polarized neutron spectrometer
has been 1n the form factor determination of ferro-
magnets and some ferrimagnets and antiferromag-
nets' ~¢). The purpose of this paper 1s to examine this
method of measuring magnetic scattering amplitudes,
to discuss the importance of the various correction
factors and to show how the statistical errors are
propagated.

In section 2 the famihar formula for the flipping
ratio or polarization ratio 1s introduced with emphasis
on the assumptions required to derive i1t from the
general expression for the cross section. The experi-
mental arrangement of the polarized neutron spectro-
meter is described in section 3. The Shim Ratio Method
for the measurement of the polarization of the beam P
and the flipping efficiency ¢ of the rf coil is examined?).
It is pointed out that a measurement, additional to
those usually made, is the key to a reliable determina-
tion of P and &. This extra measurement is of the
intensity scattered from the analyzing crystal with both
the flipper on and the depolarizing shim in the beam.
This gives a sensitive measurement of the depolarizing
efficiency of the shim and ensures a consistent set of
readings. In section 4 the expression for the experi-
mentally measured flipping ratio is derived and the
assumptions required to arrive at the simple expression
of section 2 are pointed out. In section 5 expressions
for the statistical errors are developed and tabulated

* Present address: John Jay Hopkins Laboratory of Pure and
Applied Science, Gulf General Atomic, San Diego, California.

difficulty can be circumvented by using the nonlinear formulas
directly. The statistical error analysis 1s applied to the practical
problem of how long one should count on a particular Bragg peak.
This time will depend on the ratio of the magnetic to the nuclear
scattering lengths, p/b, and on the accuracy with which the beam
polarizations and flipping efficiencies have been determined

for values of P and ¢ of 1.0 and 0.9. A typical experi-
mental result is taken in order to illustrate how to
assess the error in a practical case. In section 6 we dis-
cuss four of the principal systematic errors which can
occur, (a) extinction; (b) drift of the flipper efficiency;
(c) spin-flip scattering cross sections, and (d) de-
polarization in the specimen. Section 7 uses the statis-
tical error analysis to calculate counting-time-ratios
for the case when 1t is desired to have equal error
contributions from all the intensity measurements 1n-
volved in determining the form factor. The principal
results and conclusions are summarized in section 8.

2. Polarized neutron scattering cross section

In the Born approximation, an elastic scattering
cross section involves the Fourier transform of the
interaction potential. Classically the energy of inter-
action of a point-dipole g with a magnetic field B is
- B. In quantum mechanics g and B are operators. We
take the operator corresponding to the dipole moment
of the neutron as the Pauli spin matrices (¢) with the
corresponding neutron spin wave functions (3) and (%).
The expectation value of the operator B is the actual
magnetic induction field appearing in Maxwell’s
equations. We use the same symbol B to represent this
expectation value. When the wave vector of a Fourier
component of the magnetic induction is the same as
that of a Fourier component of the mass density, then
there is interference between the nuclear and magnetic
elastic neutron scattering. The elastic Bragg scattering

®.cross sections which a magnetic material presents to
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an incident beam polarized to a degree P, along a
direction P are given by’):

do,,/dQoc |V, + i.gnBy P17 3(1+P), (1)
do’ll/dgoc|Vg_.ungNBg'p|2.%(1_Pl)a (2)
do;,/dQoc {| pagnB,l* ~ | tagnB, P1?}-3(1+P), (3)

do.l‘[/dQOC{lungNBgiz‘-l#ngNBg'Plz}'%(]_Pl)’ (4)
where
1P <41

V, and B, are the Fourier components of the neutron-
nuclear 1nteraction potential V(R) and the magnetic
induction B(R) corresponding to the reciprocal lattice
vector g respectively. p, gy 1S the magnetic moment
of the neutron. The arrow subscripts on the cross sec-
tions denote the initial and final spin directions of the
neutron with respect to the direc’ion P. It is evident
that components of B, not parallel to P contribute to
spin-flip processes.

The Fourier components of the magnetic induction
and the magnetization are related through Maxwell’s
equations by

B, = 4nM,—4ng(g-M,)/lg|*, (5)

where M, 1s the Fourier component of the magnetiza-
tion M (R).

