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ABSTRACT

This paper discusses the design and construction of
a compiler whose source language consists of sentences of
a restricted predicate calculus, and whose output object
code operates on a simulated associative target machine.,
The source programs are characterizations of relations,
used for deriving one relation from others, and for com-
pleting relations. A program realizes the completion of
a relation when it defines that relation in terms of it-
self, i.e., when the definition is recursive.

The most significant feature of such a compiler is
that there are two levels of operators and operands. The
first level operators are the logical connectives whose
operands are relations, which in turn have as their "oper-
ands" relational arguments. The lower level operands deter-
mine the context-dependent interpretation of the higher
level operators. The parse is further encumbered by the
fact that the logical connectives in such a framework do
not lend themselves to a production grammar. The situation
is resolved by constructing a digraph to represent the
definition of the relation. This construction proceeds
using a back-up technique. The output of the compiler is
an object program in the form of a macro definition, to be

expanded for an interpretive associative target machine.
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1. INTRODUCTION

An associative computer memory can effectively be em-
ployed to approximate '"content addressability." By an
associative memory we mean a memory that stores information
in ordered n-tuples, called associations, which can be refer-
enced by specifying any of the components of the association.
We refer to an association by its contents (components),
rather than by any address; indeed, it is the lack of ex-
plicit addresses that characterizes an associative machine.

The term content-addressable becomes clearer when we see

that we reference an association by its contents. More pre-
cisely, by a content-addressable memory, we essentially

mean one in which the name of a datum contains a dynamic

cue to the relevant information about that datum. Content
addressability obviates table lookups, binary search, etc.
An associative processor provides a useful approximation

to content addressability.

The associative processor being used in the work reported
herein is TRAMP [1,2], a software simulation of an asso-
ciative machine. TRAMP associations are 3-tup1es [3]

<A, 0, V>

<Attribute> of <Object> equals <Value>: A (0) = V
This associative processor provides a semblance of content
addressability and can be used to store and retrieve effi-

ciently large amounts of data. However, any association, or
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combination of associations,will in general imply many more

associations. For example:

[Husband (Mary) = John] ===> [Wife (John) = Mary]
Uncle (Norm) = Sam
Father (Norm) = Harry Nephew (Sam) = Norm
===>) Brother (Sam) = Harry
Brother (Harry) = Sam Son (Harry) = Norm

This situation can be resolved by requiring that the
user redundantly enter his information in all the various
ways that he might want to access it; or, more realistically,
the user can define a relation, whereby he specifies what
inference rules may be used in deriving the implied associ-
ations. Now the important distinction, once we have decided
to admit relations, is whether their definitions will be

extensional or intensional. We can extensionally define a

relation by going through the data structure and generating
and storing all implied associations. This might be done
with an iteration loop:

FOR HUSBAND (A) = B, LET WIFE (B) = A
That is, all the ordered pairs which comprise the (binary)
relation are generated and stored. This is the approach
taken by many associative processors. The result is that
all the implied information can in fact be made available,
but there are two serious drawbacks:

1) In general, an extensional definition will gobble

up extensive amounts or core, rendering it oper-

ationally uneconomical, or, in the extreme,



infeasible.

2) Unless these iteration loops are entered frequently
and regularly, their time-dependency renders the
extension incomplete, and/or inaccurate.

The alternative to an extensional definition is the
intensional definition: where we characterize the relation,
rather than exhaustively storing all of its ordered pairs.
As an example, if we were to characterize the relation
"WIFE" [of] as:

WIFE = Converse of HUSBAND
and we now want to ask who is the WIFE of Harry, we could
ask:
WIFE (HARRY) = ?
and the system, using the characterization given above,
would expand the question to be:
WIFE (HARRY) = ? or HUSBAND (?) = HARRY
It would ask both questions since it doesn't know if the
desired association appears implicitly, explicitly, neither,
or both.

This is the operational strategy of TRAMP intensional
relational definitions. The user enters the definition as
a sentence of a modified pretlicate calculus, e.g.,

(WIFE = .CON. HUSBAND)
This is the source program for a compiler whose output is

an object program written in the associative language. This



object program will then effect the "expansion" of questions
to extract from the data those relevant associations that
can be inferred from associations explicitly in core and

the intensional definitions of correspondences.*

*The goal then is only to reduce the number of associative
sentences necessary to represent information, rather than
to provide sophisticated heuristic search procedures for

a question-answering system.



2. THE ASSOCIATIVE OBJECT LANGUAGE: TRAMP

TRAMP is fully documented in [1,2], but a brief summary
of it must be given here. As stated in the introduction,
TRAMP works with 3-tuples, or associative triples: A, 0, V,
which can be read as: A(0) = V. By specifying an associ-
ation with the various components of the triple being either

constant or "variable,'" there are eight questions that can

be asked:
FO A (0) =V
Fl A (0) =
F2 A(?) =V
F3 A (?) =27
F4 ? (0) =V
F5 ? (0) = 7
F6 ? (?) =V
F7 ? (?) =

where "?" represents a variable. Question FO has no vari-
ables; it simply asks if A (0) = V, and expects a truth
value. The other questions all have one or more variables,
and the variable is expected to take on, as its value, the
"answer set," i.e., the set which completes the association.
TRAMP is currently embedded in the UMIST* interpreter.
Since the object programs of the compiler are TRAMP programs,

they must obviously work within the syntax of UMIST, a macro-

*UMIST [4] is a dialect of the TRAC T-64 language [5] (re-
gistered trademark of the Rockford Research Institute,
Cambridge, Mass.) locally implemented at the University of
Michigan, on the IBM 360/67.



generator language. Procedures are defined by the user as
UMIST macro definitions. When a "function" is called, if
the function is a user-defined macro (procedure), then it
is at that time expanded; if the function is a pre-defined
primitive of the language, then that routine is invoked.
The pound sign (#) signals the start of a function call,
with the call itself enclosed in an immediately following
pair of parentheses. The arguments are delimited by commas,
and the first argument is the name of the function (or
macro). The arguments may themselves be function calls,
with nesting depth effectively unlimited. UMIST functions
are evaluated recursively from the inside out. All of the
arguments to a function must themselves have been evaluated,
with the value, possibly null, replacing the call, before
the function can be called. A UMIST function call might
look like:
#(ds,X,Y)

where ds is the name of the function, and X and Y are the
arguments to ds.

This paper assumes no knowledge of UMIST (TRAC), except
for the syntax described above, and the recursive manner
of replacing a function by its value, which will be shown
more clearly in subsequent examples.

The TRAMP system is an addition to UMIST of primitives
which create and manipulate an associative structure. The

full facilities of TRAMP are described in [2]; following are



brief descriptions of the primitives which constitute a

level O object language for the compiler.

NAME: RL
PROTOTYPE: #(RL,A,0,V)
DESCRIPTION:

This is the primary retrieval function in TRAMP, and
as well as being used in compiler-generated programs, it
is the function which when called by the user invokes the
object programs of the compiler.

