The Number of Solutions of Some Equations in Galois Domains whose Orders are the Product of Three Distinct Odd Prime Powers

Thomas Storer*
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
Submitted by C. L. Dolph

1. Introduction

If $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where the p_{i} are distinct primes, and if we choose the ordered factorization $\phi_{m}=f_{1} f_{2} \cdots f_{r}$ of $\phi(m)$ into its characteristic factors, then it is well known that to each f_{i} there corresponds a residue class g_{i} of order f_{i} modulo m, such that every residue class a_{j} in the subgroup \mathscr{M}_{m} of units modulo m may be expressed as

$$
a_{j} \equiv g_{1}^{s_{1}} g_{2}^{s_{2 j}} \cdots g_{r}^{s_{r j}}(\bmod m) \quad\left(0 \leqslant s_{i j} \leqslant f_{i}\right)
$$

in exactly one way (see, for example, [1], p. 94). For fixed $g=\left(g_{1}, g_{2}, \ldots g_{r}\right)$ and $\underline{s}=\left(s_{1}, s_{2}, \ldots s_{r}\right)$ we write

$$
g^{s} \equiv g_{1}^{s_{1}} g_{2}^{s_{2}} \cdots g_{r}^{s_{\tau}^{r}}(\bmod m)
$$

so that $\mathscr{M}_{m}=\left\{g^{\underline{s}}: 0 \leqslant s_{i}<f_{i}\right\}$ and $g^{\underline{s}}=g^{\underline{t}}$ if and only if $\underline{s}=\underline{t}$. In this notation an important class of problems in number theory may be conveniently discussed at one time: namely, for how many pairs s_{1}, t_{1}, with $0 \leqslant s_{1}, t_{1}<f_{1}$, is the congruence

$$
g^{\underline{s}}+1 \equiv g^{\underline{t}} \quad(\bmod m)
$$

satisfied. In the special cases $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=1$ and $k=1, k=2$, or $k=3$, it has become customary (see [2]) to denote this number by $\left(s_{1}, t_{1}\right)_{m}$, the cyclotomic number corresponding to m, g_{1}, and the pair $\left(s_{2}, s_{3}, \ldots, s_{r}\right),\left(t_{2}, t_{3}, \ldots, t_{r}\right)$; it is here proposed that the same designation prevail in the general case.

It is, perhaps, a curious fact that, given m and g_{1}, it is not the problem of establishing the existence of the $g_{i}(2 \leqslant i \leqslant r)$ which makes the determination of the numbers $\left(s_{1}, t_{1}\right)_{m}$ difficult; it is, rather, that the g_{i} are "too

[^0]numerous." That is, to each f_{i} there in general correspond several admissible g_{i}, and if g_{i}^{\prime} be substituted for g_{i}, the distribution of the residues $a_{j} \in \mathscr{M}_{m}$ will apparently change (i.e., a_{j} will be represented by different s). It is therefore, prerequisite to the solution of our problem that a "canonical" representation of the residues of \mathscr{M}_{m} in the above m be found. Hence we begin with a brief resumé of the known results for $m=p^{\alpha}$ and $m=p^{\alpha} q^{\beta}$.

2. Resumé 1: The Fields $G F\left(p^{\alpha}\right)$

We begin with the case $m=p=e f+1$ an odd prime, so that the structure under consideration is the field \mathbf{Z}_{p}; here \mathscr{M}_{p} is cyclic with generator, say, g. If we define the cyclotomic classes

$$
C_{p, i}=\left\{g^{e s+i}(\bmod p): s=0,1, \ldots, f-1\right\}
$$

for $i=0,1, \ldots, e-1$, our problem is to determine the numbers $(i, j)_{p}$, $0 \leqslant i, j \leqslant e-1$, the number of solutions of the congruence

$$
z_{i}+1 \equiv z_{j}(\bmod p) \quad z_{i} \in C_{p, i}, \quad z_{j} \in C_{p, j}
$$

i.e., the number of ordered pairs (s, t) with $0 \leqslant s, t \leqslant f-1$ such that

$$
g^{e s+i}+1 \equiv g^{e t+j}(\bmod p)
$$

The matrix $\mathbf{C}_{p, e}$ whose \ddot{i} th entry is the cyclotomic number $(i, j)_{p}$ is called the cyclotomic matrix of \mathbf{Z}_{p} with respect to e and the fixed generator g. We remark that, since \mathbf{Z}_{p} is unique up to isomorphism, replacement of g by a new generator g^{*} of \mathscr{M}_{p} leaves $C_{p, 0}$ fixed, and at most permutes the remaining $C_{p, i}$, $i \neq 0$.

The following relations between the cyclotomic numbers for \mathbf{Z}_{p}, e, and g are well known (see [2], p. 25):

Lemma 1.
(1) $(i, j)_{p}=(i+n e, j+m e)_{p} \quad$ for all $\quad m, n \in \mathbf{Z}$.
(2) $(i, j)_{p}=(e-i, j-i)_{p}$,
(3) $(i, j)_{\mathcal{D}}= \begin{cases}(j, i)_{\mathfrak{p}} & \text { if } \\ \left(j+\frac{e}{2}, i+\frac{e}{2}\right)_{p} & \text { if even } \\ \text { fis odd, }\end{cases}$
(4) $\sum_{j=0}^{e-1}(i, j)_{s}=f-\theta_{p, i}$,
where

$$
\theta_{p, i}=\left\{\begin{array}{lll}
1 & \text { if fis even and } & i=0 \\
1 & \text { if fis odd and } & i=\frac{e}{2} \\
0 & \text { otherwise. } &
\end{array}\right.
$$

We now introduce two arithmetic functions on \mathbf{Z}_{p}. To that end let N be a natural number and define

$$
\lambda_{N}=\exp \left(\frac{2 \pi i}{N}\right)
$$

we then define the periods of \mathbf{Z}_{p}, g and e to be

$$
\eta_{p, k}=\sum_{a \in C_{p, k}} \lambda_{p}^{a}=\sum_{s=0}^{f-1} \lambda_{p}^{g^{s+k}}
$$

for $k=0,1, \ldots, e-1$, and note that

$$
\sum_{k=0}^{e-1} \eta_{p, k}=-1
$$

The periods are related to the cyclotomic numbers by the following lemma (see [2], p. 38).

Lemma 2.

$$
\eta_{p, 0} \eta_{p, k}=\sum_{j=0}^{e-1}(k, j)_{v} \eta_{p, j}+f \theta_{p, k} \quad \text { for } \quad k=0,1, \ldots, e-1
$$

When e divides none of m, n, or $m+n$, we define the functions

$$
\begin{aligned}
F_{p}\left(\lambda_{e}^{m}\right) & =\sum_{k=0}^{p-2} \lambda_{e}^{m k} \lambda_{p}^{g^{k}}=\sum_{k=0}^{e-1} \lambda_{e}^{m k} \eta_{p, k} \\
\boldsymbol{R}_{p}(m, n) & =\sum_{k=0}^{e-1} \lambda_{e}^{n k} \sum_{h=0}^{e-1} \lambda_{e}^{-(m+n) h}(k, h)_{p}
\end{aligned}
$$

The following properties of these functions are well known (see [2], pp. 41-47 and 62-64).

Lemma 3.

(1) $\quad R_{p}(m, n)=\frac{F_{p}\left(\lambda_{e}^{m}\right) F_{p}\left(\lambda_{e}^{n}\right)}{F_{p}\left(\lambda_{e}^{m+n}\right)}$.
(2) If ℓ is the natural number determined by $g^{\ell} \equiv 2(\bmod p)$, then

$$
F_{p}(-1) F_{p}\left(\lambda_{e}^{2 k}\right)=\lambda_{e}^{2 k t} F_{p}\left(\lambda_{e}^{k}\right) F_{p}\left(-\lambda_{e}^{k}\right) .
$$

Part (2) of Lemma 3 is known as Jacobi's Lemma, and we remark that it, as well as all results listed in the present section remain true (see [2], Part I) if \mathbf{Z}_{p} is replaced by $G F\left(p^{\alpha}\right)$, each congruence, of course, then being replaced by equality (between elements of the field). Further, the method of generalizing from \mathbf{Z}_{p} to $\mathbf{Z}_{p^{\alpha}}$ is given in [3], and hence we shall in the future, without loss, restrict ourselves to the case where \boldsymbol{m} is square-free (corresponding to \mathbf{Z}_{m}).