In a polarized beam experiment in which the
polarization of the incident beam P, 1s reversed, the
only term which is affected is the interference term
between the magnetic and nuclear scattering. Conse-
quently, the change of intensity observed in such an
experiment is caused only by that part of the Fourier
component of the magnetization which is both perpen-
dicular to g and parallel to the polarization direction.
In general, therefore, this experiment does not measure
the true form factor (the normalized Fourier transform
of the magnetic moment density) which is really a
vector quantity.

It is well known that, for polarized neutron work,
ferromagnetic crystals must be saturated; that is, the
net magnetization of all the domains must be aligned.
The polarization of the incident beam is also aligned
by the external field which is applied to the sample.
We will call this the +z-direction. The magnetic part
of the interference term, therefore, contains only B,,,
whereas the puie magnetic term is proportional to
|B,|?. The existence of the components B, and B,,
has not been precluded by the assumption of a net (bulk)
magnetization. If the magnetization is periodic with the

lattice, the B,, and B,, cannot be determined simply by
observation of the flipping ratio R:

= Vj + IﬂngNBglz +2P|ﬂngNVgByz
V: + ] I'tngNBg |2 _2P1ungNVngz

R (6)

We again note that B,, and B, contribute to spin-fiip
processes only. In the special case that B,, and B,,
represent a normal helical wave propagating in the
z-direction, then (B2 + BZ,) could be observed directly
from R by applying the external field along the scat-
tering vector K=g. In this case B,, is zero [eq. (5)]
and the polarization effect of normal helical waves was
pointed out by Overhauser®) although it has not yet
been observed experimentally in elastic scattering.
Otherwise the polarization of the scattered beam must
be analyzed.

If we make the simplifying assumption that all the
Fourier components of the magnetization are parallel
or antiparallel to the single direction picked by an
external field applied perpendicular to g, then there 1s
no spin-flip scattering. This assumption that the mag-
netization direction does not vary across the atom is in
accordance with the rigid spin model®). If we also
assume that all atoms are equivalent, then the measured
flipping ratio can be written

R =(b*+p>+2Pbp)[(b*>+p*—2¢Pbp),  (7)
where P= P . The nuclear scattering length b is given by

b= {M,/2rh*)}V Vo [107% cm], (8)

where M is the neutron mass, and V., 1s the volume
of the unit cell. The magnetic scattering length p(g)
is given by

p(g) = 0.2695u,f(g)

where y, is the magnetic moment per atom in Bohr
magnetons and f(g) 1s the form factor of the atom. The
quantity ¢ is defined as the efficiency with which a
flipper turns the incident beam polarization from P
along the 4 z-axis to — P along the +z-axis. Eq. (7) is
the simple expression for the flipping ratio which is
commonly used for ferromagnets'®).

[107'% cm], 9)

3. Measurement of beam polarization and flipper
efficiency
A schematic diagram of the experimental arrange-
ment'*7) used to measure magnetic form factors 1s
shown in fig. 1. Magnetic fields of about 3000 G are
applied to the Co(8% Fe) monochromator and analyzer
crystals and a guide field of about 150 G is maintained
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EXPERIMENTAL ARRANGEMENT

Fig 1 Schematic drawing of a polarized neutron experiment.

1n the region between the monochromator and the shim
which 1s about 18” from the analyzer. All fields have the
same sense. The flipper is a coil placed axially along or
across the beam and supplied with rf power to provide
a small oscillating field which is perpendicular to the
guide field.

In the analysis that follows we make the simplifying
assumption that the guide field causes no reorientation
of any neutron spin. In other words spin-flip occurs 1n
region Il in the monochromator only, in region III
only when the flipper 1s turned on, 1n region IV only
when the shim is inserted, in region V in the analyzer
only. This assumption can be checked experimentally
by observing the intensity scattered from the analyzer
as various guide field parameters are changed. These
parameters may be, for example, the distances between
the ends of the guide field and the monochromator and
analyzer, or the relative positions of the permanent
magnets used to produce the guide field.