Variables are specified by two asterisks (*). The
answer set is the value of the function. For example,

#(RL,COLOR,CAR,**)
asks "What color is the car?" and expects the answer to
be the value of this function. Two-variable questions
generate two answer sets, rather than a set of ordered
pairs. There is one special case of the two-variable
question which is significant to the compiler-produced
code. This case is where one of the variables is denoted
by '*e*', i.e., an at-sign between the two asterisks. The
'@' signifies that although that component of the triple
is to be considered arbitrary, the corresponding answer
set is not desired, and should not be generated. The
question #(RL,COLOR,*@*,**) would find ALL things which
appear as the third component of associations in which

"color" is the first component.



There are several variations of this function and the
compiler uses some of them. The function named RL@ is the
entry point which specifies that any programs previously
put out by the compiler are NOT to be executed, i.e., only
explicitly stored associations are to be retrieved. This
function is always used by the compiler. The other varia-
tions that the compiler uses do not differ from each other
in ways significant to the discussion in this paper and can
be considered implementational details. 1In all examples,
only these two forms will be shown, although in practice
others are used. There are certain other minor points
which will differ in actuality from what is shown in the
examples, but they are details whose explanations are not

warranted.,

NAME: INT
PROTOTYPE: # (INT,SET1,SET2)
DESCRIPTION:

This function forms the set intersection of its two
arguments, and returns the intersection as its value. TRAMP
sets are unordered collections of things, separated by semi-
colons(;) (necessitated by the crucial role that the comma
plays in UMIST) and possibly containing redundancies, i.e.,
the same element may appear several times in the same TRAMP

"set."



NAME : RCOM
PROTOTYPE: # (RCOM, SET1,SET2)
DESCRIPTION:

This function similarly forms the relative complement
of its two arguments. The second argument is logically
subtracted from the first, with the result being the value

of the function.

NAME: ee
PROTOTYPE: #(ee,STRING,NAME)
DESCRIPTION:

This function can be considered an internal function,
since it was written specifically for the compiler, is not
generally available to the user of TRAMP, and does not appear
in the TRAMP reference manual.

This is the '"clean-up" function. The programs gener-
ated by the compiler are always the first argument, STRING.
Because of the program structure, as we shall see, several
"paths" specified by the definitiom may lead to the same
point, causing redundancies; and some paths may lead to
dead ends, resulting in dangling set element delimiters.

The function @@ checks for these two conditions and corrects
them if necessary. The second argument, NAME, specifies

the disposition of the result. If the argument is given,
then the cleaned-up set is stored, labeled by the NAME,

and the function itself is null-valued. If this argument



-10-

is omitted, the cleaned-up set is the value of the function.



3. OPERATIONAL BEHAVIOR WITH THE COMPILER

Retrieval functions are handled as follows. All calls
to RL and its variations, with the exception of RLE, are
calls to a preprocessor. This preprocessor looks to see
if the relation (first, or A component) has been defined.

If not, the preprocessor simply passes on the call to the
associative structure, as if the original call had been

RLe. If the name is found to have an active definition,

an interpreter is called. This interpreter (not to be
confused with the UMIST host interpreter) expands the
programs output by the compiler, filling in items specific

to the call, like a macro expander. The actual expansion

is really quite short, fast, and simple, with the bulk of

the work being performed first by the compiler at definition
time, and later by the preprocessor, which must appropriately
Manipulate the expanded programs to effect the intent of the
original retrieval call. The result of the preprocessor is
Teturned to the UMIST interpreter to be recursively expanded.
, This quite significant, since at each stage the preprocessor
need only be concerned with one level of complexity. If

a8 relation is defined in terms of other relations, which

in turn are defined, etc., the UMIST recursion will take

care of it. We will follow a very simple example to demon-
strate how this happens, at the same time exhibiting the

recursive replacement behavior of UMIST. Suppose that WIFE

-11-
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has been defined to be the converse of HUSBAND, and the
user now makes the function call:

# (RL,WIFE,HARRY, **) [Who is Harry's wife?]

Then the value of this function, as returned by the pre-
processor, would be:

#(ee,# (RLe,WIFE,HARRY,**) ;# (RL,HUSBAND, ** ,HARRY))
Notice that the call for WIFE will bypass the preprocessor
and hence avoid an infinite recursion., That call must be
made, since the desired association may very well appear
explicitly. We might expect that one of the two calls will
result in a null value, and hence a dangling semicolon. @@
will then delete it, If HUSBAND has not been given a defini-
tion, then that call, though it will not bypass the prepro-
cessor, will not be affected by it and will result in a
straight associative retrieval. Had HUSBAND been defined,
say as a Male Spouse, then that program would be the value
of the call for HUSBAND. Specifically, after making the
call for HUSBAND, depending on the exact definition used,
the string being processed by UMIST might look like:

#(ee,wifeofharry;# (@e#(RLe,HUSBAND, * *HARRY) ;

# (RL,SPOUSE, ** ,# (INT,HARRY, # (RL,MALE,**))))
where "wifeofharry'" represents the explicit retrieval speci-
fied by the first call, since this will have already been
€valuated. Now, if SPOUSE has been defined, say to be sym-
metric, this process continues recursively until there is

nothing left to evaluate. Note that we are guaranteed at
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least one more level of expansion, since the unary relation
MALE appears. The associative structure only deals with
triples, indicating that a unary relation is either defined,

or the call is a syntactic error.

3.1 COMPILER SOURCE LANGUAGE
The compiler itself is called with the function DDR.
The syntax of thé call is:
#(DDR, (R = exp))
where R is the relation being defined, and '"exp'" is a sen-
tence of a restricted predicate calculus, without explicit
quantifiers, which defines the relation. The relations on
the right side of the equation are joined by the normal
logical connectives:
AND (.A.); OR (.V.); NOT (.N.).
In addition, there are two relational operators: Composi-
tion, or relative product, denoted by a slash (/); and Con-
verse (.CON.). Finally, equality or inequality may be spe-
cified (.EQ.; .NE.). The precedence of these operators is

as shown below.

/
.CON.

.EQ., .NE.
N.
AL
V.

The above precedence (descending order) ordering may be altered

in the usual way by the appropriate use of parentheses.
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The relational notation used is the R(x,y) format, where
R is the relation and x and y its arguments. This can be
read as: y stands in relation R to x. The arguments are
set off by parentheses. This is a slight distortion of the
associative format, A (0) = V, but the ordering is preserved:
R(x,y) corresponds to R (x) = y. With this as the source

language, some typical definitions are given in Figure 1.

Figure 1. Sample Source Programs
¢ (DDR, (BIGGER = BIGGER / BIGGER)) BIGGER is transitive

# (DDR, (BIGGER(a,b) = BIGGER(a,q) .A. BIGGER(q,b)))
exact same definition using expanded
format--specifying the dummy arguments.

#(DDR, (SIB = BRO .V. SIS .V. .CON.SIB))
a sibling is a brother or a sister, and
it is symmetric.

# (DDR, (BRO(cain,abel) = SIB(cain,abel) .A. SEX(abel,'"male")))
a brother is a male sibling. Note that
constants are denoted by enclosing them
within double quotes.

#(DDR, (MALE (x) = SEX(x,"male'")))
defines the unary relation MALE.

# (DDR, (BRO(x,y) = FATHER(x,z) .A., FATHER(y,z) .A. MALE(y)
A, x .NE. y))
a brother is a male offspring of the same
father, other than oneself.