3. Resumé 2: The Galois Domanns $G D\left(p^{\alpha} q^{\beta}\right)$

Now let $p=e f+1$ and $q=e f^{\prime}+1$ be distinct odd primes with g.c.d. $\left(f, f^{\prime}\right)=1$ (i.e., $e=$ g.c.d. $(p-1, q-1$); the analysis for $p=e f+1$ and $q=e^{\prime} f^{\prime}+1$, where $e \neq e^{\prime}$, follows the lines of development below, and is completely worked out in [4]). Let $d=1 . c . m .(p-1, q-1)=e f f$ ', and suppose that g is a fixed common primitive root of p and q. If $x \in \mathbf{Z}_{p q}$ be defined by

$$
x \equiv g \quad(\bmod p) \quad \text { and } \quad x \equiv 1 \quad(\bmod q)
$$

we define, as in the case for the finite field, the cyclotomic classes for ${ }^{1} \mathbf{Z}_{p q}$ and g to be

$$
C_{p g, i}=\left\{g^{s} x^{i}(\bmod p q): s=0,1, \ldots, d-1\right\}
$$

for $i=0,1, \ldots, e-1$, and immediately verify that the $C_{p q, i}$ are pairwise disjoint and that their union is $\mathscr{M}_{p q}$. As before, the cyclotomic numbers $(i, j)_{p q}, 0 \leqslant i, j \leqslant e-1$, for $\mathbf{Z}_{p q}$ and g are defined to be the number of solutions of the congruence

$$
z_{i}+1 \equiv z_{j}(\bmod p q) \quad z_{i} \in C_{p q, i}, \quad z_{j} \in C_{p q, j} ;
$$

i.e., the number of ordered pairs (s, t) with $0 \leqslant s, t \leqslant d-1$ such that

$$
g^{s} x^{i}+1 \equiv g^{t} x^{j}(\bmod p q) .
$$

The matrix $\mathbf{C}_{p q, e}$ whose $i j$ th entry is the cyclotomic number $(i, j)_{p a}$ is called the cyclotomic matrix of $\mathbf{Z}_{p q}$ with respect to the fixed generator g. Now, however, replacement of the generator g by a new generator g^{*} may no longer leave $C_{p q, 0}$ (nor, hence any $C_{p q, i}$) fixed, and so, in general, there exist

[^1]several distinct cyclotomic matrices $\mathbf{C}_{p q, e}$ for $\mathbf{Z}_{p q}$ which cannot be obtained one from another by permutations. Since $\phi(p-1) \phi(q-1)=\phi(e) \phi(d)$, it is easily shown, however, that there are at most $\phi(e)$ such matrices.*

While much work has been expended in the determination of the entries of $\mathbf{C}_{p q, e}$ (i.e., the cyclotomic numbers) through a detailed analysis of the structure of the domain $\mathbf{Z}_{p q}$, it might rather naturally be hoped that all the results derived for the fields \mathbf{Z}_{p} and \mathbf{Z}_{q} for e and the fixed generator g could be directly applied to give the corresponding information for $\mathbf{Z}_{p q}$. The first results in this direction were obtained in [5] through the introduction of characters on $\mathbf{Z}_{p q}$; the method below avoids this complication.

The following theorem is proved in [6].
Theorem 1. Let g be a common primitive root of the distinct odd primes $p=e f+1$ and $q=e f^{\prime}+1$, where $e=$ g.c.d. $(p-1, q-1)$, and let P and Q be the permutation matrices

$$
P=\left(\begin{array}{c:c}
0 & \frac{I_{e-1}}{-1}
\end{array}\right), \quad Q=\left(\begin{array}{c:c}
0 & 1 \\
I_{e-1} & 0
\end{array}\right) .
$$

Then

$$
\mathbf{C}_{p q, e}=\mathbf{C}_{p, e} * \mathbf{C}_{q, e},
$$

where the matrix product $*$ is defined as follows: The $i j$ th entry of $\mathbf{C}_{p} * \mathbf{C}_{q}$ is $\left(P^{i} \mathbf{C}_{p, e} Q^{j}\right) \cdot \mathbf{C}_{q, e}$, where "dot" denotes the inner product of the two matrices.

Let us give a direct verification of this theorem for the simplest case, $e=2$. We assume, for the moment, that the cyclotomic matrices $\mathbf{C}_{p q, 2}$ are known (see [2], pp. 92, 94 for the classical derivation based on the structure of the domain); here the result is an easy consequence of Lemma 4. In the case of the finite field, Lemma 1 is sufficient to determine the cyclotomic matrices $\mathbf{C}_{p, 2}$ and, using this lemma, we find that

$$
\mathbf{C}_{p, 2}=\left\{\begin{array}{l}
\begin{array}{|c|c|}
\hline p-5 & p-1 \\
4 & 4 \\
\hline \frac{p-1}{4} & \frac{p-1}{4} \\
\hline \frac{p-3}{4} & \frac{p+1}{4} \\
\hline \frac{p-3}{4} & \frac{p-3}{4} \\
\hline
\end{array} \\
\begin{array}{l}
\text { if } \quad f \text { is even } \\
\hline
\end{array}
\end{array}\right.
$$

[^2]Now, $P=Q=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, whence Theorem 1 for $e=2$ becomes

$$
\mathbf{C}_{p q, 2}=\left[\left(P^{i} \mathbf{C}_{p, 2} P^{j}\right) \cdot \mathbf{C}_{q, 2}\right]
$$

which we directly verify.
Case I: $f f^{\prime}$ odd. Then both f and f^{\prime} are odd, so
$(0,0)_{p q}=\frac{1}{18}[3(p-3)(q-3)+(p+1)(q+1)]=\frac{1}{4}[(p-2)(q-2)+3]$,
$(0,1)_{p q}=\frac{1}{16}[(p+1)(q-3)+(p-3)(q+1)+2(p-3)(q-3)]$
$=\frac{1}{4}[(p-2)(q-2)-1]=(1,0)_{p q}=(1,1)_{p q}$.
Case II: $f f^{\prime}$ even. Then, since g.c.d. $\left(f, f^{\prime}\right)=1$, either f is even and f^{\prime} odd, or f^{\prime} is even and f odd.
(a) feven, f^{\prime} odd.

$$
\begin{aligned}
&(0,0)_{p q}=\frac{1}{16}[(p-5)(q-3)+(p-1)(q+1)+2(p-1)(q-3)] \\
&=\frac{1}{4}[(p-2)(q-2)+1]=(1,0)_{p q}=(1,1)_{p q}, \\
&(0,1)_{p q}=\frac{1}{16}[(p-1)(q-3)+(p-5)(q+1)+2(p-1)(q-3)] \\
&=\frac{1}{4}[(p-2)(q-2)-3] . \\
&(b) \begin{aligned}
& f \text { odd }, f^{\prime} \text { even. } \\
&(0,0)_{p q}=\frac{1}{16}[(p-3)(q-5)+(p+1)(q-1)+2(p-3)(q-1)] \\
&=\frac{1}{4}[(p-2)(q-2)+1]=(1,0)_{p q}=(1,1)_{p q}, \\
&(0,1)_{p q}=\frac{1}{16}[(p+1)(q-5)+3(p-3)(q-1)] \\
&=\frac{1}{4}[(p-2)(q-2)-3] .
\end{aligned} .
\end{aligned}
$$

Hence

which is known to be the case. We remark that Theorem 1 can be directly proved as above for those e for which the cyclotomic matrices for $\mathbf{Z}_{p}, \mathbf{Z}_{q}$,
and $Z_{p q}$ are known. At present, this knowledge is limited by what is known for $Z_{p q}$; namely, $e=2,4,6$, and 8 .

We also note that Theorem 1 provides us with an effective computational tool for determining the number of solutions to the types of equation which we have been considering, for the structures $G D\left(p^{\alpha} q^{\beta}\right)$ or $\mathbf{Z}_{p q}{ }_{q}{ }^{\beta}$. In the examples below, the numbers of solutions for the summand fields were easily determined manually, the number for the domains from Theorem l. Even for these relatively "small" examples, the amount of time saved through the use of Theorem 1 is considerable.

Examples.

$$
\text { Ia } \begin{aligned}
p q-65 ; e & =4 ; g=2, x=27 \\
p & =5=4 \cdot 1+1, \quad q=13=4 \cdot 3+1,
\end{aligned}
$$

$\mathbf{C}_{5: 4}:$| 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |

$\mathrm{b}: \mathrm{g}=7, \mathrm{x}=27$.