The -+ z-direction is defined by the applied magnetic
field whether it 1s the monochromator field, the guide
field or the analyzer field. The +z- and - z-directions
are denoted by subscripts ; and | respectively. Super-
scripts denote either a region (I, 11, III, 1V, V) or a
crystal, monochromator (M), analyzer (A), sample (T).
Thus, for example, N}" is the number of neutrons in
the +1 state in region III; and o7, is the cross section
for a neutron incident in the —1 state to leave the
analyzer in the + § state. The probability that a neutron
spin is reoriented by 180° n the flipper is defined as
f where we have assumed

fu =fu=f- (10)

A similar quantity ¢ is defined for the shim. The
polarization of the neutron beam 1, say, region III is
defined to be

PII[ = (NIT" _N[lll)/(NlTl[+Nlll[). (l ])
We also define the polarizing efficiency of, say, the
analyzing crystal to be the polarization of the beam
scattered by the analyzer when the incident beam 1s
unpolarized (N, = N ). Thus

P(A) = [(aﬁ+aﬁ)—(aﬁ+aﬁ)] [e®, (12)
where

A _ AV A” Al AT
Oy =011 +0p +0,+0y. (13)
Note that, by definition

P" = P(M). (14)

We can now write down the number of neutrons of
each polarization state in each region with the help of
these definitions, and these results are given in table 1.
We now consider the intensity scattered from the
analyzer under four conditions: (1) Flipper off, Shim
out; (2) Flipper off, Shim in; (3) Flipper on, Shim out;
(4) Flipper on, Shim in. We denote these intensities by
I(j=1,2,3,4) and note that
v \'4
I,=NY+N).

(15)

These four measured intensities are conveniently de-
fined 1n terms of three ratios:

Shim ratio (8) = 1,/1,;
Flipping ratio (R) = I,/I,;
(16)

Expressions for these ratios are shown in the second
column of table 2. We note the similarity between the
expression in square brackets in each of these expres-
sions and the term on the right hand side of eq. (12).
In fact

Special flipping ratio (R,) = 1/,

(631 +0%) (0}, +01;) = " P(A), (17)
if
(18)

The implications of eq. (18) may be illustrated by the
following considerations: There are several processes
which may contribute to the spin-flip probabilities of
0,1 and o, . These are:

1. The existence of components of B, perpendicular
to the polarization direction as shown by the cross
sections in eqgs. (1)-(4);

2. Local distortion of the magnetization (particularly
at surface imperfections) causing local z-axes not
aligned with the external field, thus the neutron spin

A _ A
Oy =041
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Number of neutrons of each spin state in each region under various conditions.

Region Number of up (1) Number of down () Beam polarization Special conditions Optimum conditions
neutrons, N, neutrons, N or remarks
I N} =1N, N} = 1IN, P'=0 Incident unpolarized
polyenergetic beam
11| N = 4NV, +al) N = IN(o}, +0¥}) = P(M) Monochromated Perfect polarizer:
polarized beam o) =al =0, =0
PM)=1
Pll =1
Nt NT P(M) Flipper off PM=1
I NI = N'= P = Perfect flipper: f= 1
N{—f(NY—N") NY+f(NY~N') (1-2f)P(M)  Flipper on P"=—1
Nt N P Shim out V=1
v NY = NY = PV = Perfect shim: g = 1
N —g(NT' = N1 NY'+g(NT' =N (1-2q9)P™ Shim in PY=0
\'% NY = o}, NY + o}, NV Ny = o} N\ +o8 NV pPY Analyzed Perfect analyzer:
A = A = A = O
Oy =0y =0y
Beam P(A)=1
TABLE 2

Expressions for intensity ratios.

Intensity ratio

From table 1 and eqs. (10), (11) and (12)

A A
Assume. 01, =01
Define: ¢ =2f—1

Assume monochromator
and analyzer identical

B=2q—1 P(M) = P(A)
Shim ratio _ 1+{PM)/c*} (ot +ql£), (o}, +O'H)] _ {1+ P(M)P(A)} _a +P?)
S=1L/I 1+(1-2g) {P(M)/* H(oh+03)—(ot, +ot)] C{1- BP(M)P(A)} (1-pP?)
Flipping ratio __ 1+ {PMM)/a™}[(oF; +0t)— (o}, +07))] _ {L+P(M)P(A)} _(1+P?
R=1Ljt, LHA=2/){PM)/o*} [(oF: +07) = (07, + 03] {1—2P(M)P(A)} (1-#P%)
Special flipping ratio _ 1+(1-2¢){P(M)/s }[(Gn+0n) (e} +°’H)] _ {L-BP(M)P(A)} _ (1=pPY

Re=Dl, 1+(1 —29)(1-2f) {P(M)/ o* (ot +0f)— (e} +01)]

{1+epP(M)P(A)}

(1 + eﬁPZ)