# (DDR, (STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))
a stepmother is the spouse of the father
who is not the mother.
# (DDR, (NEPHEW SIBLING / SON))
a nephew is the composition of sibling
and son.

.CON. (SIBLING / SON)))
in a male world, uncle is the converse
of nephew and may be defined as the con-
verse of the definition of nephew ‘

# (DDR, (UNCLE

# (DDR, (UNCLE

.CON.NEPHEW))
or simply as the converse of nephew.
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The first two examples of Figure 1 show the difference
between the abbreviated and expanded formats. The problem
of the compiler would be reduced to trivia if all defini-
tions were abbreviated (this would be analogous to propo-
sitional calculus). The expanded format is necessary for
several reasons: it is an important means of implicit
existential quantification (explained below); the equality
operators EQ and NE take as their operands the dummy vari-
ables of the expansion; it adds an important facet to the
TRAMP language-—easiné the mathematical formality with
which the programmer must view his relations. Many rela-
tions would be much more difficult, and some impossible (e.g.,
unary relations), to define without this feature, as exempli-
fied by three of the four expanded definitions of Figure 1.

The problem posed by expanded definitions is that we
have two levels of operators and operands. We have the
"normal" operators, such as conjunction, which would have
for its operands, relations. But now relations themselves
are a kind of operator, with the dummy arguments of the
expansion as their operands. Ultimately, it is these dummy

arguments that determine the context, and hence the semantic

interpretation of the higher level (normal) operators.
There are no explicit quantifiers. Quantification is
handled in the following manner. On the left side of the

defining "equation" are two dummy relational arguments.
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They are free variables. Any other dummy argument is exis-
tentially quantified. Existential quantification is used
in two different ways. The first is composition, e.g.,

GRANDFATHER (x,y) = PARENT(x,a) .A. FATHER(a,y)
where the implicit quantification is:

3a[PARENT(x,a) AN FATHER(a,y)] ==> GRANDFATHER(x,y)
"a," the intermediary (link) is a bound existential variable.
The second case is where the existential variable is used
to require only that the free variable lies in the domain
(or rangé) of some other relation. We will demonstrate
this by ﬁsing the unary relation "AUTHOR," defined in English
as "AUTHOR(x) if x WROTE something," or formally as:

3 z[WROTE(z,x)] ==> AUTHOR (x)
which in TRAMP would be written:
AUTHOR (x) = WROTE(z,x).

In short, the two (one) dummy arguments that appear

on the left-hand side of the equation are free variables,

and any other dummy argument is existentially quantified.



4. THE TRAMP INFERENCE COMPILER

The compiler that takes these definitions and gener-
ates programs for an associative target machine is a many-
pass compiler. The actual number of '"passes" or scans of
the original source program is variable, depending on the
particular program, and is not a meaningful way to talk
about the algorithm. Rather, the compiler is said to con-
sist of three distinct "phases."

The first phase does little for the case where the
expanded definition is used, but it has a slightly tricky,

if straightforward, job for abbreviated definitions. The

first phase cleans up the definition, i.e., does a reasonably
thorough syntax check and converts to canonical form. Can-
onical form means that the definition is fully expanded and
is in disjunctive normal form. In addition, the first phase
does all of the list processing (Figure 2). The programs
output by the compiler are coded into a string of bits, which
are kept in normal TRAMP lists, and there is a fair amount

of list processing required for linkage and compatibility

with the rest of TRAMP.
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-18-

*s)yd9yd A3rTIeInd

-I1D2 XI0F ‘JO SWIS3] UT POUTIFSpP ST UOI]

-BT9X STY3l 3BY3 SUOTIBISI JO 3ISTT 9yl

st 5 f‘xerrtdwoo ay3z Aq 3ndino swexload

oml 9yl o3 sxajutrod ayil a2xe g4 pue

Id f{(Butfeidsip pue SuTrlIpe® IO0F) JIISn

2yl £Lq poxs3lus Se UOIITUTIFSpP 9yl JFo

uorieiusasaxdox H1gDgd @92yl o3 xsjutod

9yl ST ‘Q ‘3sxTF¥ 92yl :sxsjurtod anojJ
SUTIB1UOD OST® )YD20Tg JI93UTIOod 9YlL

*3ISTT SY3l UO jJUDWS TS 3IXdu syl o3 Hou:ﬂom
9yl ST N pue fMOT9q poqTxodsap ‘207149
Ixo3utod oy3 o3 sjutod g4 f‘oweu oyl 3Surpioy
1sTIqns oyl Jo A1eAridoadssx TIeB] pPuUB PEBOH

oya o031 saojurod aya osxe | pue H :sasjutod
InoJy sey Iopeoay Yydeyg "SIOpeOY FO 1ISTIT
® 01 sautod Axjus 3eY] °O1qEI LSUWBU UOTI]

-e79a pouTyep o9ya urt Axjus ue sjleudTSsop 013
wPoUs®eY,, ST UOT3BISI 8yl JO SWBU SY]L

SUOT31BT®Y JI0F SUISSad0xd 3ISTIT °g 2an3ty]

[efo

(ad) %5018 ¥3ILNIOJ

° O ° - z mn* I .._u.‘

o A

-
-

NjGd|H | 1

SY3Igv3iIH 40 1SN

318vL | T/
3WVN

JNVYN NOILVYI3Y 40 HSVH



-19-

The second phase is the largest (physically) and most
complicated. Its job is to build up a series of tables.
These source programs are heavily context-dependent, and
the tables are designed so that they actually specify pre-
cisely the program that must result. The tables constructed
during the second phase make the job of phase 3 reasonably
simple, in that it can easily translate these tables into
object code recursively. In this section, each of the three
phases will be explored, hopefully clarifying the preceding

paragraphs.

4.1 AN OVERVIEW
Recall the eight questions that can be asked of the

associative structure (page 5). Of these eight questions,
the compiler is concerned only with Fl1 and F2. The other
six can all be answered by appropriate manipulation of the
two programs that would directly answer F1 and F2 (recall
that that is the job of the preprocessor). Therefore the
compiler addresses itself to:

F1: A (0) = ?

1

R(x,?)

F2: A (?) =V = R(?,y)
i.e., it assumes that the relation and one of its arguments
is given, and the object program must find the other rela-

tional argument. The compiler strategy is: given a relation

and its first argument, build a relational chain to the

second argument. This will be the program P1l, which answers
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question Fl. Then the situation is reversed and phase 3
is repeated, with the result that P2 is output to answer
question F2. The difference between the two passes is in
the position of the variables, and the difference in the
programs ouput is usually a difference in the ordering of
the chain, and always a difference in the position of the
argument.

The concept of the relational chain is fundamental to

the compiler. The construction of the relational chain
amounts to building a directed graph, or network, where x
is the source, y the sink, and each relation is a directed
line. Such a network will often be trivial, and usually
simple. Complexity is introduced when there is more than
one source or sink. Such a situation can arise when an
argument is implicitly existentially quantified. The prin-
cipal table constructed during phase 2 is designed to repre-
sent the digraph.