$\mathbf{C}_{13,4}:$| 0 | 1 | 2 | 0 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 |

$\mathbf{C}_{65,4:}$| 3 | 0 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| 0 | 4 | 2 | 2 |
| 2 | 2 | 2 | 2 |
| 4 | 2 | 2 | 0 | $\mathrm{~g}=2$

$$
\mathbf{C}_{13,4}: \begin{array}{|c|c|c|c|}
\hline 0 & 0 & 2 & 1 \\
\hline 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 \\
\hline 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

IIa: $p q=85 ; e=4 ; g=3, x=18$.

$$
p=5=4 \cdot 1+1, \quad q=17=4 \cdot 4+1
$$

C17,4:

$\mathrm{C}_{85,4}:$| 2 | 1 | 6 | 2 |
| :---: | :---: | :---: | :---: |
| 4 | 4 | 2 | 1 |
| 2 | 4 | 2 | 4 |
| 4 | 2 | 1 | 4 | $\mathrm{~g}=3$

$\mathrm{b}: \mathrm{g}=12, \mathrm{x}=52$;

$\mathbf{C}_{5,4}:$| 0 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |

$\mathbf{C}_{17,4}:$| 0 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: |
| 2 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 2 |

$\mathrm{C}_{85,4:}$| 4 | 5 | 0 | 2 |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 4 |
| 4 | 2 | 4 | 2 |
| 2 | 2 | 5 | 2 | $\mathrm{~g}=12$

Using Theorem 1, we can easily derive the analogue of Lemma 1 for the domains $\mathbf{Z}_{p q}$:

Lemma 4.

(1) $(i, j)_{p q}=(i+n e, j+m e)_{p q} \quad$ for all $\quad m, n \in \mathbf{Z}$,
(2) $(i, j)_{p q}=(e-i, j-i)_{p q}$
(3) $(i, j)_{p q}=\left\{\begin{array}{lll}(j, i)_{p q} & \text { if } & f f^{\prime} \text { is odd } \\ \left(j+\frac{e}{2}, i+\frac{e}{2}\right)_{p q} & \text { if } & f f^{\prime} \text { is even. }\end{array}\right.$
(4) $\sum_{j=0}^{e-1}(i, j)_{p q}=\dot{M}+\delta_{p q, i}$ where $e \dot{M}=(p-2)(q-2)-1$ and

$$
\delta_{p q, i}=\sum_{k=0}^{e-1} \theta_{p, k+i} \theta_{q, k}
$$

Direct computation shows that

$$
\begin{aligned}
\delta_{p q, i} & =\left\{\begin{array}{lll}
1 & \text { if } \quad f f^{\prime} \text { odd, } & i=0 \\
1 & \text { if } \quad f f^{\prime} \text { even, } & i=\frac{e}{2} \\
0 & \text { otherwise }
\end{array}\right. \\
& = \begin{cases}1 & \text { if }-1 \in C_{p q, k} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

'The periods of $\mathbf{Z}_{p q}$ and g are defined to be

$$
\eta_{p q, k}=\sum_{a \in C_{p q, k}} \lambda_{p q}^{u}=\sum_{s=0}^{d-1} \lambda_{p q}^{s} x^{k}
$$

for $k=0,1, \ldots, e-1$; clearly,

$$
\sum_{k=0}^{e-1} \eta_{p q, k}=1 .
$$

Here, as in \mathbf{Z}_{p}, there is an intimate connection between the products of the periods and the cyclotomic numbers; the following lemma (see [2], p. 98) is the domain-analogue of Lemma 2.

Lemma 5.
$\eta_{p q, 0} \eta_{p q, k}=\sum_{j=0}^{e-1}(k, j) \eta_{p q, j}-2 f f^{\prime}+\left(\frac{p q-1}{e}\right) \delta_{p q, k} ; \quad(k=0,1, \ldots, e-1)$.
When e divides none of m, n, nor $m+n$, we introduce two arithmetic functions on $\mathbf{Z}_{p q}$:

$$
F_{p q}\left(\lambda_{e}^{m}\right)=\sum_{k \rightarrow 0}^{e-1} \lambda_{e}^{m k} \eta_{p q, k}
$$

and

$$
R_{p q}(m, n)=\sum_{k=0}^{e-1} \lambda_{e}^{m k} \sum_{h=0}^{e-1} \lambda_{e}^{-(m+n) h}(k, h)_{p q} .
$$

We have shown in [6] that Theorem 1 implies that these functions split over the summand fields, as indicated in the following lemma.

Lemma 6.

(1) If $q \in C_{p, \alpha}$ and $p \in C_{q, \beta}$, then

$$
F_{p q}\left(\lambda_{e}^{m}\right)=\lambda_{e}^{m(\beta-\alpha)} F_{p}\left(\lambda_{e}^{m}\right) F_{o}\left(\lambda_{e}^{-m}\right)
$$

(2) $\quad R_{p q}(m, n)=R_{p}(m, n) R_{q}(-m,-n)$.

The many well-known properties of these function now follow directly from Lemmas 3 and 6; we state the two of interest to our discussion below.

Corollary 1.
(1) $\quad R_{p q}(m, n)=\frac{F_{p q}\left(\lambda_{e}^{m}\right) F_{p q}\left(\lambda_{e}^{n}\right)}{F_{p q}\left(\lambda_{e}^{m+n}\right)}$.
(2) If ℓ and ℓ^{\prime} are the natural numbers determined by $g^{\ell} \equiv 2(\bmod p)$ and $g^{\ell^{\prime}} \equiv 2(\bmod q)$, then

$$
F_{p q}(-1) F_{p q}\left(\lambda_{e}^{2 k}\right)=\lambda_{e}^{2\left(\ell-\ell^{\prime}\right) k} F_{p q}\left(\lambda_{e}^{k}\right) F_{p Q}\left(-\lambda_{e}^{k}\right)
$$

The significant feature about the above approach is that all results concerning the domain structure were derived entirely within the structures of
of the finite fields, and then "patched" together via Theorem 1. We have shown in [6] that a direct generalization of Theorem 1 obtains for all the domains \mathbf{Z}_{N} with $N=\prod_{i=1}^{s} p_{i}$, and consequently for $G D$ ($\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$) (using [2]) and $\mathbf{Z}_{\mathrm{TI}}^{i=1}{ }_{i=1}^{\alpha_{i}^{\alpha_{i}}}$ (using [3]). In the next section we prove the analogue of Theorem 1 for $\mathbf{Z}_{\text {per }}$, and explicitly derive the class-structure results for these domains.

4. The Galois Domains $G D\left(p^{\alpha} q^{\beta} r^{\gamma}\right)$

The recent interest in equations on and the structure of the domains $G D\left(p^{\alpha} q^{\beta} r^{\nu}\right)$ stems from the concluding remarks in [5], where the number of times that an element of the maximal cyclic subgroup of $\mathbf{Z}_{\text {per }}$ is immediately followed by another such element was explicitly determined (using characters) in the very special case
$e=$ l.c.m. \langle g.c.d. $(p-1, q-1)$, g.c.d. $(p-1, r-1)$, g.c.d. $(q-1, r-1)\rangle=2$
(when the maximal cyclic subgroup is unique). A complete determination of all the cyclotomic numbers for this case was subsequently done in [7] by a purely algebraic technique, and the method developed in [5] was extended to other specialized domains in [8]. Each of these approaches depends heavily upon an analysis of the structure of the domain; here, as in the case for $G D\left(p^{\alpha} q^{\beta}\right)$, our analysis is carried out in the summand fields.
We now change our notation slightly, to facilitate the subsequent exposition; since several constants will be associated with each of the three distinct primes involved, it will be convenient to relate these via the subscript notation. To that end, let $p_{0}=e f_{0}+1, p_{1}=e f_{1}+1$ and $p_{2}=e f_{3}+1$, with f_{0}, f_{1}, and f_{2} pairwise relatively prime, and for $A_{0} \subset \mathbf{Z}_{p_{0}}, A_{1} \subset \mathbf{Z}_{p_{1}}$ and $A_{2} \subset Z_{p_{2}}$ define the class product
$A_{0} A_{1} A_{2}=\left\{p_{1} p_{2} a_{0}+p_{0} p_{2} a_{1}+p_{0} p_{1} a_{2}\left(\bmod p_{0} p_{1} p_{2}\right): a_{0} \in A_{0}, a_{1} \in A_{1}, a_{2} \in A_{2}\right\}$, so that

$$
\mathscr{M}_{p_{0} \eta_{1} p_{2}}=\sum_{i, j, k=0}^{e-1} C_{p_{0, i}, i} C_{\boldsymbol{p}_{1, j}} C_{p_{2, k}} .
$$