AdLINOLDOVEAAIAd NOYLNIN AdZI4VT10d NI S409d4
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may be flipped in a scattering process in this local
region; or

3. The neutron may precess about the local z-axis
before or after a scattering event.

Our experience with the Co(8%, Fe) monochromators
and analyzers has been that the surface conditions are
extremely important in seeking to climinate these de-
polarizing spin-flip processes. Simple arguments then
lead to the conclusion that g, = g, if both the entrant
and exit surfaces are 1dentical as far as the three
processes listed above are concerned. We will assume,
therefore, that eq. (18) is valid. The modifications to
the intensity ratios [eq. (16)] are shown in the third
column of table 2. We note, however, that the measure-
ment of the three ratios of eq. (16) are not sufficient
to determine the four unknown quantities P(A), P(M),
e(=2f—1) and B(=2g—1). We could introduce a
third crystal and measure the three ratios for every
combination of the three crystals. This involves the
mconvenience of changing the monochromator. Alter-
natively we can make an assumption about P(A) and
P(M). Some groups have used very thin analyzers and
assumed?) that P(A)=1. Since we have available
crystals of the same size cut from the same boule and
which show very similar double crystal rocking curves,
we prefer to make the assumption that the polarizing
efficiencies of the analyzer and monochromator are
identical. Thus we assume

P(A) = P(M) = P (19)

and note that because of eq. (14), P is the polarization
of the beam scattered by the monochromator and
incident on a sample crystal if the flipper is off and the
shim is out. The simple expressions for the intensity
ratios that result from this assumption are shown in the
last column of table 2. These expressions may be
inverted to give

P?=R(S—1)(R—1)/(R—R,), (20)
¢=(R—R.S)/{RR(S—1)}, (21)
B=R(1—-R,)/{RS(R-1)}. (22)

In summary, we can measure the polarization of the
beam from the monochromator and the flipping effi-
ciency with the Shim Method if we make just two
assumptions. These are that the probability for spin-flip
in the analyzer is the same for up to down as it is from
down to up, and that the monochromator and analyzer
have identical polarizing efficiencies because their other
characteristics are similar. By measuring the special
flipping ratio R, we avoid the difficulty of assuming that

the shim depolarizes the beam completely by measuring
its depolarizing efficiency. We thus have a consistent
set of measurements.

4. Measurement of flipping ratio on sample crystals
The measured flipping ratio on a test crystal is'")

R,, = {l +PP(T)}/ {1 —ePP(T)}, (23)

in analogy with the previously defined R (column 3 in
table 2). The polanizing efficiency of the test crystal
P(T) is defined according to eq. (12). The quantity R,
1s the ratio of two intensities, /5 being that from the
test crystal with flipper off and I, with flipper on.
Eq. (23) 1s a fairly general expression for the measured
flipping ratio in terms of the cross sections of the
sample crystal. In order to equate it with eq. (7) we
must make assumptions about the test crystal.

1. There is no extinction;

2. The sample is a simple ferromagnet so that there
are no spin-flip processes due to B,, and B,, [eq. (4)]

and we can write in accordance with egs. (1) and (2)
o1, oc(b+p)” and o], oc (b—p)*; (24)

3. The sample is saturated and the surfaces are highly
polished to that there are no other spin-flip processes
as discussed in section 3 and we can further assume

(25)
Solving eq. (23) for the polanizing efficiency of the
test crystal P(T) gives

T T __
gy, =0}, =0.

P(T) = (Ry— 1)/ {P(eR + 1)} (26)
IOOOE
100k el
- 2
10
Measured £
Flipping N
Ratio
Ry IOE—
IOE_
o~|30 |_2|0 L _||o ) (I) 1 |Io ) 210 1 o
X=p/b -+

Fig 2. Plots of the measured flipping ratio R, as a function of
X = p/b for two combinations of the instrumental parameters
P,cand f.
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Since
P(T)={(b+p)* —(b—p)*}/{(b+p)*+(b-p)*}, (27)

we have that X is related to the measured polarizing
efficiency by

X =plb={1/P(T)} £ [{1/P(T)Y’ —1]*.  (28)

Egs. (26) and (28) show how the quantity of interest in
the test crystal p/b, is related to the measured quantities.
Plots of R, against X are shown in fig. 2 for two values
of the incident beam polarization (P). The plots are
on a semi-log scale because of the rapid change of R,,
as | X| approaches unity. It may be noted that if e =1
then

R(X) = 1/R(=X). (29)

5. Propagation of statistical errors

The statistical errors in the experimental determina-
tion of X arise from the measurement of the six inten-
sities Iy,1,...1,. We wish, therefore, to calculate the
error in X caused by the statistical errors in the six
measured intensities.