With this representation of the definition of a relation,

it is seen that the compiler can think of each relation as

having an "input" and an "output" (the end points of the
directed line). If it is building the chain from x to vy,
then x is always the initial input, and y is the final out-
put, though there may be any number, and any level of inter-
mediary inputs and outputs (generally introduced by compo-

sition, though they may arise in other ways). For the
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second pass, to generate P2, the situation is reversed in
that y is now the source, and x the sink, i.e., all arrows
of the digraph are reversed. The relational chains are
uniquely specified by the tables constructed in phase 2,
as we shall see, and the fact that one relation will in
general be the input to another relation (more exactly,
the output of one is the input of the next) allows phase

3 to operate recursively.

4,2 PHASE 1

Phase 1 first does an initial cleanup of the defini-
tion string (source program) and prepares the necessary
list processing. The cleanup includes a preliminary, but
reasonably thorough, syntax check. The list processing is
complicated by the fact that it is perfectly valid, and
often desirable, that a relation have more than one defini-
tion. We might define sibling:

# (DDR, (SIB = BRO .V. SIS .V. .CON.SIB)),
and then realize that this is not complete and append to it:

#(DDR, (SIB(x,y) = SIB(x,z) .A. SIB(y,z) .A. x.NE.y)).
Changes of this type can be made either by entering a new
definition, which will be ORd with the old, or by editing
a definition, i.e., altering, deleting, adding to a progran.
Of course a definition may be destroyed to start fresh, too.
In any case the compiler is called, and if the relation is

not new, must set up for continuation, including making
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provisions for saving the old definition in case the new
one is not valid (to the compiler). If the relation is
new, table entries must be made and lists set up to hold
the necessary information. Finally, all lists and tables
are part of the TRAMP machine and must maintain compati-
bility and respect conventions.

Now, if the definition is the expanded type, then the
compiler skips the next section, otherwise the definition
is abbreviated and phase 1 must expand it, i.e., fill in
the relational arguments. For example,

R=Q/ (C .v. D) .A. .N.P .V. .CON. A/D

must be expanded to:

R(x,y) = Q(x,a).A.(C(a,y).V.D(a,y)).A..N.P(x,y).V.A(a,Xx)
.A.D(a,y).

The job here is to decide what the arguments are. The com-

piler uses the convention that the definition is in terms
of x and y, and assigns other arguments different letters
of the alphabet. We will use the convention that lower-
case Latins denote arguments, and capital Latins denote
relations,

The first thing is to remove the slashes. This is,
or would be, very straightforward, except for the fact that
no limit is placed on the depth or the complexity of conm-
position. An example of the problem is definition (1):
A/B/C .V. D/E —> A(x,a).A.B(a,b).A.C(b,y) .V. D(x,a).A.E(a,y)

(1)
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while
(A .v. B/D/C)/E —> (A(x,c).V.B(x,a).A.D(a,b).A.C(b,c)).A.E(c,y)
In this example, we really have to make a complete pass be-
fore we can be sure of what the output of relation A will
be, since the context is essentially unbounded.

At this point we must introduce some terminology.
Everywhere in this paper, the word clause will refer to
a matched left and right parenthesis and whatever is be-
tween them, with the exception of parentheses used to set
off relational arguments, which are not considered to be
clauses. The individual relations within a clause will be

called terms. Thus the expression

R(x,y) .A. .N.((R1(x,y).V.R2(x,y)).A.R3(x,y))
contains four terms and two clauses.

The routine which removes slashes makes one complete
pass over the string, counting nesting "levels" of slashes,
This level is determined in terms of clauses and intervening
operators. For example, two slashes separated by an OR
account for a depth of 1, while two slashes with no inter-
vening operator account for a depth of 2. On this depth-
counting pass, each term and each clause is assigned a
level. The level is then used to index a pool of dummy
variable names, which when inserted, as in (1), will effect
the proper expansion of the indicated compositions. The
level of the clause is necessary to designate the proper

output of a relation, since the level of the term is
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sufficient only for designating its input.

The next step is to remove the converse operator.
Essentially this amounts to nothing more than reversing
the two relational arguments. Thus if the source program
had been:

HUSBAND = .CON. WIFE
then the first step will have trivially expanded it to:
HUSBAND (x,y) = .CON. WIFE(X,y)
and the next step shoul& yield:
HUSBAND (x,y) = WIFE(y,x).
Complications arise when the converse operator is applied
to a clause, since the clause can be arbitrarily complex
in terms of expanded compositions. One cannot simply walk
through the clause reversing arguments indiscriminantly,
as might be expected. The solution, simple, but not neces-
sarily obvious, is to find the highest and lowest '"level"
arguments (as determined in the first step) and substitute
each for the other, thus reversing local source and sink--
and nothing else.

Throughout the list processing and expansion, phase 1
is checking syntax. After any expansion, all parentheses
must be removed, leaving the definition in disjunctive
normal form. This step is fairly simple, though quite

awkward and bulky.* The main problem is that, in general,

*In fact, the compiler is presently being run without this
section of code, requiring the user to put the definition

in disjunctive normal form. This is not a serious drawback,
since 99% of user definitions are extremely simple, unlike
most of the examples in this paper.
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a clause can not be reduced to a term as it always can in an
algebraic language. In algebraic compilers reductions can
always be made: the operations specified within a clause
will elicit triples, with as many triples as necessary
being put together in telescopic fashion until the entire
clause is reduced to a single triple, which then can act
like a term in place of the clause. Such is not the case
with relations. Consider the source program:

R(x,y) = (A(x,a) .V. B(x,b)) .A. (C(a,y) .V. D(b,y))

[which is equivalent to: R = A/C .V. B/D].

This definition consists of two clauses, neither of which
can be operated on by itself, since out of context it is
meaningless. Furthermore, it is not clear that the clauses
can be "distributed," since that results in conjuncts such
as: A(x,a).A.D(b,y) where, of the four relational arguments,
no two are alike.

On the surface, it might seem that disjunctive normal
form might result in inefficient object code. Such an inef-
ficiency could arise from the fact that certain retrieval
calls will be made redundantly. Remember that each term
that the compiler is working with is ultimately an asso-
ciative retrieval call, and while we believe the associa-
tive machine to be efficient, we don't want to have to go
to it more than necessary. As an example, consider the
program:

R=(A.V.B)/C
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which will be expanded to:

R(x,y) = (A(x,a) .V. B(x,a)) .A. C(a,y). (2)
Now here is a case where the clause can indeed be reduced
to a single term, and it seems far more desirable to do so
than to put it into disjunctive normal form:

R(x,y) = A(x,a).A.C(a,y) .V. B(x,a).A.C(a,y)

Here, the inefficiency is the calling of the relation C
twice from the associative store, when it needs to be called
only once.

However, it was decided that the generality gained was
worth the slight cost (the overhead incurred is really more
of an aesthetic rub than a physical inefficiency, because
of the way the associative machine operates; the extra cost
is very slight). The main advantages of going to disjunctive
normal form are: generality--since all programs can be
handled in the same way without having to see when "distri-
bution" of a clause is applicable, etc.; this form yields
each of the conjuncts a complete program unto itself, greatly
simplifying the final phase of the compiler.