Further, if m_{0}, m_{1}, and m_{2} are integers such that

$$
p_{1} p_{2} m_{0}+p_{0} p_{2} m_{1}+p_{0} p_{1} m_{2}=1,
$$

define the natural numbers α_{0}, α_{1}, and α_{2} by

$$
m_{0} \in C_{p_{0}, \alpha_{0}}, \quad m_{1} \in C_{p_{1}, \alpha_{1}}, \quad m_{2} \in C_{\boldsymbol{p}_{2}, \alpha_{2}}
$$

so that

$$
1 \in C_{p_{0}, \alpha_{0}} C_{p_{1}, \alpha_{1}} C_{p_{2}, \alpha_{2}} \subset \mathscr{M}_{p_{0} p_{1} p_{2}}
$$

Finally, define the classes

$$
C_{p_{0} p_{1} p_{2}, i, j}=\sum_{k=0}^{e-1} C_{p_{0},\left(\alpha_{0}+i\right)+k} C_{p_{1},\left(\alpha_{1}+j\right)+k} C_{p_{2}, \alpha_{2}+k} ; \quad i, j=0,1, \ldots, e-1
$$

We are now able to realize the cyclotomic classes for $Z_{p_{0} p_{1} p_{2}}$ as sums of products of the corresponding classes in the summand fields.

Lemma 6. Let g_{0}, g_{1}, and g_{2} be generators of $\mathbf{Z}_{p_{0}}, \mathbf{Z}_{p_{1}}$, and $\mathbf{Z}_{p_{2}}$, respectively, and let $g \in \mathbf{Z}_{{p_{0} p_{1} p_{2}}}$ be the corresponding common primitive root of p_{0}, p_{1}, and p_{2}. Define x_{0} and y_{1} modulo $p_{0} p_{1} p_{2}$ as follows:

$$
x_{0} \equiv\left\{\begin{array} { l }
{ g _ { 0 } (\operatorname { m o d } p _ { 0 }) } \\
{ 1 (\operatorname { m o d } p _ { 1 } p _ { 2 }) }
\end{array} \quad y _ { 1 } \equiv \left\{\begin{array}{l}
g_{1}\left(\bmod p_{1}\right) \\
1\left(\bmod p_{0} p_{2}\right)
\end{array}\right.\right.
$$

Then, if $d=e f_{0} f_{1} f_{2}$, we have that

$$
C_{p_{0} p_{1} p_{2}, i, j}=\left\{g^{s} x_{0} y^{i} y_{1}^{j}\left(\bmod p_{0} p_{1} p_{2}\right): s=0,1, \ldots, d-1\right\}
$$

for $i, j=0,1, \ldots, e-1$.
Proof. Clearly $C_{p_{0} \nu_{1} D_{2}, i, j}$ consists of d elements, distinct modulo $p_{0} p_{1} p_{2}$. Further, there exist natural numbers s, t, and u such that

$$
1 \equiv p_{1} p_{2} g_{0}^{e s+\alpha_{0}}+p_{0} p_{2} g_{1}^{e t+\alpha_{1}}+p_{0} p_{1} g_{2}^{e u+\alpha_{2}}\left(\bmod p_{0} p_{1} p_{2}\right)
$$

Hence

$$
g \equiv p_{1} p_{2} g_{0}^{e s+\left(\alpha_{0}+1\right)}+p_{0} p_{2} g_{1}^{e t+\left(\alpha_{1}+1\right)}+p_{0} p_{1} g_{2}^{e u+\left(\alpha_{2}+1\right)}\left(\bmod p_{0} p_{1} p_{2}\right)
$$

is an element of $C_{p_{0}, \alpha_{0}+1} C_{p_{1}, \alpha_{1}+1} C_{p_{2}, \alpha_{2}+1} \subseteq C_{p_{0} \nu_{1} p_{2}, 0,0}$, by definition. Further,

$$
\begin{aligned}
& x_{0} \equiv p_{1} p_{2} g_{0}^{e s+\left(\alpha_{0}+1\right)}+p_{0} p_{2} g_{1}^{e t+\alpha_{1}}+p_{0} p_{1} g_{2}^{e u+\alpha_{2}}\left(\bmod p_{0} p_{1} p_{2}\right) \\
& y_{1} \equiv p_{1} p_{2} g_{0}^{e s+\alpha_{0}}+p_{0} p_{2} g_{1}^{e t+\left(\alpha_{1}+1\right)}+p_{0} p_{1} g_{2}^{e u+\alpha_{2}}\left(\bmod p_{0} p_{1} p_{2}\right)
\end{aligned}
$$

and so

$$
g^{s} x_{0} \in C_{p_{0} p_{1} p_{2}, 1,0} \quad \text { and } \quad g^{t} y_{1} \in C_{p_{0} p_{1} p_{2}, 0,1}
$$

for all s and t. Thus the lemma is proved.

Using Lemma 6, we define the classes $C_{p_{0} p_{1} p_{2}, i, j}$ to be the cyclotomic classes.

We now define the periods

$$
\eta_{p_{0} p_{1} p_{2}, i, j}=\sum_{b \in C_{p_{0} p_{1} p_{2}, i, j}} \lambda_{p_{0} p_{1} p_{2}}^{b} ; \quad i, j=0,1, \ldots, e-1
$$

so that

$$
\sum_{i, j=0}^{e-1} \eta_{p_{0} p_{1} p_{2}, i, j}=-1
$$

As before, we define the cyclotomic numbers $(i, j ; m, n)_{p_{0} p_{1} p_{2}}$ to be the number of solutions of the equation
$Z_{i, j}+1 \equiv Z_{m, n}\left(\bmod p_{0} p_{1} p_{2}\right) ; \quad Z_{i, j} \in C_{p_{0} p_{1} p_{2}, i, j} ; \quad Z_{m, n} \in C_{p_{0} p_{1} p_{2}, m, n} ;$
i.e., the number of ordered pairs $(s, t) ; 0 \leqslant s, t \leqslant d-1$, such that

$$
g^{s} x_{0}{ }^{i} y_{1}{ }^{j}+1 \equiv g^{t} x_{0}{ }^{m} y_{1}{ }^{n}\left(\bmod p_{0} p_{1} p_{2}\right)
$$

Then, analogous to Lemmas 2 and 5, we find that the products of the periods for $\mathbf{Z}_{p_{0} y_{1} y_{2}}$ are related to the corresponding cyclotomic numbers by the following formula.

Lemma 7.

$$
\begin{aligned}
\eta_{p_{0} p_{1} p_{2}, 0, r} \eta_{p_{0} p_{1} p_{2}, i, j}= & \sum_{\ell, m=0}^{e-1}(i, j ; \ell, m)_{p_{0} p_{1} p_{2}} \eta_{p_{0} p_{1} p_{2}, \ell, m} \\
& +\left\{f_{0} \sum_{t=0}^{e-1} \theta_{p_{0}, i+t} \sum_{m, n=0}^{e-1}(j+t, m)_{p_{1}}(t, n)_{p_{2}} \eta_{p_{1} p_{2}, m-n}\right. \\
& +f_{1} \sum_{t=0}^{e-1} \theta_{p_{1}, j+t} \sum_{\ell, n=0}^{e-1}(i+t, \ell)_{p_{0}}(t, n)_{p_{i}} \eta_{p_{0} p_{2}, \ell-n} \\
& +f_{2} \sum_{t=0}^{e-1} \theta_{p_{2}, t} \sum_{\ell, m=0}^{e-1}(i+t, \ell)_{p_{0}}(j+t, m)_{p_{1}} \eta_{p_{0} p_{1}, \ell-m} \\
& -f_{0} f_{1} f_{2}\left(\delta_{p_{0} p_{1}, i-j}+\delta_{p_{0} p_{2}, i}+\delta_{p_{1} p_{2}, j}\right) \\
& \left.+\left(d+f_{0} f_{1}+f_{0} f_{2}+f_{1} f_{2}\right) \zeta_{p_{0} p_{1} p_{2}, i, j}\right\}, \\
= & \sum_{\ell, m=0}^{e-1}(i, j ; m, n)_{p_{0} p_{1} p_{2}} \eta_{p_{0} p_{1} p_{2}}+A_{i, j},
\end{aligned}
$$

where the above constitutes a definition of $A_{i, j}$, a polynomial in λ_{n} 's, for n any proper divisor of $p_{0} p_{1} p_{2}$ (the terms of which arise for those t such that $g^{t} x_{0}{ }^{i} y_{1}{ }^{j}+1$ is a nonunit in $\mathbf{Z}_{p_{0} \boldsymbol{p}_{1} p_{2}}$), and

$$
\zeta_{p_{0} p_{1} p_{2}, i, j}=\left\{\begin{array}{lllll}
1 & \text { if } & f_{0} f_{1} f_{2} & \text { is odd and } & i=j=0 \\
1 & \text { if } & f_{0} & \text { is even and } & i=\frac{e}{2}, \quad j=0 \\
1 & \text { if } & f_{1} & \text { is even and } & i=0, \quad j=\frac{e}{2} \\
1 & \text { if } & f_{2} & \text { is even and } & i=j=\frac{e}{2} \\
0 & \text { otherwise. } & &
\end{array}\right.
$$

