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1. INTRODUCTION 

Ifm =ppp;2 "'P" kk, where the pi are distinct primes, and if we choose the 
ordered factorization +m = fi fi ..* f,. of +(m) into its characteristic factors, 
then it is well known that to each fi there corresponds a residue class gi 
of order fi modulo m, such that every residue class aj in the subgroup Am 
of units modulo m may be expressed as 

a, z gpgt' 9.. gf? (mod m) (0 G sij < fi) 

in exactly one way (see, for example, [l], p. 94). For fixed g = (g, , g, ,... gr) 
and 8 = (si , sa ,... s,) we write 

g’ s g:'g? a*- gp (mod m), 

so that .Am = {g”: 0 < si < fi} and g’ =g” if and only if J = 1. In this 
notation an important class of problems in number theory may be conve- 
niently discussed at one time: namely, for how many pairs s1 , t, , with 
0 < s1 , t, < fi , is the congruence 

g” + 1 =g” (mod m) 

satisfied. In the special cases CQ = 0~~ = *** = 0~~ = 1 and K = 1, k = 2, 
or K = 3, it has become customary (see [2]) to denote this number by 
(sl , t&,, , the cyclotomic number corresponding to m, g, , and the pair 
(ss , s3 ,*.a, 4, (tz , t, ,**a, t,.); it is here proposed that the same designation 
prevail in the general case. 

It is, perhaps, a curious fact that, given m and g, , it is not the problem of 
establishing the existence of the gi (2 < i < r) which makes the determina- 
tion of the numbers (sr , t& difficult; it is, rather, that the g, are “too 

* Partially supported by a NSF Research Grant. 
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THE NUMBER OF SOLUTIONS OF SOME EQUATIONS 19 

numerous.” That is, to eachfi there in general correspond several admissible 
gi , and if g; be substituted for gi , the distribution of the residues aj E Am 

will apparently change (i.e., aj will be represented by different ;). It is there- 
fore, prerequisite to the solution of our problem that a “canonical” repre- 
sentation of the residues of A$, in the above m be found. Hence we begin 
with a brief resume of the known results for m = pa and m = p”q4. 

2. RESUME? 1: THE FIELDS GF(p”) 

We begin with the case m = p = ef + 1 an odd prime, so that the struc- 
ture under consideration is the field 2,; here AP is cyclic with generator, 
say, g. If we define the cyclotomic classes 

Cp,i = {ges+i (mod p) : s = 0, l,..., f - l} 

for i = 0, l,..., e - 1, our problem is to determine the numbers (i,j), , 
0 < i, j < e - 1, the number of solutions of the congruence 

~i+l-~j(modp) 3 E cD.i 9 zi E c*,j; 

i.e., the number of ordered pairs (s, t) with 0 < s, t <f - 1 such that 

ge*+i + 1 s get+j (mod p). 

The matrix C,,, whose zjth entry is the cyclotomic number (i, j), is called the 
cyclotomic matrix of Z, with respect to e and the fixed generator g. We remark 
that, since Z, is unique up to isomorphism, replacement of g by a new gene- 
rator g* of A’/~ leaves C,,, fixed, and at most permutes the remaining C,,i, 
i # 0. 

The following relations between the cyclotomic numbers for Z, , e, and g 
are well known (see [2], p. 25): 

LEMMA 1. 

(1) (i, j), = (i + ne, j + me), for all m,nEZ. 

(2) (id, = (e - 4i - i), , 

(is ;I, if f iseven 

(3) W, = 
(j+$.j++) ;f f isodd, 

P 
8-l 

(4) C (ki), =f - 40, 
+a 
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where 
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i 

1 if f is even and i=O 

B,,f = 

i 

1 if f is odd and 

0 otherwise. 

We now introduce two arithmetic functions 
be a natural number and define 

iEAT 
2 

on Z, . To that end let N 

’ 27ri 
A, = exp N ; 

t 1 

we then define the periods of Z, , g and e to be 

f-l 

for k = 0, l,..., e - 1, and note that 

e-1 

zo%.k = - l* 

The periods are related to the cyclotomic numbers by the following lemma 
(see [2], p. 38). 