The usual approach to error calculations 1s to use
the first term in a Taylor expansion,

AX = [dX/dP(T)]x, AP(T). (30)

The validity of this method depends (at least) on the
existence of the derivative at X,y. From eq. (28) we see
that none of the derivatives of X with respect to P(T)
exists at P(T)==+1 so that a Taylor expansion in the

P(T)—»

Fig 3 A plot of the polarizing efficiency P (T) of a test crystal as

a function of the ratio of the magnetic scattering length p to the

nuclear scattering length » The (+) and (— ) signs on the curve
indicate the two branches of eq (28)

25

20

15

1 10

AX 05
X

I I !
14 16 18 20

Fig 4. Because of the nonlinear relation between X and P (T), this

figure must be used 1n the calculation of AX/X for a given

measured statistical error AP(T) in P(T) The shaded regions are

physically inaccessible since the polarizing efficiency of the sample
can never be greater than 1

neighborhood of + 1 is invalid. We take the position,
therefore, that AX can be calculated from AP(T)
according to

X+A4X ={P(T)+AP(T)} '+ {{P(T)+ 4P(T)] > —1}*.

(31)
X is given in terms of P(T) by eq. (28). The relation
between p/b and P(T)1s shown in fig. 3, which illustrates
the obvious, but very important, physical himitation
that —1 < P(T) £ + 1. The signs on various parts of
the curve refer to the sign in front of the radical in
eq. (28). With the help of egs. (28) and (31) curves of
AX/X against X were calculated for various values of
AP(T)/P(T) and are shown in fig. 4. The arrowheads
indicate the direction of increasing X for a particular
value of 4P(T)/P(T). The two shaded portions are a
consequence of the physical limitation we have already
noted when 1t is applied to eq. (31). In this case the
limrtation is expressed by the curve AX/X = (1/X)—1.
In general, for a fixed value of AP(T)/P(T), we see
that AX/X rises sharply as X approaches 1. We also
note that the curves are asymmetric in AX/ X for a given
value of X and magnitude of 4P(T)/P(T); for example
if X=0.8 and AP(T)/P(T) = +0.02 then AX/X = +0.13
or —0.075 For positive values of 4P(T)/P(T) then
AX/X is sharply peaked as X increases from 0 to 1 so
that, for example, AX/X at X = 0.95 1s less than AX/X
at X =0.90 for 4AP(T)/P(T) = +0.005. We emphasize
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TABLE 3
Expressions for calculation of AP(T).

AP(T) = £ [(A}1,) +(A3/1,) +(A315) + (A3 /1) + (A%[15)+ (A% /16)]F

|4y ] = [(1+P*)[ 2P*(1 +&)(1+ BT [P(T) {(1 — &)+ B(1 —eP*)} — 2P {P(T)}’]
| 4] = [e(1 = pP?) [ {2P*(1+)(1+ B)Y][P(T) {1 = P} +2P{P(T)}’]

|43] = [(1—&P?)/ {2P*(1+&)(1+ B)}][P(T) {2+ B(1+ P?)} +2P{P(T)}*]

| 44) = [(1+pP?)] {2P*(1+&)(1+ B)Y][P(T) {1 = P*} +2P{P(T)}’]

|As] = [P(DP[(1+X*+2PX)(1+X*—2ePX)/ {4PX*(1+¢)}]

[Ag| = [A4s]

again that this behavior is caused by the fact that 1t 1s
physically impossible for a crystal to have a polarizing
efficiency P(T) greater than 1. The mirror images of
these plots occur for the negative values of X.