Proof. The proof is entirely similar to the proof of Lemma 5, (see [2], p. 98) upon noting that

$$
\zeta_{p_{0} p_{1} p_{2}, i, j}=\sum_{t=0}^{e-1} \theta_{p_{0}, i+t} \theta_{p_{1}, j+t} \theta_{p_{2}, t}= \begin{cases}1 & \text { if }-1 \in C_{p_{0} p_{1} p_{2}, i, j} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\delta_{p_{0} v_{1}, i-j}=\sum_{t=0}^{e-1} \theta_{p_{0}, i+t} \theta_{p_{1}, j+t} .
$$

We now prove an analogue of Theorem 1 for the domains $\mathbf{Z}_{\nu_{0} \nu_{1} \nu_{2}}$, including a complete statement of the situation.

Theorem 2. Let $p_{0}=e f_{0}+1, \quad p_{1}=e f_{1}+1$, and $p_{2}=e f_{2}+1$ be distinct odd primes, with f_{0}, f_{1}, and f_{2} pairwise relatively prime, let g_{0}, g_{1} and g_{2} be generators of $\mathbf{Z}_{p_{0}}, \mathbf{Z}_{p_{1}}$, and $\mathbf{Z}_{p_{2}}$, respectively, and g the corresponding common primitive root of p_{0}, p_{1}, and p_{2} modulo $p_{0} p_{1} p_{2} . L e t C_{n} ;\left(n=p_{0}, p_{1}\right.$, or p_{2}) be the cyclotomic classes, $\mathrm{C}_{n, \mathrm{e}}$ the cyclotomic matrices, and let $C_{p_{0} p_{1} p_{2}, i, j}$, be the cyclotomic classes in $\mathbf{Z}_{p_{0} p_{1} p_{2}}$. Then, if P and Q are the permutation matrices

$$
\begin{aligned}
& P=\operatorname{Circ} \overbrace{(0,1,0, \ldots, 0)}^{e}=\left\{\begin{array}{c:c}
0 & I_{e-1} \\
\hdashline 1 & 0
\end{array}\right\}, \\
& Q=\operatorname{Circ} \overbrace{(0,0, \ldots, 0,1)}^{e}=\left\{\begin{array}{c:c}
0 & 1 \\
\hdashline I_{e-1} & 0
\end{array}\right\},
\end{aligned}
$$

we have

$$
(i, j ; \ell, m)_{p_{0} p_{1} p_{2}}=\left(P^{i} \mathbf{C}_{p_{0}, e} Q^{\ell}\right) \cdot\left(P^{j} \mathbf{C}_{p_{1}, e} Q^{m}\right) \cdot \mathbf{C}_{p_{1} e}
$$

for all $i, j, \ell, m=0,1, \ldots, e-1$, and this defines $\mathbf{C}_{\nu_{0} \nu_{1} \nu_{2}, e}$. Note that here, if

$$
A^{(n)}=\left\{\left[a_{i, j}^{(n)}\right]: i, j=0,1, \ldots, e-1\right\} \quad n=0,1,2
$$

then

$$
A^{(0)} \cdot A^{(1)} \cdot A^{(2)}=\sum_{i, j=0}^{e-1} a_{i, j}^{(0)} a_{i, j}^{(1)} a_{i, j}^{(2)}
$$

Proof. We proceed to give an alternate evaluation of $\eta_{p_{0} p_{1} p_{2}, 0,0} \eta_{p_{0} p_{1} p_{2}, i, j}$ based on Lemma 6. Clearly, in terms of the η 's, Lemma 6 says no more than that

$$
\eta_{p_{0} p_{1} p_{2}, i, j}=\sum_{t=0}^{\ell-1} \eta_{p_{0}, \alpha_{0}+i+t} \eta_{p_{1}, \alpha_{1}+j+t} \eta_{p_{2}, \alpha_{2}+t}
$$

for all $i, j=0,1, \ldots, e-1$. Hence
$\eta_{p_{0} p_{1} p_{2}, 0,0} \eta_{p_{0} p_{1} p_{2}, i, j}$

$$
\begin{aligned}
& =\left(\sum_{s=0}^{e-1} \eta_{p_{0}, \alpha_{0}+s} \eta_{p_{1}, \alpha_{1}+s} \eta_{p_{2}, \alpha_{2}+s}\right)\left(\sum_{t=0}^{e-1} \eta_{p_{0}, \alpha_{0}+i+t} \eta_{p_{1}, \alpha_{1}+j+t} \eta_{p_{2}, \alpha_{2}+t}\right) \\
& =\sum_{s, t=0}^{e-1}\left(\eta_{p_{0}, \alpha_{0}+s} \eta_{p_{0},\left(\alpha_{0}+s\right)+(i+t)}\right)\left(\eta_{p_{1}, \alpha_{1}+s} \eta_{p_{1},\left(\alpha_{1}+s\right)+(j+t)}\right)\left(\eta_{p_{2}, \alpha_{2}+s} \eta_{p_{2},\left(\alpha_{2}+s\right)+t}\right) \\
& =\sum_{s, t=0}^{e-1}\left\{\left(\sum_{\ell=0}^{e-1}(i+t, \ell)_{p_{0}} \eta_{p_{0}, \alpha_{0}+s+l}+f_{0} \theta_{p_{0}, i+t}\right)\right.
\end{aligned}
$$

$$
\left.\times\left(\sum_{m=0}^{e-1}(j+t, m)_{p_{1}} \eta_{p_{1}, \alpha_{1}+s+m}+f_{1} \theta_{v_{1}, j+t}\right)\left(\sum_{n=0}^{e-1}(t, n)_{p_{2}} \eta_{p_{2}, \alpha_{2}+s+n}+f_{2} \theta_{p_{2}, t}\right)\right\}
$$

$$
=\sum_{s, t=0}^{e-1}\left(\sum_{\ell, m, n=0}^{e-1}(i+t, \ell)_{{p_{0}}_{0}}(j+t, m)_{p_{1}}(t, n)_{p_{2}} \eta_{p_{0}, \alpha_{0}+s+\ell} \eta_{p_{1}, \alpha_{1}+s+m} \eta_{p_{2} . \alpha_{2}+s+n}\right)
$$

$$
+A_{i, j}^{\prime}
$$

where, since every term of the first expression on the right is a constant times a primitive $p_{0} p_{1} p_{2}$ nd root of unity, and every term of $A_{i, j}^{\prime}$ is a constant times $\lambda_{p_{0} p_{1} p_{2}}^{n}\left[\right.$ where g.c.d. $\left.\left(n, p_{0} p_{1} p_{2}\right)>1\right]$, we must have $A_{i, j}^{\prime}=A_{i, j}$ of Lemma 7 .

A simple computation shows, in fact, that the seven summations occurring in $A_{i, j}^{\prime}$ are termwise identical to those appearing in $A_{i, j}$.