LEMMA 2. 
e-1 

%,O%,k = c (k,j)D%.i +.f%,k for k = Oy lj...p e - l. 
i=o 

When e divides none of m, n, or m + n, we define the functions 

D-2 e-1 

Fp(Ay) = c hTkAr = c hTkqp,k 
k=O k=O 

e-1 e-1 

$,(m, n) = C AZ” C A$+n)h(k, h), . 
k=O h=O 

The following properties of these functions are well known (see [2], pp. 41-47 
and 62-64). 

LEMMA 3. 



THE NUMBER OF SOLUTIONS OF SOME EQUATIONS 21 

(2) If 1 is the natural number determined by g1 = 2 (mod p), then 

F,( - 1) F&“) = x;“eF,(x,“) F,( - X,“). 

Part (2) of Lemma 3 is known as Jacobi’s Lemma, and we remark that it, as 
well as all results listed in the present section remain true (see [2], Part I) if 

Z, is replaced by GF(p”), each congruence, of course, then being replaced by 

equality (between elements of the field). Further, the method of generalizing 
from Z, to ZBa is given in [3], and hence we shall in the future, without loss, 
restrict ourselves to the case where m is square-free (corresponding to Z,). 

3. F~ESUMI~ 2: THE GALOIS DOMAINS GD(paqB) 

Now let p = ef + 1 and q = ef’ + 1 be distinct odd primes with 

g.c.d. (f, f ‘) = 1 ( i.e., e = g.c.d. (p - 1, q - 1); the analysis forp = ef + 1 

and q = e’f’ + 1, where e # e’, follows the lines of development below, and 
is completely worked out in [4]). Let d = l.c.m.(p - 1, q - 1) = eff ‘, and 
suppose that g is a fixed common primitive root of p and q. If x EZ, be 

defined by 

x=g (modp) and x z 1 (mod q), 

we define, as in the case for the finite field, the cyclotomic classes for1 Z,, and 
g to be 

C,,,i = (gsxi (mod pq) : s = 0, l,..., d - I> 

for i = 0, l,..., e - 1, and immediately verify that the CDUSi are pairwise 

disjoint and that their union is MD,. As before, the cyclotomic numbers 

(i,& , 0 < i, j < e - 1, for Z,, and g are defined to be the number of 

solutions of the congruence 

xi + 1 3 Xj (mod&) Xi E cm.i > xj E c,,j; 

i.e., the number of ordered pairs (s, t) with 0 < s, t < d - 1 such that 

g”xi + 1 = gW (modpq). 

The matrix C,,, whose ijth entry is the cyclotomic number (i,i), is 
called the cyclotomic matrix of Z,, with respect to the fixed generator g. 
Now, however, replacement of the generator g by a new generator g* may no 
longer leave CDQ,O (nor, hence any I?,,~) fixed, and so, in general, there exist 

1 We suppress the “e” now, as it is determined by p and q. 
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several distinct cyclotomic matrices C,,,, for Z,, which cannot be obtained 
one from another by permutations. Since #(p - 1) +(q - 1) = +(e)+(d), 
it is easily shown, however, that there are at most 4(e) such matrices. * 

While much work has been expended in the determination of the entries 
of C,,,, (i.e., the cyclotomic numbers) through a detailed analysis of the 
structure of the domain Z,, , it might rather naturally be hoped that all the 
results derived for the fields Z, and Z, for e and the fixed generator g could 
be directly applied to give the corresponding information for Z,, . The first 
results in this direction were obtained in [5] through the introduction of 
characters on ZPa; the method below avoids this complication. 

The following theorem is proved in [6]. 

THEOREM 1. Let g be a common primitive root of the distinct odd primes 
p=ef+landq=t$t l,wheree=g.c.d.(p-l,q-l),andletPand 
Q be the permutation matrices 

p= -A-&S- 
t 1 I 0 

), Q=(Tor~-;-). 