In order to calculate now the error in P(T) due to
errors in I; through I, we regard P(T) to be a function
of P, ¢ and R, as expressed by eq. (26). We further
regard P and ¢ as functions of the experimental in-
tensity ratios R, R, and S (defined in terms of I,
through I, in column 1 of table 2) as expressed by
egs. (20), (21) and (22). Since there are no further
difficulties with the existence of derivatives we calculate
AP(T) due to, say, I; according to the first term in a
Taylor expansion [eq. (30)]. Since the quantities 7,
through J, are statistically independent we write the
expression for the total AP (T) as

AP(T) = +[{(¢eP(T)/ 81 ,)31,}* +
+{(@P(T)oL,)o1, 3 +..]2. (32)

The partial derivatives are found by the “chain” rule
from the relations between P(T) and P, &, R, as noted
above. We also assume that

81, = I%. (33)
The expressions that result from this procedure are
shown in table 3 where we have written for simplicity

AP(T) = +[(A3/1,)+(A3/1,) +(A3/13) +
F (AL + (AT + (AL ). (34)

We note in passing that the I, are corrected for back-
ground and that we include this 1n the computation of

ol /1, as well as statistical errors in the monitor system.
We can usually ensure that the monitor error is small
so that we have written eq. (34) as a convenient approxi-
mation, bearing in mind, however, that 67,/I, includes
monitor and background errors in an actual calcula-
tion. The behavior of these coefficients |A4,| with
changing X are plotted in fig. 5 for the two sets
P=¢=1, =0 and P=09, ¢=1, f=0. For the
perfect conditions we note the symmetry of the A,
about X =0 and that 45, =0. If both P and ¢ are
different from 1 then there 1s no symmetry about
X =0. In our second case 4, = A, only because both
f=0and e=1 as 1s evident from table 3. Note that
AP(T) may be large near X = 1 because of 4, but also
1t may be large nea1 X =0 because of 45 and A4. For
example if we make the somewhat unrealist:c assump-
tion (for convenience) that we have counted all in-
tensities to an accuracy of about 4%, then use of fig. 5
to find the A, (and table 3) shows that AP(T) = 0.05
if either X=0.1 or 0.7 for P=09, ¢=1 and f=0.
In this case the percentage error AX/X is much larger
for the case when X = 0.1 than for X’ = 0.7 as may be
seen from fig. 4.

If an extensive experimental effort is directed toward
form factor measurements it 1s worthwhile to prepare
a series of figures of the type shown. The procedure 1s
then as follows. Measurement of the intensities I,
through 7, yields values of P, ¢ and 8 according to
egs. (20), (21), (22) .. . Measurement of 75 and /4 yields
a value of R, and fig. 2 is used to find the value of X'
for the particular P, ¢ and . The polarizing efficiency
is then easily calculated from eq. (27) or read off fig. 3.
The A, are then read from fig. 5 and used to compute
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+ AP(T). The percentage error AX/X 1s then found
from fig. 4. We will discuss further the experimental
implications of calculations like those given in the
example above 1n a later section.

6. Systematic errors

The systematic errors which arise in an experimental
measurement may be due to changing conditions in the
experimental apparatus or to the lack of validity of
some assumptions made about the measurement. In
polarized neutron diffractometry an example of the
former may be an increase 1n electronic noise when the
rf flipper is on and an example of the latter may be
that the sample 1s not a simple ferromagnet so that
there is a spin-flip cross section. Such errors are often
difficult to estimate and careful experiments must be
devised to eliminate or attempt to measure them. We
shall comment here on just four of the more obvious
systematic errors.

6.1. EXTINCTION

In section 4 1t was pointed out that in order to
identify the measured flipping ratio with the simple
cross section formula [eq. (7)] of section 2 it is necessary
to assume that there is no extinction in the sample.
There are a number of ways that this can be checked
experimentally?) and it is our approach, in general, to
reduce the sample dimensions until our checks indicate
that there is no extinction. This may not always be

practicable so we show how our previous expressions
must be modified to include extinction effects.

For each material cross section the extinction coeffi-
cient 1s defined as the ratio of the observed intensity to
that which should have been observed. Thus, for
example,

T _ T
otr = Epi04p

(35)
where 4, 1s the cross section for up-up scattering m
the test sample material and o?T 1s the actual cross
section for up-up scattering in the sample crystal. The
extinction coefficient £ is imitially linear with the cross
section, i.e.

E=1-u0, (36)

where « is a coefficient determined by the sample
geometry and mosaic spread, so that if the cross section
is very small E— 1. If we assume, again, that there are
no spin-flip processes then the expressions for R,, and
P(T) are modified as follows.