One final transformation that occurs in phase 1 is for
equality operators. They have the form "x.EQ.y" and are
transformed to have the syntax of normal relations:
"@EQ(x,y)", where @ signifies a non-graphic character to
avoid interference with the user's names, and also serves
as a flag to phase 3 that this is a pseudo-relation, not

a retrieval call.
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4.3 PHASE 2

Phase 2 begins the actual compilation, since if the
program was in canonical form, phase 1 performed only list
processing initializations and did not otherwise process
the source program at all. The heart of the compilation
is in the table construction. The problem is to decide
which of the two arguments is the "input" and which is
the "output." The approach is to use certain strategies
to construct a main table, and then, by means of backtracking,
adjust the table until it is correct.

For the purpose of discussion, and without loss of gener-
ality, we will assume that in the program being compiled, the
left side of the equation is "R(x,y)"; i.e., '"x" is the source
--the given argument, and "y" is the sink--what our object
program is to be designed to derive from the associative
structure.

The main table referred to above, and the one that phase
3 will translate into a program, will go by the name CHAIN.
One other table of interest is called ARG and is used in the
construction of CHAIN.

The ARG table contains entries for each relational
argument encountered, other than x or y. The entry consists
of EBCDIC name of the argument (up to nine characters are
allowed, though if phase 1 generated the names they will be
single characters), and the associated term, i.e., the re-

lation that "output" this argument. Of course, if an argument
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is come across which has not yet been output by any term,
then ARG assigns the term index, and the first term that
does output this argument will then be assigned that in-
dex in CHAIN.

CHAIN table entries correspond to terms (relations)
and contain the indices relative to CHAIN and to ARG of
the input of the term. In either case, if the input is
"x", then the index is zero. Otherwise the CHAIN index
is the index of the term that output this argument, and
the AGR index is just the corresponding ARG entry number.
The output index, relative to ARG is contained in CHAIN.
The last byte of the table entry contains a "count" and
several flags. The count is the number of times that the
output of this term is used as the input to some other term.
There is a flag denoting whether or not the output of this
relation is "y". Another flag specifies whether or not
this is a real relation or a pseudo-relation (@EQ); this
flag is mainly for phase 3, but it is also used during
phase 2, since when the table is being shuffled, pseudo-
relations are not considered to have outputs. The last
flag of interest denotes whether or not this relation has
been negated. The negation operator (.N.) is thus used as
an attribute of its operand, rather than as an actual oper-
ator. This works out rather nicely, again because we are
always working with conjuncts--the output code always inter-

sects the operands unless the negation attribute is flagged,
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in which case the relative complement (RCOM) is formed.

4.3.1 Initial Table Construction

First a left-to-right scan of the entire program is
made (phase 2 handles the entire program at one time--and
does not require disjunctive normal form-- whereas phase 3
will only process individual conjuncts), and as each term
is encountered its arguments are examined. If the argu-
ments are x and y, then there is no decision to be made,
since x is always an input and y is always an output. If
only one of [x,y] is present, then the other argument is
unambiguously specified as being the input or output, de-
pending on which one is present. If neither x nor y is
present, then ARG will hopefully give insight into the
matter, and if not, then a pure guess is made. To see how
ARG is capable of giving such insight, consider the follow-
ing example:

R = A/B/C —> R(x,y) = A(x,a) .A. B(a,b) .A. C(b,y) (3)
First the relation A(x,a) is processed and since x must be
the input, "a'" is placed on ARG and is noted as being the
output of the term A. Now when B(a,b) is encountered,
neither of the arguments is x or y, but the calculated guess
is made that "a" is the input, on the basis of its presence
on ARG and corresponding information. The input to B is
therefore the term A. This is only a guess at this point,

and it will be checked later. To see where this guess might
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be wrong, suppose that the definition had been:

R(x,y) = A(x,a) .A. B(a,b) .A. C(x,b) .A. D(a,y) (4)
[a "backward" way of saying: R = (A .A. C/.CON.B) /D]
This would correspond to the following relational chain
where A is intersected with B, but is definitely not the

input to B.

Y

It should be noted that the operator .A. can really
have two distinct meanings: intersection and composition.
In (4), the first .A. operator denotes set intersection,
while the other two are composition. We will see that
CHAIN does fully specify the program, in that the compiler
does not have to worry about the intent of .A., the inputs
and outputs will implicitly and unambiguously resolve the
matter,

The full details of how the two tables are constructed
are too laborious to go into here. We will try, by means of
examples, to give some insight into the manipulation (back-
up) and function of the table CHAIN. The final contents of

CHAIN for program (3) are shown in Table 1.
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# NAME INPUT OUTPUT Y CNT
1 A 0-0 1 0 1
2 B 1-1 2 0 1
3 C 2-2 FF 1 0

Table 1. CHAIN for Program (3).

In Table 1 and subsequent listings of CHAIN, the
following conventions are used. Under INPUT there are two
indices, corresponding to the CHAIN index and the ARG in-
dex. Though the two will often be identical, they need
not be. Any term that puts out "y" will have the Y flag
set, and also will show an output of "FF". The NAME column
is for the reader and is information indexed by another
table.

Table 1 thus represents the input to phase 3. The
third phase will work only with entries that are flagged
as outputting y. Thus, it will process directly only entry
#3 of this example. But the processing of any term means
using an input to get an output. The "output'" will always
be represented in the object program as a TRAMP variable
"**1"_ The input must be constructed. If the input is "x"
then that is the '"given" argument of the call and will be
inserted by the interpreter. If not x, then it is another
term, and phase 3 must recursively evaluate that term, there-

by generating nested function calls in the object program,
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i.e., the '"chain" is followed, and all links are accounted
for. This example shows how the composition form of .A. is
handled. The actual program that would be output from Table
1 1is:

#(RL,C,#(RL,B,#(RL,A,X,**), **) *%*)
where "X" represents the given argument of the call. The
exact external form that the program would take, of course,
is the job of the preprocessor. All programs finally returned
by the preprocessor will also contain the prefix:
"#(ee,#(RLe,R,X,**);' which retrieves explicit associations
as well as disposing of the result of the entire progranm.
In all object programs shown in this section, the prefix
is not included. The compiler does not concern itself with
the prefix anyway--it is the responsibility of the prepro-
cessor,

The table corresponding to program (4) entails com-
plications we haven't described yet, but since it illus-
trates two forms of .A., we will display the final program
for it:

#(RL,D,#(INT,#(RL,A,X,**),#(RL,B,** ,#(RL,C,X,**))),**). (5)
Program (4) also serves as a good example that the two
chains built by the compiler need not be especially similar.
When x and y are interchanged in program (4) for the second
pass, the result is:
#(ee,#(RL,D,**,X),@IS)# (INT,#(RL,A,** #(@IS)),#(RL,C,**,

#(RL,B,#(@IS),**)))
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where '"@IS" is a temporary form, described in Section 4.4.
Example 3 showed where the ''guess'" made concerning
the input/output of the arguments was correct, and (4) showed
it to be incorrect, i.e., the data gave misleading informa-
tion to the algorithm. There is one type of program for
which the guess has exactly a 50-50 chance of being correct.
An example of this type of program is:
R(x,y) = A(a,b) .A. B(x,a) .A. C(b,y)
[a valid, if awkward, way of saying: R = B/A/C],
i.e., the first term that is encountered does not have x or
y as an argument. Since ARG at this point is empty, a guess
will be made and will be correct depending on the direction

of the chain.