But, we also have that

$$
\begin{aligned}
& \sum_{s, t, \ell, m, n=0}^{e-1}(i+t, \ell)_{p_{0}}(j+t, m)_{p_{1}}(t, n)_{p_{2}} \eta_{p_{0}, \alpha_{0}+s+\ell} \eta_{p_{1}, \alpha_{1}+s+m} \eta_{p_{2}, \alpha_{2}+s+n} \\
= & \sum_{t, \ell, m, n=0}^{e-1}(i+t, \ell)_{p_{0}}(j+t, m)_{p_{1}}(t, n)_{p_{2}} \sum_{s=0}^{e-1} \eta_{p_{0}, \alpha_{0}+(\ell-n)+s} \eta_{p_{1}, \alpha_{1}+(m+n)+s} \eta_{p_{2}, \alpha_{2}+s} \\
= & \sum_{t, \ell, m, n=0}^{e-1}(i+t, \ell)_{p_{0}}(j+t, m)_{p_{1}}(t, n)_{p_{2}} \eta_{p_{0} p_{1} p_{2}, \ell-n, m-n} \\
= & \sum_{t, m-0}^{e-1}\left(\sum_{t, n-0}^{e-1}(i+t, \ell+n)_{p_{0}}(j+t, m+n)_{p_{1}}(t, n)_{p_{2}}\right) \eta_{p_{0} p_{1} p_{2}, \ell, m} .
\end{aligned}
$$

Hence, comparison of coefficients between the above expression and that obtained in Lemma 7 yiclds

$$
(i, j ; \ell, m)_{p_{0} p_{1} p_{2}}=\sum_{t, n=0}^{e-1}(i+t, \ell+n)_{p_{0}}(j+t, m+n)_{p_{1}}(t, n)_{p_{2}}
$$

for all $i, j ; \ell, m=0,1, \ldots, e-1$. This is the elementwise formulation of the matrix product defined in the theorem.

Corollary.

$$
(0,0 ; 0,0)_{p_{0} p_{1} p_{2}}=\mathbf{C}_{p_{0}, e} \cdot \mathbf{C}_{p_{1}, e} \cdot \mathbf{C}_{p_{2}, e}
$$

If, for the $(e \times e)$-matrices

$$
A^{(n)}=\left\{\left[a_{i, j}^{(n)}\right]: i, j=0,1, \ldots, e-1\right\} \quad n=0,1,2,
$$

we define the product

$$
A^{(0)} * A^{(1)} * A^{(2)}=B
$$

where B is the $\left(e^{2} \times e^{2}\right)$-matrix $\left[b_{i, j}\right], i, j=0,1, \ldots, e^{2}-1$ defined as follows: if

$$
\begin{array}{ll}
i=e v_{1}+u_{1} & 0 \leqslant u_{1}, v_{1} \leqslant e-1 \\
j=e v_{2}+u_{2} & 0 \leqslant u_{2}, v_{2} \leqslant e-1
\end{array}
$$

then

$$
b_{i, j}=\sum_{t, n=0}^{e-1} a_{u_{1}+t, u_{2}+n}^{(0)} a_{v_{1}+t, v_{2}+n}^{(1)} a_{t, n}^{(2)} ;
$$

then the conclusion of Theorem 2 may be more compactly written

$$
\mathbf{C}_{p_{0} v_{1} v_{2}, e}=\mathbf{C}_{p_{0}, e} * \mathbf{C}_{v_{1}, e} * \mathbf{C}_{p_{2}, e},
$$

where the cyclotomic numbers $(i, j ; \ell, m)_{p_{0} \boldsymbol{p}_{1} p_{2}}$ are identified with the pairs $(e j+i, e m+\ell)_{p_{0} p_{1} p_{2}}$ of $\mathrm{C}_{p_{0} p_{1} p_{2}, e}$. We shall, however, after listing several examples, continue to work with the cyclotomic numbers as ordered quadruples.

We present two examples of Theorem 2; (I) $p_{0} p_{1} p_{2}=385, e=2$, and (II) $p_{0} p_{1} p_{2}=1105, e=4$. The matrices $\mathrm{C}_{p_{0} \nu_{1} y_{2}, e}$ were constructed directly from the domains \mathbf{Z}_{385} and \mathbf{Z}_{1105}, in order to verify Theorem 2 in these cases.

Examples.

(I) $p_{0} p_{1} p_{2}=385, e=2 ; g=17, x_{0}=232, y_{1}=276$

$$
\begin{aligned}
& \mathrm{p}_{0}=5=2 \cdot 2+1, \mathrm{~g}_{0}=2 \\
& \mathrm{C}_{5,2:} \begin{array}{|c|c|}
\hline 0 & 1 \\
\hline 1 & 1 \\
\hline
\end{array} \\
&
\end{aligned}
$$

$C_{385,2}:$| 10 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: |
| 10 | 10 | 9 | 9 |
| 9 | 8 | 9 | 8 |
| 9 | 7 | 7 | 9 |\quad| |
| :---: |

II. $\mathrm{p}_{0} \mathrm{p}_{1} \mathrm{p}_{2}=1105, \mathrm{e}=4 ; \mathrm{g}=7, \mathrm{x}_{0}-222, \mathrm{y}_{1}=1021$

$$
\begin{aligned}
& \mathrm{p}_{0}=5=4 \cdot 1+1, \mathrm{~g}_{0}=2 \\
& \mathrm{C}_{5,4}: \begin{array}{|l|l|l|l|}
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
p_{1}=13=4 \cdot 3+1, g_{1}=7
$$

$$
\mathrm{p}_{2}=17=4 \cdot 4+1, \mathrm{~g}_{2}=7
$$

$\mathrm{C}_{13,4}$:

0	0	2	1
1	1	1	0
0	1	0	1
1	1	0	1

$\mathrm{C}_{17,4}:$| 0 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 2 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 0 |

As in the case of the domains $\mathbf{Z}_{p_{0} p_{1}}$, replacement of the generator g by a new generator g^{*} may no longer leave $C_{p_{0} \nu_{1} p_{2}, 0.0}$, nor hence any $C_{p_{0} \nu_{1} \nu_{2}, i, j}$, fixed, and so in general there will be several distinct cyclotomic matrices $\mathbf{C}_{p_{0} p_{1} p_{2}, e}$ which cannot be obtained one form the other by permutations. Here we have

$$
\phi\left(p_{0}-1\right) \phi\left(p_{1}-1\right) \phi\left(p_{2}-1\right)-[\phi(e)]^{2} \phi(d)
$$

and hence we can show that there are at most $[\phi(e)]^{2}$ inequivalent cyclotomic matrices definable on $\mathbf{Z}_{p_{0} p_{1} p_{\mathrm{g}}}$ for a given e; there is no guarantee that there are, in general, at least this many.

As a final example, we remark that the Corollary to Theorem 1 has been applied in [6] to very simply obtain the final result of [5] (mentioned in the introductory paragraph of the present section). This we state below.

Lemma 8. Let $e=2$ and

$$
\dot{M}=\left(p_{0}-2\right)\left(p_{1}-2\right)\left(p_{2}-2\right)+p_{0}+p_{1}+p_{2}-8 ;
$$

then
$16(0,0 ; 0,0)_{p_{0} p_{1} p_{2}}=\left\{\begin{array}{llll}\dot{M}+2\left(p_{0}+p_{1}+p_{2}\right)-4 & \text { if } & f_{0} f_{1} f_{2} & \text { is odd } \\ \dot{M}+2 p_{0} & \text { if } & f_{0} & \text { is even } \\ \dot{M}+2 p_{1} & \text { if } & f_{1} & \text { is even } \\ \dot{M}+2 p_{2} & \text { if } & f_{2} & \text { is even } .\end{array}\right.$
Note that here there is exactly $[\phi(2)]^{2}=1$ distinct cyclotomic matrix for $\mathbf{Z}_{p_{0} p_{1} p_{2}}$, and the entry $(0,0 ; 0,0)_{p_{0} p_{1} p_{2}}$ of this matrix is given by the Corollary to Theorem 2.

We now use Theorem 2 to prove an analogue of Lemma 1 for these domains.