R, =1I/lo={FQ+P)(1+X)*+(1-P)(1 - X)*}/
[{F(1—eP)(1+ X)*+(1+&P)(1—X)*}, (37)
P(T)= 2X(1+F)—(1-F)(1+ X%}/

{1+ F)(1+X?*)—2X(1-F)}, (38)

(39)

where
F=E[E], = {I—o(l+X)*}/ {l—a(1—X)*}

and, of course, F=1 1f there is no extinction.
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Fig 5 This figure shows the functional dependence of the error parameters Ajof eq (34) on p/b The plots are made for two choices
of the instrumental parameters P, ¢ and f.
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There is no reliable way of calculating F and every
effort must be made to avoid extinction 1n the sample.
However, there are various methods of estimating it
which with the formulas (37) and (38) can give an
indication of the importance of extinction for various
values of X.

6.2. DRIFT OF FLIPPER EFFICIENCY WITH TIME

Polarized neutron diffractometry frequently involves
long counting times both because of the inherently low
intensity available from the commonly used Co(8%; Fe)
polarizer and because the magnetic scattering ampli-
tudes are often small compared to the nuclear scattering
amplitudes. During long counting periods the flipping
efficiency may change because of drift in the rf power
supply. This necessitates periodic checks of the effi-
ciency. The effect of this systematic error i1s most
mmportant if the magnetic and nuclear scattering
amplitudes are nearly equal. If it 1s found that the
efficiency changes substantially with time we suggest
elimmating the fipper from the measurements on the
test crystal. In its place we propose to use the shim, of
which the depolarizing efficiency § is already known.
The propagation of the statistical errors follows the
development of section S5 with the replacement of f
for & 1n the expression for R,. The coeficients A4, of
table 3 are replaced by new coefficients B, found by
writing  wherever there 1s an ¢ and at the same time ¢
wherever there 15 a §.

Thus

B, = A(B¢);
B, = As(ﬁ“—’ﬁ);
By = Az(ﬂ“"g);

B, = A4(ﬁ*"8)5
Bs = As(ﬁ*"a)§

B = Ag(fe). (40)

The B’s are always numerically larger than the A4’s,
as 1s to be expected, so that this method 15 only
preferable if the systematic error m ¢ is large.

6.3. SPIN-FLIP SCATTERING

It is important to check the assumption that the
sample is a simple ferromagnet. The method for doing
this by polarization analysis of the scattered beam was
indicated 1n section 2.

6.4. DEPOLARIZATION IN THE SAMPLE

This may arise if the sample 1s not saturated or if the
surface conditions are not good, as already discussed
in section 3. Depolarization can be checked for by
interposing the magnetized sample between the mono-
chromator and analyzer?). A procedure for dealing
with this systematic error has been given by several

authors'?) and it involves the assumption that the
depolarization n the specimen is uniform and 1s a
function of the distance traversed by the beam through
the test crystal. It has been our experience with
Co(8% Fe) that the effect 1s a surface one and conse-
quently we feel that the problem can be safely handied
only by ensuring that the sample is highly polished and
magnetically saturated.

7. Implications with regard to counting times

In section 5 we have described the procedure for a
rigorous calculation of the statistical error involved 1n
the measurement of the ratio p/b. The calculation is
rather complex and it is not easy to see through it in
order to draw conclusions about how a given experi-
ment should be performed. A practical question which
often arises 15 how long to spend on each intensity
measurement and a solution 1s frequently given after
assuming that a fixed time is available for a given
cxperiment. We take the position here rather that
sufficient time is available to find p/b to the desired
accuracy. As an example we propose that each of the
six terms 1n eq. (34) should contnbute equally to the
error AP(T). If we denote a counting rate by C,, then
the total accumulated count in a time ¢, is

I,=Cyt, (41)

For comparable contributions to the error AP(T) from
each term in eq. (34), we must have

Lity = (Cl/cl)(At/Al)za (42)

where the A, are given in table 3 and the ratios C,/C,
are given in table 4. Note that the expressions for
C,/Cs and C,/C, contain the ratio of the cross sections
of the sample and analyzer. We emphasize again that
these are Bragg scattering cross sections and so contain
crystal parameters hike the volume and mosaic spread.

TABLE 4
Expressions for calculation of counting times for equal
contributions to the error AP(T).

t/t, = (C{/C)(4,/A,)?

C,/C, = (1+P*)/(1-BP?)

C,/Cy = (1+P*)[(1—¢P?)

C,/C, = (1+P?)/(1+eBP?)