4.3.2 Checks and Revisions to CHAIN

After the initial construction of CHAIN it must be
checked for validity. Aside from having inputs mixed up
with outputs, the construction of CHAIN from ARG is capable
of specifying inputs that do not exist, that is, the corres-
ponding entry of CHAIN is blank (the two types of errors
often occur together). Sometimes this is valid, if the ar-
gument under consideration is a spurious source, as in the
next example. Otherwise, it is an error in the table con-
struction and will be corrected. An example of a valid

instance of a non-existent input would be:

R(x,y) = A(x,y) .A. B(a,y),
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where the argument "a" is implicitly existentially quanti-

fied. This program would make use of the special two-

variable question mentioned in Section 2, "*@*", The final

external form of the corresponding object program would be:
# (INT, # (RL,A,X,**) ,# (RL,B,*@* **)),

The process of correcting invalid instances of non-
existent inputs is a matter of backtracking and tracing out
chains. If a chain terminates before arriving'at x (from y),
then the last input is looked for as an input to some other
term. If it cannot be found as such, then the chain is exis-
tential; if it is found, then the term on which it is found
is considered to be backwards, and therefore inverted if it
is feasible to do so (output not y).

For the program (4) this checking procedure is not

enough. After this first check the CHAIN table will appear

# NAME INPUT OUTPUT Y CNT
1 A 0-0 1 0 2
2 B 1-1 2 0 0
3 C 0-0 2 0 0
4 D 1-1 FF 1 0

Table 2. CHAIN for Program (4).

A D
as in Table 2. The only chain found was x—yp—a—H—y,
which completes a path from source to sink. But there are

two terms whose output is index #2, and neither of them is
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used, i.e., CNT = 0. The next check looks for precisely
this situation: an argument that is found on ARG that is
the output of two or more terms, all of whose counts are
zero, This is taken to mean that one of the chains is
backwards. Which one is backwards is decided by tracing
back the non-terminal chains (from their local sink) to
see which one was guessed at. In the present example,
the trivial chain specified by the relation C was not guessed
at and must be correct. Therefore, the input and output of
relation B are interchanged, giving C a use-count of 1. The
table must be further altered, but we will put that off for
a moment, The result of this step is shown in Table 3. Of
course, if neither term was guessed at, then no changes are
made and the chains remain existential.

It should be noted that for all of this chain tracing
and searching for arguments, the procedure is quite efficiently

handled by the CHAIN table itself--there is no need to

# NAME INPUT OUTPUT Y CNT
1 A 0-0 1 0 1
2 B 2-3 1 0 0
3 C 0-0 2 0 1
4 D 1-1 FF 1 0

Table 3. CHAIN for Program (4);

First Revision.
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laboriously scan through the source program for any of this
information. The CHAIN table represents a sufficient but
very concise reduction of the data.

The fact that phase 2 acknowledges its fallibility
by closely checking its results should not mislead one to
thinking that the initial table construction is arbitrary
or haphazard. In fact, the correcting routines rely heavily
on knowing the kinds of decisions that were made in the ini-
tial construction; they could not possibly work properly
without there being careful order in the construction of

the table.

4.4 PHASE 3

The input to phase 3 is the CHAIN table, built and
revised as described above. It is not finished yet. The
final alterations are now made, after which it is trans-
lated into object code, recursively. Phase 2 was programmed
to accept arbitrary definitions (programs) while phase 3
will only work with conjuncts, and therefore requires dis-
junctive normal form. The tables were constructed and re-
vised thus far considering the entire program. From here
on, only conjuncts will be considered, as phase 3 iteratively
processes all conjuncts individually.

The basic approach will be to find all terms in
CHAIN that output y, and form nested intersections (calls‘

to INT or RCOM). When the argument to INT is put out, at



-37-

that time the linking information in CHAIN is employed to
generate the calls to terms that do not output y. Thus,
for the simple case where all terms put out y, e.g.,
R(x,y) = A(x,y) .A. B(x,y) .A. C(x,y),

there will be only three entries in CHAIN, each of which
will be flagged as putting out y. The object code will
then simply intersect them, as accomplished by the follow-
ing program:

# (INT,# (INT,# (RL,A,X,**),#(RL,B,X,**)),#(RL,C,X,**)).

This handles completely all compositions and inter-
sections of terms which output y. But going back to source
program (4), we must there intersect two terms whose out-
put is not y. It is for this reason that phase 3 must do
one last scan of the CHAIN table to make necessary changes
and additions.

We will refer to the intersection of two terms that
output y as being global intersection, and intersection of
the lower level terms as local intersection. It is appar-
ent that local intersection will have to be handled quite
differently from global, since the global are nicely taken
care of implicitly by restricting the data units to conjuncts,
Local intersection 1is resolved by attaching one of the oper-
ands to the other. Referring to Table 3, there are two terms,
both of which output #1 (or "a'"). At this point we are

reasonably certain that the inputs and outputs are correct,
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and we are working with conjuncts, so these two terms must
therefore be intersected. The two terms in question are A
and B (#1 and #2). We see that term B has a use count (CNT)
of zero, which dictates that B must be attached to A rather
than the other way round. If they both have counts of zero
then there will be a third ternm. By the algorithm of phase

2, if they all had counts of zero, then this would be an

)
"existential chain" (a spurious sink), and we will see how
that is handled subsequently. The process of "attaching"
means that the term that is referenced is moved to a new
location in CHAIN, and its previous location is flagged
(shown in Table 4 as "FFFF" for both input and output),
and in place of the other information are the two indices
of the operands being attached. In this case, #2 is one
of the operands (B), and #5 is the new location of term A,
the second operand. Thus, attaching is a binary operation,
but clearly we can intersect locally as many terms as we
like. For example, if there is yet another term that puts
out output #1, then CHAIN term #5 can also be flagged to

point to that other term and the second new location for

A, etc.

To see that the table for program (4) is now in the
proper form to dictate object program (5), we will follow
the interpretation of the table that phase 3 will ultimately

perform. The only term that outputs y is term #4. Thus the

entire program will be a retrieval call for relation D.
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# NAME  INPUT  OUTPUT Y CNT
1 - FFFF  FFFF 2 5

2 B 2-3 1 0 1
3 C 0-0 2 0 1
4 D 1-1 FF 1 0
5 A 0-0 1 0 1

TAble 4. CHAIN for Program (4);
B attached to A.

Now the input to D is CHAIN term #1 which contains a flag
meaning that term #1 has been replaced by the local inter-
section of two terms: #2 and #5. Neither #2 nor #5 1is
flagged; so the local intersection stops here. Now when
#2 1s evaluated, its input is #3 and so #3 will be evalu-
ated. The result is the object program (5) reproduced
below.

#(RL,D,#(INT,#(RL’A,X,**),#(RL,B,**,#(RL,C,X,**))),**)

The remaining table manipulation to be done concerns

existential chains, where one or more terms output an ARG
index, and all have counts of zero. An example of a pro-
gram in which this situation would arise is program (6),
whose CHAIN is Table 5.
R(x,y) = A(x,a) .A. B(a,b) .A. C(a,b) .A. D(a,y)
The procedure is to look for terms that still have
use counts of zero (when we say we are looking for counts

of zero, if the Y flag is set, then the count is automati-

cally non-zero). Note that in Table 4, when B was attached

to A its use count was incremented. Therefore, at this
point, any terms with zero counts are sinks of (possibly

trivial) existential chains.