Lemma 9.
 $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbf{Z}$.
(2) $(i, j ; \ell, m)_{p_{0} p_{1} p_{2}}=(e-i, e-j ; \ell-i, m-j)_{p_{0} p_{1} p_{2}}$.
(3) $(i, j, \ell, m)_{p_{0} p_{1} p_{2}}$
$=\left\{\begin{array}{llll}(\ell, m ; i, j)_{p_{0} p_{1} p_{2}} & \text { if } & f_{0} f_{1} f_{2} & \text { odd } \\ \left(\ell+\frac{e}{2}, m ; i+\frac{e}{2}, j\right)_{p_{0} p_{1} p_{2}} & \text { if } & f_{0} & \text { even } \\ \left(\ell, m+\frac{e}{2} ; i, j+\frac{e}{2}\right)_{p_{0} p_{1} p_{2}} & \text { if } & f_{1} & \text { even } \\ \left(\ell+\frac{e}{2}, m+\frac{e}{2} ; i+\frac{e}{2}, j+\frac{e}{2}\right)_{p_{0} p_{1} p_{2}} & \text { if } & f_{2} & \text { even. }\end{array}\right.$
(4) $\sum_{\ell, m=0}^{e-1}(i, j ; \ell, m)_{v_{0} p_{1} p_{2}}=\left(d-f_{0} f_{1}-f_{0} f_{2}-f_{1} f_{2}\right)$

$$
+f_{2} \delta_{p_{0} p_{1}, i-j}+f_{1} \delta_{p_{0} p_{2}, i}+f_{0} \delta_{p_{1} p_{2}, j}-\zeta_{p_{0} p_{1} p_{2}, i, j}
$$

Proof.
(1) Obvious.
(2) $(e-i, e-j ; \ell-i, m-j)_{p_{0} p_{1} p_{2}}$

$$
\begin{aligned}
& =\sum_{t, n=0}^{e-1}(e-i+t, \ell-i+n)_{p_{0}}(e-\cdots j+t, m-j+n)_{p_{1}}(t, n)_{p_{2}} \\
& =\sum_{t, n=0}^{e-1}(i-t, \ell-t+n)_{p_{0}}(j-t, m-t+n)_{p_{1}}(e-t, n-t)_{p_{2}} \\
& =\sum_{t, n=0}^{e-1}(i+t, \ell+n)_{p_{0}}(j+t, m+n)_{p_{1}}(t, n)_{p_{2}} \\
& =(i, j ; \ell, m)_{p_{0} p_{1} p_{2}}
\end{aligned}
$$

(3) If $f_{0} f_{1} f_{2}$ is odd, then

$$
\begin{aligned}
(\ell, m ; i, j)_{p_{0} \boldsymbol{p}_{1} p_{2}} & =\sum_{t, n=0}^{e-1}(\ell+t, i+n)_{p_{0}}(m+t, j+n)_{p_{1}}(t, n)_{p_{2}} \\
& =\sum_{n, t=0}^{e-1}(i+n, \ell+t)_{p_{0}}(j+n, m+t)_{p_{1}}(n, t)_{p_{2}} \\
& =(i, j ; \ell, m)_{p_{0} p_{1} p_{2}} .
\end{aligned}
$$

If f_{0} is even, then

$$
\begin{aligned}
\left(\ell+\frac{e}{2}, m ; i+\frac{e}{2}, j\right)_{p_{0} p_{1} p_{2}}= & \sum_{t, n=0}^{e-1}\left(\ell+\frac{e}{2}+t, i+\frac{e}{2}+n\right)_{p_{0}} \\
& \times(m+t, j+n)_{p_{1}}(t, n)_{p_{p_{2}}} \\
= & \sum_{n, t=0}^{e-1}(i+n, \ell+t)_{p_{0}}(j+n, m+t)_{p_{1}}(n, t)_{p_{2}} \\
= & (i, j ; \ell, m)_{p_{0} p_{1} p_{2}}
\end{aligned}
$$

The case for f_{1} even is entirely similar.
If f_{2} is even, then

$$
\begin{aligned}
& \quad\left(\ell+\frac{e}{2}, m+\frac{e}{2} ; i+\frac{e}{2}, j+\frac{e}{2}\right)_{p_{0} p_{1} p_{2}} \\
& =\sum_{t, n=0}^{e-1}\left(\ell+\frac{e}{2}+t, i+\frac{e}{2}+n\right)_{p_{0}}\left(m+\frac{e}{2}+t, j+\frac{e}{2}+n\right)_{p_{1}}(t, n)_{p_{2}} \\
& =\sum_{t, n=0}^{e-1}(\ell+t, i+n)_{p_{0}}(m+t, j+n)_{p_{1}}\left(t+\frac{e}{2}, n+\frac{e}{2}\right)_{p_{2}} \\
& =\sum_{n, t=0}^{e-1}(i+n, \ell+t)_{p_{0}}(j+n, m+t)_{p_{1}}(n, t)_{p_{2}} \\
& =(i, j ; \ell, m)_{p_{0} p_{1} p_{2}} . \\
& \text { (4) } \sum_{\ell, m=0}^{e-1}(i, j ; \ell, m)_{p_{0} p_{1} p_{2}}=\sum_{\ell, m=0}^{e-1} \sum_{t, n=0}^{e-1}(i+t, \ell+n)_{p_{0}} \\
& \times(j+t, m+n)_{p_{1}}(t, n)_{p_{p_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{t, n=0}^{e-1}\left(f_{0}-\theta_{p_{0}, i+t}\right)\left(f_{1}-\theta_{p_{1}, j+t}\right)(t, n)_{p_{2}} \\
= & \sum_{t=0}^{e-1}\left(f_{0}-\theta_{p_{0}, i+t}\right)\left(f_{1}-\theta_{p_{1}, j+t}\right)\left(f_{2}-\theta_{p_{2}, t}\right) \\
= & d-f_{0} f_{1}-f_{0} f_{2}-f_{1} f_{2}+f_{2} \delta_{p_{0} p_{1}, i-j} \\
& \quad+f_{1} \delta_{p_{0} p_{2}, j}+f_{0} \delta_{p_{1} p_{2}, j}-\zeta_{p_{0} p_{1} p_{2}, i, j}
\end{aligned}
$$

Finally, a few remarks concerning arithmetic functions on the domains $Z_{p_{0} p_{1} p_{2}}$ are in order. For each pair μ_{0}, μ_{1}, with $1 \leqslant \mu_{0}, \mu_{1} \leqslant e-1$, $\mu_{0}+\mu_{1} \neq 0(\bmod e)$, and, without loss of generality, g.c.d. $\left(\mu_{0}, \mu_{1}\right)=1$, we define

$$
F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m}\right)=\sum_{i, j=0}^{e-1} \lambda_{e}^{m\left(\mu_{0} i+\mu_{1} j\right)} \eta_{p_{0} p_{1} p_{2}, i, j}
$$

and

$$
R_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}(m, n)=\sum_{i, k=0}^{e-1} \lambda_{e}^{n\left(\mu_{0} i+\mu_{1} k\right)} \sum_{j, t=0}^{e-1} \lambda_{e}^{-(m+n)\left(\mu_{0} j+\mu_{1} \ell\right)}(i, k ; j, \ell)_{p_{0} p_{1} p_{2}}
$$

whenever none of m, n, nor $m+n$ is divisible by e. We then have the following analogue of Lemma 6, Part (1).

Lemma 10.

$$
F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m}\right)=\lambda_{e}^{-m\left[\mu_{0} \alpha_{0}+\mu_{1} \alpha_{1}-\left(\mu_{0}+\mu_{1}\right) \alpha_{2}\right]} F_{p_{0}}\left(\lambda_{e}^{\mu_{0} m}\right) F_{p_{1}}\left(\lambda_{e}^{\mu_{1} m}\right) F_{p_{2}}\left(\lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) m}\right)
$$

Proof.

$$
\begin{aligned}
F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m}\right)= & \sum_{i, j=0}^{e-1} \lambda_{e}^{m\left(\mu_{0} i+\mu_{1}\right)} \eta_{p_{0} p_{1} p_{2}, i, j} \\
= & \sum_{i, j=0}^{e-1} \lambda_{e}^{m\left(\mu_{0} i+\mu_{1} j\right)} \sum_{k=0}^{e-1} \eta_{p_{0}, \alpha_{0}+i+k} \eta_{p_{1}, \alpha_{1}+j+k} \eta_{p_{2}, \alpha_{2}+k} \\
= & \lambda_{e}^{-m\left[\mu_{0} \alpha_{0}+\mu_{1} \alpha_{1}-\left(\mu_{0}+\mu_{1}\right) \alpha_{2}\right]}\left(\sum_{i=0}^{e-1} \lambda_{e}^{\mu_{0} m i} \eta_{p_{0}, i}\right)\left(\sum_{j=0}^{e-1} \lambda_{e}^{\mu_{1} m j} \eta_{p_{1}, j}\right) \\
& \times\left(\sum_{k=0}^{e-1} \lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) m k} \eta_{p_{2}, k}\right) \\
= & \lambda_{e}^{-m\left[\mu_{0} \alpha_{0}+\mu_{1} \alpha_{1}-\left(\mu_{0}+\mu_{1}\right) \alpha_{2}\right]} F_{p_{0}}\left(\lambda_{e}^{\mu_{0} m}\right) F_{p_{1}}\left(\lambda_{e}^{\mu_{1} m}\right) F_{p_{2}}\left(\lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) m}\right) .
\end{aligned}
$$

We remark that, since e is even, one of μ_{0}, μ_{1}, or $-\left(\mu_{0}+\mu_{1}\right)$ must be even; further, $F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}(-1)$ is expressible as a constant times the product

$$
F_{p_{0}}\left[(-1)^{\mu_{0}}\right] F_{p_{1}}\left[(-1)^{\mu_{1}}\right] F_{p_{2}}\left[(-1)^{2 e-\left(\mu_{0}+\mu_{1}\right)}\right],
$$

so no direct analogue of Jacobi's lemma [Lemma 3, Part (2)] holds for these domains.