C,/Cs = {a*(1+P?)}/ {c"[1 + PP(T)]}
Cy[Ce = {o™(1+P?)}/{o"[L —ePP(T)]}
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The counting time ratios ¢,/¢; are plotted against p/b
in fig. 6a for P=1.0 and 1n fig. 6b for P =0.9 with
=1 and =0 in both cases. For these values of ¢
and B, t,/t; = t,/t; as1s evident from tables 3 and 4.
The main features of all these curves are that for
p/b=%1,1/t; <1;and that ¢,/1;— 00 as p/b— 0. These
characteristics are not unexpected in view of the be-
havior of the A, shown in fig. 5. A similar calculation
can be made if the shim ratio method mentioned n
§ 6.2 1s used. The ratios of the counting times are, of
course, always larger than when the flipper is used.
We conclude this section with a comment on the
polarization of the beam incident on the test crystal.
1t is rather obvious that the further P is from one, the
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Fig. 6. Plots of the relative counting time ratios #;/#: as a function
of p/b necessary to obtain equal contributions (from each of the
six indices) to the statistical error AP(T) in the polarizing ef-
ficiency of the sample crystal, for (a) P=10, e=1.0, =0;
b)P=09,¢6=1.0,=0.

larger the correction which must be applied to the
measured flipping ratio R, in order to obtain p/b,
particularly when p/b— 1. A corollary 1s that any
uncertainty 1n P becomes more serious in determining
p/b the more P differs from 1. This is quite evident from
the plot of R, against p/b in fig. 2, where 1t is seen that
when p/b =1, R, changes from oo when P=1 to 19
when P =0.9. There 1s no doubt, therefore, that for
accurate form factor determinations in the vicinty of
p/b = 1 every effort should be directed toward obtaining
a beam which 1s as close to 100%, polarized as possible.

8. Summary and conclusions

In this paper we have shown how to calculate the
statistical errors involved i measuring magnetic form
factors using polarized neutrons. The discussion began
by reviewing the interference cross section for Bragg
scattering of polarized neutrons in order that the usual
assumptions implied by the method would be clear.
Emphasis was placed on the assumptions required to
arrive at the familiar expression for the flipping ratio
in simple ferromagnets [eq. (7)]. It was pointed out that
the assumption of a simple ferromagnet (no spin-flip
scattering) can be checked by polarization analysis of
the scattered beam.

In section 3 we developed expressions for the various
ntensity ratios measured when using the shim ratio
method for determining the polarization of the beam
and the flipper efficiency. Emphasis was again placed
on the assumptions required to arrive at the commonly
used expresstons. It was pointed out that an additional
measurement (flipper on, shim in) leads to the deter-
mination of the depolarizing efficiency of the shim and
consequently provides a consistentset of measurements.
This work was extended in section 4 to the measurement
of the flipping ratio from a test crystal. The additional
assumptions required to interpret the results in terms
of the material cross sections or scattering lengths (p,b)
were noted.

In section 5 we derived expressions for the propaga-
tion of the statistical errors involved in measuring the
six 1ntensities necessary for a determunation of pfb.
A procedure for finding the error in p/b from a series
of plots was outlmmed and a numerical example was
given.

In section 6 we discussed some of the systematic
errors which can arise in polarized neutron diffracto-
metry. There appears to be no safe way of correcting
for extinction 1n a test crystal, and we concluded that
for an accurate determination of p/b the extinction
must be negligible.

We suggested that if the rf power supply causes drift
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in the flipper efficiency over long counting times then
it may be preferable to avoid this systematic error by
using a shim instead, particularly when p/b is close to 1.

Although procedures for correcting for depolariza-
tion in the specimen have been suggested by others we
feel that accurate measurements of p/b can be made
only 1f this source of error is eliminated. This can be
done by ensuring that the sample 1s highly polished and
magnetically saturated.

There are, of course, several other difficulties which
can arise in polarized neutron measurements, notably
multiple Bragg scattering. The treatment of this diffi-
culty (rotation about the scattering vector) and others
have been described elsewhere.

In section 7 we discussed some of the experimental
implications of the error analysis. We showed how to
calculate the counting times required 1f 1t is desired to
have equal error contributions from the six intensity
measurements. The principal results were that large
counting time ratios are necessary when p/b—0 and
that small time ratios are involved if p/b— +1. We
draw attention here, however, to the fact that the
calculations were of counting time ratios and that the

effects of fig. 4 [AX/X vs X for values of AP(T)/P(T)]
were not included.
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