(5)

(6)
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# NAME INPUT OUTPUT Y CNT
1 A 0-0 1 0 3
2 B 1-1 2 0 0
3 C 1-1 2 0 0
4 D 1-1 FF 1 0

Table 5. CHAIN for Program (6).

Once a term with a zero count has been found, again
we trace back through the chain until either the source is
encountered, (x), or a link in the chain is used more than
once. Here, A is used three times. Thus B is traced back
only as far as A, at which point it is attached to A. In
the event that an existential chain is trivial, then that
term is attached to any other term whose input is the source,
X, that has a use count greater than zero. If all sources
have counts of zero, then that is a semantic error, a diag-
nostic is printed, and the program rejected. For non-trivial
chains, once they have been attached to some other term, the
chain must be inverted, since what is really wanted is for
the sink of that chain to be arbitrary, and the local source
will be made a local sink to be intersected at the common
node of the terminal chain. In the case of program (6),
the existential chain is of length one, and it is easily
seen that by inverting the I/0 of term B, its output will

now be the same as term A, making the attachment of B to A
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meaningful. The input to B is now non-existent, as it
should be since this chain is existential. The same thing
happens to term C and the final result is Table 6, which
dictates object program (7):

#(RL,D,#(INT,# (INT,# (RL,A,X,**),#(RL,B,**,*€*)),

#(RL,C,**,*€*)),**) (7)
# NAME ~ INPUT  OUTPUT Y CNT
1 - FFFF FFFF 2 5
2 B 2-6 1 0 1
3 C 2-6 1 0 1
4 D 1-1 FF 1 0
5 - FFFF FFFF 3 7
6
7 A 0-0 1 0 1

Table 6. Final Table for Program (6).

The CHAIN table is now completed, and phase 3 is
ready to produce code. The first step is to avoid redun-
dant calls to the associative structure. We said that some
redundant calls will be made, but some can be averted, and
these are the ones where the calls would be purely redun-
dant since all arguments to RL would be identical. For
example, in the program (8):

R(x,y) = C(x,a).A.A(a,y) .V. C(x,a).A.B(a,y) (8)

[or R = C / (A .V. B), (8) is equivalent to the
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second pass, y-x chain, that would result from (2)].
We don't want to, and don't have to, call the relation C
twice. Remember that phase 2 handled the entire program,
not just conjuncts, when it was building CHAIN. Therefore,
the entry corresponding to relation C will have a use count
of 2. Any term whose count is greater than one will be
called only once and placed in a temporary UMIST string,
from whence it can be called whenever it is needed. Thus
the first step in code production is to see if any term has
a count greater than one, and if so, to generate the call:

#(ee,#(RL,R,X,**),eIS).

Recall that if the function @@ has a second argument, then
that is used as a label, and the first argument is stored
in UMIST form storage labeled by the second argument. The
form is then callable as if it were a UMIST macro; a macro
that consists of a simple character string will result in
no "expansion" taking place, but the string itself is the
value of the '"macro" call,

Here the temporary form is labeled "@IS". @ again
is a non-graphic character so as not to interfere with form
names of the user; I is the CHAIN index number of the term
in question; S is a sequentially generated number used to
insure that the names used at various depths of recursion
will be unique. The table entry of the pre-generated ternm

is now flagged so that when it is used as an input to another
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term, instead of expanding the term anew, the temp form @IS
will be called. Thus the object program for (8) would be:
#(ee,#(RL,C,X,**),@IS)#(RL,A,#(@IS),**);#(RL,B,#(eIS),
**)#(DD,@IS) (9)

where DD is the UMIST function delete definition, which will

destroy the temporary form created, when it is no longer
needed.

Perhaps this is a good time to point out another
advantage of disjunctive normal form, namely the natural
way in which disjunctions are formed by placing a semi-
colon (set element delimiter) between the conjuncts. Be-
cause of the way that UMIST operates, this simply concaten-
ates into a single string the first conjunct, followed by
the semicolon, followed by the second conjunct, etc. The
The clean-up function @€ will remove dangling semicolons
caused by any conjunct that generates a null set. Thus,
in (9), each of the two composed calls to RL represents a
conjunct, and the two calls are concatenated with an inter-
vening semicolon,

To see how the negation "attribute'" is handled, con-
sider the source program:

R =A .A. .N.B

> R(x,y) = A(x,y) .A. .N.B(x,y). (10)
During the translation from table to object code, there are

actually two scans of the CHAIN table made. In the first
scan only those terms that have not been flagged as being

negated are considered. Then a second pass is made in which
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only those terms that have been flagged are processed. Thus,
the first pass generates nested calls to INT and the second
pass generates a single call to RCOM. INT is a binary oper-
ator and can only intersect two sets at a time, hence the
nesting of calls to INT, as in (7). RCOM is likewise a
binary operator, but the nature of the operation is such
that one compound operand can replace the otherwise nested
calls. That is, the second operand is just the union (con-
catenation) of all negated terms, by DeMorgan's law. Thus
the object program resulting from (10) is:

# (RCOM, # (RL,A,X,**),#(RL,B,X,**)).
Had there been more terms negated, they would be concatenated
with the call for B in the second argument to RCOM. In very
much the same way, the equality operators, or pseudo-relations,
are taken care of by calling INT or RCOM as required.

Since phase 3 is recursive, this double scan is per-
formed at each level of recursion before popping up. Thus
there is no problem when an intermediate level term is ne-
gated. The '"input" to any term is processed by recursively
treating that input as a '"program," recursing as deeply as
necessary, and then popping back up. At each level of the
recursion two passes of the applicable section of CHAIN are
made. As a final example which might better demonstrate
the generality of this technique, we have the following

definition and its corresponding object progranm.
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R=A/ (B.A. .N.C) /D .A. E .A. .N.(F .V. G)

#(ee,#(RL,A,X,**),@IS)# (RCOM, # (INT, # (RL,E,X,**),# (RL,D, (RCOM,
#(RL,B,#(@IS),**),#(RL,C,#(@LS),**)),**)),#(RL,F,X,**);

#(RL,G,X,**))#(DD,eIS).

At each step of the recursion, a copy of the relevant
section of CHAIN is what is being processed. The cost of
making the copy and the storage that it uses is very slight*
and is compensated for by the generality with which it can
be processed. The initial step, then, is to find all entries
in CHAIN whose Y flag is set, and put those entries into the
first copy of CHAIN. After this has been done the recursion
can be entered.

The recursive section of code then goes through the
current copy of CHAIN, going through the copy once looking
for non-negated terms, and then looking for negated terms.
When a term is processed, code is produced signaling for a
call to RL, and then the signal for a constant (the name
of the relation--strictly speaking, this is redundant). A
subroutine is then entered to process the relation name. A
check is made of TRAMP name tables to see if the name is
already present. If not, it is inserted in the proper table,
and in either case, the pointer to it is returned and will

be part of the object code. This subroutine then adds the

*Programs are always single sentences, and even a ''very
large" (20 relations) program is compiled in a few milli-
seconds.
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name to a list of all relations found on the right side of
the defining equation. This list will be used later for a
"circularity check." Also, the name is compared with the
name of the relation being defined. If this matches; then
the name is not put on the circularity list, but instead
another subroutine 1is entgred to determine if the current
definition specifies the relation as being transitive,
symmetric, or both.