The R 's also split over the summand fields, as in Lemma 6, Part 2, and they are related to the F 's as in the Corollary to Lemma 6.

Lemma 11.

$$
\begin{aligned}
& R_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}(m, n)=\frac{F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m}\right) F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{n}\right)}{F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{2}\right)}\left(\lambda_{e}^{m+n}\right)} \\
& = \\
& \quad R_{p_{0}\left(\mu_{0} m, \mu_{0} n\right) R_{p_{1}}\left(\mu_{1} m, \mu_{1} n\right)} \quad \times R_{p_{2}}\left(-\left(\mu_{0}+\mu_{1}\right) m,-\left(\mu_{0}+\mu_{1}\right) n\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m}\right) F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{n}\right) \\
& =\lambda_{e}^{-(m+n)\left[\mu_{0} \alpha_{0}+\mu_{1} \alpha_{1}-\left(\mu_{0}+\mu_{1}\right) \alpha_{2}\right]} F_{p_{0}}\left(\lambda_{e}^{\mu_{0} m}\right) F_{p_{0}}\left(\lambda_{e}^{\mu_{0} n}\right) F_{p_{1}}\left(\lambda_{e}^{\mu_{1} m}\right) F_{p_{1}}\left(\lambda_{e}^{\mu_{1} n}\right) \\
& \\
& =F_{p_{2}}\left(\lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) m}\right) F_{p_{2}}\left(\lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) n}\right) \\
& F_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}\left(\lambda_{e}^{m+n}\right) \\
& \quad \times R_{p_{0}}^{m}\left(\mu_{0} m, \mu_{0} n\right) R_{p_{1}}\left(\mu_{1} m, \mu_{1} n\right) R_{p_{2}}\left(-\left(\mu_{0}+\mu_{1}\right) m,-\left(\mu_{0}+\mu_{1}\right) n\right) .
\end{aligned}
$$

Hence, it remains to show that

$$
\begin{aligned}
R_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}(m, n)=R_{p_{0}}\left(\mu_{0} m\right. & \left., \mu_{0} n\right) \\
& \times R_{p_{1}}\left(\mu_{1} m, \mu_{1} n\right) R_{p_{2}}\left(-\left(\mu_{0}+\mu_{1}\right) m,-\left(\mu_{0}+\mu_{1}\right) n\right) .
\end{aligned}
$$

But,

$$
\begin{aligned}
& R_{p_{0}}\left(\mu_{0} m, \mu_{0} n\right) R_{p_{1}}\left(\mu_{1} m, \mu_{1} n\right) R_{\nu_{2}}\left(-\left(\mu_{0}+\mu_{1}\right) m,-\left(\mu_{0}+\mu_{1}\right) n\right) \\
&=\left(\sum_{i=0}^{e-1} \lambda_{e}^{\mu_{0} n i} \sum_{j=0}^{e-1} \lambda_{e}^{-\mu_{0}(m+n) j}(i, j)_{p_{0}}\right)\left(\sum_{k=0}^{e-1} \lambda_{e}^{\mu_{1} n k} \sum_{i=0}^{e-1} \lambda_{e}^{-\mu_{1}(m+n) t}(k, \ell)_{p_{1}}\right) \\
& \times\left(\sum_{s=0}^{e-1} \lambda_{e}^{-\left(\mu_{0}+\mu_{1}\right) n s} \sum_{t=0}^{e-1} \lambda_{e}^{\left(\mu_{0}+\mu_{1}\right)(m+n) t}(s, t)_{p_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i, k, s=0}^{e-1} \lambda_{e}^{n\left[\mu_{0} i+\mu_{1} k-\left(\mu_{0}+\mu_{1}\right) s\right]} \sum_{j, \ell, t=0}^{e-1} \lambda_{e}^{-(m+n)\left[\mu_{0} j+\mu_{1} l-\left(\mu_{0}+\mu_{1}\right) t\right]}(i, j)_{p_{0}}(k, \ell)_{p_{1}}(s, t)_{p_{2}} \\
& =\sum_{i, k=0}^{e-1} \lambda_{e}^{n\left(\mu_{0} i+\mu_{1} k\right)} \sum_{j, \ell=0}^{e-1} \lambda_{e}^{-(m+n)\left(\mu_{0}^{j}+\mu_{1} \ell\right)} \\
& \quad \times \sum_{s, t=0}^{e-1}(i+s, j+t)_{p_{0}}(k+s, \ell+t)_{p_{1}}(s, t)_{p_{2}} \\
& =\sum_{i, k=0}^{e-1} \lambda_{e}^{n\left(\mu_{0} i+\mu_{1} k\right)} \sum_{j, t=0}^{e-1} \lambda_{e}^{-(m+n)\left(\mu_{0} j+\mu_{1} \ell\right)}(i, k ; j, \ell)_{p_{0} p_{1} p_{2}} \\
& =R_{p_{0} p_{1} p_{2}}^{\left(\mu_{0}, \mu_{1}\right)}(m, n) .
\end{aligned}
$$

By using Lemmas 10 and 11, the many properties of the functions F and R can be derived in this more general setting. For definiteness in what follows, we define

$$
\begin{gathered}
F_{p_{0} p_{1} p_{2}}\left(\lambda_{e}{ }^{m}\right)=F_{p_{0} p_{1} p_{2}}^{(1,1)}\left(\lambda_{e}^{m}\right) \\
R_{p_{0} p_{1} p_{2}}(m, n)=R_{p_{0} p_{1} p_{2}}^{(1,1)}(m, n),
\end{gathered}
$$

and remark that, if we define the more general functions

$$
F_{p_{0} p_{1} p_{2}}\left(\beta_{e}^{m}, \gamma_{e}^{n}\right)=\sum_{i, j=0}^{e-1} \beta_{e}^{m i} \gamma_{e}^{n j} \eta_{p_{0} p_{1} p_{2}, i, j}
$$

and

$$
\begin{gathered}
R_{p_{0} p_{1} p_{2}}\left(m_{0}, m_{1} ; n_{0}, n_{1}\right) \\
=\sum_{i, k=0}^{e-1} \beta_{e}^{n_{0} i} \gamma_{e}^{n_{1} k} \sum_{j, \ell=0}^{e-1} \beta_{e}^{-\left(m_{0}+n_{0}\right) j} \gamma_{e}^{-\left(m_{1}+n_{1}\right) \ell}(i, k ; j, \ell)_{p_{0} p_{1} p_{2}},
\end{gathered}
$$

for primitive e th-roots of unity β_{e} and γ_{e} such that $\beta_{e} \gamma_{e} \neq 1$, then the methods above will prove results for these functions analogous to Lemmas 10 and 11.

References

1. D. Shanks. "Solved and Unsolved Problems in Number Theory." Vol. I. Spartan, 1962.
2. T. Storer. "Cyclotomy and Difference Sets." Markham, 1967.
3. T. Storer. A note on the arithmetic structure of the integers modulo N. J. Comb. Theory (to appear).
4. 'T. Storer. A complete cyclotomic theory for the integers modulo a product of two distinct odd primes. Duke Math. J. (to appear).
5. L. Carlitz and A. L. Whiteman. The number of solutions of some congruences module a product of primes. Trans. Am. Math. Soc. 112 (1964), 53G-552.
6. T. Storer. On the arithmetic structure of Galois domains. Acta Arith. (to appear).
7. T. Storer. Cyclotomy in $G D\left(p^{\alpha} q^{\beta} r^{\gamma}\right)$. Portugalia Math. (to appear).
8. P. A. White. The number of solutions of some congruences modulo a product of three primes. Duke Math. J. 34 (1967), 1-22.

[^0]: * Partially supported by a NSF Research Grant.

[^1]: ${ }^{1}$ We suppress the " e " now, as it is determined by p and q.

[^2]: * Here ϕ is the Euler function.