4.4.1 Transitive and Symmetric Relations

The rules for deciding on these attributes are as
follows:

If an entire conjunct consists of just this one rela-
tion, namely the relation being defined, then: if the order
of the relational arguments is reversed on one side of the
equation from what it is on the other, then this relation
is flagged as being symmetric and no code is generated for
this conjunct; if the arguments were not reversed, then this
conjunct is just noise and is completely skipped by the com-
piler.

If the input to this relation is itself, then it is
transitive and is so flagged. This part of the conjunct
produces code only for the inner nested function call (com-
position always results in nested calls to RL, see program
(5)). The transitive closure will be formed by a special
function discussed below. If, in addition to the relation

being its own input, the composition is specified "backwards":
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R(x,y) = R(x,z) .A. R(y,z)
instead of the '"normal" way:
R(x,y) = R(x,z) .A. R(z,y)
then, by the commutativity of the conjunction operator (.A.),
it follows that the relation is both transitive and symmetric.
Finally, if the relation name appears on both sides
of the equation, but is neither transitive or symmetric, then
the function call that it generates is like any other except
that RL@ will be called, rather than RL, thus avoiding an
infinite recursion for the interpreter. (This is not really
correct, see Section V.)
When the relation is symmetric, it is so flagged,
but no code was produced for the conjunct that determined
it as being symmetric. At interpretation time, any other
code specified by the program is generated, and in addition
to the normal prefix that the interpreter always puts out:
'#(ee,#(RLe,R,X,**);', it will now also put out:
"# (RL,R,**,X,@)' where it has reversed the arguments. Also,

there is another argument in the call to RL, namely the

argument '@'. As usual, '@' denotes a non-graphic character.
Here it is the signal to the interpreter to expand the pro-
gram for this relation as if it was not symmetric. This

is necessary so that this reversal will happen only once,
instead of an infinite number of times. To see this a

little better, we will follow the simple example of a
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relation that is symmetric, and symmetry is its complete
definition:
SPOUSE = .CON. SPOUSE

The complete program compiled from that definition would
be just the flag for symmetry. Now, if the interpreter
were invoked with the retrieval call: #(RL,SPOUSE,PETER,**),
then the value of that call would be:

#(ee,# (RLe,SPOUSE,PETER,**) :# (RL,SPOUSE,**,PETER,@)).
The first call to SPOUSE, made via RLe, will bypass the
interpreter completely. The second call will go to the
interpreter, but the extra argument in the call will permit
nothing but the prefix to be generated (since this defini-
tion has no other information), and then the recursion will
cease.

Transitivity is not as simple and requires a special
function. The algorithm used by this funtion to form the
transitive closure is to start with the given of the problen,
X, and generate an answer set. This answer set then becomes
the new "X", and the process is recursively repeated until,
at some level, nothing new is added to the combined answer
set.

There is a subtle difference between relations that
are ''created" by their definitions, and those that are
"filled out." Relations defined in terms of themselves are
filled out: it must be assumed that a kernel of the rela-

tion is explicitly stored (or derivable) and the definition
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gives the inference rule to form the closure. The example
of the two definitions for SIB (page 21) demonstrates both
types: the first definition creates SIB, and both defini-
tions fill it out.

With these special cases taken care of, the more
mundane code generation is quite straightforward. Code
is generated for each of the terms in the current copy of
CHAIN. Then the stack is popped and the last copy is re-
sumed. Whenever the "input" for a term is nonzero, i.e.,
another term, then the stack is pushed and a new level of

recursion is entered.

4.4,2 Further Semantics

Besides the syntactic check made during phase 1,
there are several semantic checks carried out in the final
phase. Principally, these checks concern "circular'" defin-
itions, and definitions which specify global complements.
Circular definitions are seen to be invalid, since if such
a program were ever executed, the result would be an in-
finite recursion (at the UMIST level of recursion). An
example would be:

R1 = R2

R2 R1

Now a retrieval call to R1 would generate a call to R2,
which in turn would generate a call to Rl, ad infinitum,

This situation is checked for by means of the lists
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constructed by the subroutine that processes constants (see
Fig. 2). At the conclusion of the first pass (the x-y chain),
this list is checked. The list is scanned, and each element
is compared with the name of the relation being defined. If
it matches, then the definition is circular and is rejected.
If it does not match, it is looked for on the defined rela-
tion name table. If it is found there, then it will also

have such a list, which is now appended to the current one.
The process continues until the list, however long it might
grow, is exhausted.

Global complements are not so obviously incorrect.
The problem arises with-unary relations (where global com-
plements might most likely be used). In this case, the
compiler has no way of knowing with respect to which uni-
verse the complement is to be taken, and it could not know
without drastically changing the entire design and mode of
operation.

Global complements are easily checked for, again
because of the disjunctive normal form and the fact that
phase 3 makes two passes over each segment of the CHAIN
table. If the first pass ever results in no code being

written, then a global complement was specified.
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5. CONCLUDING REMARKS

Admittedly, most of the examples in this paper have
been of relations for which one would be very hard pressed
to come up with real life interpretations, except for the
examples in Figure 1. Given that UMIST is an awkward (but
very powerful) language to begin with, it has also been
demonstrated that even simple definitions will quickly lead
to unwieldy code. To this extent it is important to relieve
the programmer of this burden. Indeed, this is the function
of any compiler. The TRAMP system with the compiler has
been successfully used to this end in applications program-
ming.

Although the compiler is currently in use, with good
results, it cannot be said to be completely debugged. There
are certain logical inadequacies, such as: in Section 4.4.1
it was stated that if a relation is defined recursively but
is neither transitive or symmetric, then it is not treated
specially. To show that this is not proper, consider

B =P/ B.
The logical implications of this definition demand that we
compose not P with B, but the transitive closure of P with
B.

When the system is finally deemed to be debugged,
work needs to be done on the routine which converts to dis-

junctive normal form, making it less bulky and more practical.

-51-
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This item is not too pressing since the great majority of
definitions actually used are already in this form, and the
burden on the programmer almost non-existent. (In Fig. 1,
only one of the ten definitions even contains a clause!)
After this, there is an obvious extension to the system that
should be worked on.

This would be to allow the user to specify whether
the right side of the equation implies the left, or is equi-
valent to it. Presently, the 'equation'" specifies one-way
implication, to the left. One would very much like to have
"if and only if" declarations. Such a feature would be more
than a convenience. For example, if one defines husband to
be the converse of wife, he cannot now define wife to be
the converse of husband, since that would be a circular
definition! The solution would be to allow him to say:
HUSBAND (x,y) <===> WIFE(y,x). The code for such an extension
has already been partially written, 'but unfortunately is
far from working, due to other priorities. The new format
will be that the equal sign will denote equivalence, whereas
if one-way implication is desired, the assignment symbol
(:=) would be used. Of course, such a format allows the
user to specify equivalence incorrectly, i.e., when the left
side of the equation cannot logically give any information

about the terms on the right side.
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