Then 
e1 

C - c,,, * c,*, , lw,e - 
where the matrix product * is dejned as follows: The ijth entry of C, * C, 
is (PiCs,eQ9 * C,,, , where “dot” denotes the inner product of the two matrices. 

Let us give a direct verification of this theorem for the simplest case, e = 2. 
We assume, for the moment, that the cyclotomic matrices C,,,, are known 
(see [2], pp. 92, 94 for the classical derivation based on the structure of the 
domain); here the result is an easy consequence of Lemma 4. In the case of 
the finite field, Lemma 1 is sufficient to determine the cyclotomic matrices 
C&s and, using this lemma, we find that 

* Here q5 is the Euler function. 

1 pz-5 __- P-l 
4 4 

j- 
if 

P-1 P-l - ~ 

4 I 4 
c,,, = q -__~~ 

-- if 

P-3 P-3 - - 
4 I 4 

‘\ 

f is even 

f is odd. 
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Now, P = Q = (f i), whence Theorem 1 for e = 2 becomes 

C PQ.2 = @%2w * Cd 

which we directly verify. 

CASE I: ff’ odd. Then both f and f' are odd, so 

(OP %I = AT [3(P - 3) (!I - 3) + (P + 1) (4 + I>1 = t [(p - 2) (4 - 2) + 31, 

(0, l),, = A NJ + 1) (Q - 3) + (P - 3) (n + 1) + 2(P - 3) (!I - 3)l 
= t [(p - 2) (q - 2) - l] = (1, O), = (1, l),q. 

CASE II: ff’ ewen. Then, since g.c.d. (f, f ‘) = 1, either f is even and 
f ’ odd, or f' is even and f odd. 

(a) f even, f’ odd. 

(0, %w = is [(P - 5) (4 - 3) + (P - 1) (4 + 1) + 2(P - 1) (4 - 3)l 
= a NP - 2) (4 - 4 + 11 = (1, o>, = (1, l), 2 

(0, lh = 23 0 - 1) (4 - 3) + (P - 5) (4 + 1) + 2(P - 1) (n - 3)l 
= i KP - 2) (!? - 2) - 31. 

(b) f odd,f’even. 

(09 %w = h [(P - 3) (Q - 5) + (P + 1) (P - 1) + 2(P - 3) (4 - l)] 
=f[(P-2)(q--2)+11=(1,0),=(1,1),, 

(0, l>,* = h HP + 1) (4 - 5) + 3(P - 3) (4 - 111 
= a NP - 2) (!I - 2) - 31. 

Hence 

’ (p - 2) (“,- 2) I + 1 (p - 2) (q - 2) - 3 i 
4 

if ff ’ is even 

(P - 2) k- 2) + 1 (P - 2) (Q - 2) + 1 
4 

C BP,2 = 

(P - 2) (4 - 2) + 3 (P - 2) (4 - 2) - 1 
4 4 

if ff’ is odd, 

(P - 2) (4 - 2) - 1 (P - 2) (!? - 2) - 1 
4 4 

which is known to be the case. We remark that Theorem 1 can be directly 
proved as above for those e for which the cyclotomic matrices for’& , Z, , 
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and Z,, are known. At present, this knowledge is limited by what is known 

for Z,; namely, e = 2, 4, 6, and 8. 
We also note that Theorem 1 provides us with an effective computational 

tool for determining the number of solutions to the types of equation which 
we have been considering, for the structures G&Y@) or Z,“,“. In the exam- 

ples below, the numbers of solutions for the summand fields were easily 
determined manually, the number for the domains from Theorem 1. Even 
for these relatively “small” examples, the amount of time saved through the 
use of Theorem 1 is considerable. 

EXAMPLES. 

Ia pq ~ 65; e = 4; g = 2, x = 27. 

p=5=4.1+1, q=13=4.3+1, 

c5.4: ::1’1 c,13,4:ff#iJ 
b: g = 7, x = 27 

c5,4: 

0 1 0 0 

0 0 0 1 

Bi 

0 0 0 0 

0 0 1 0 

IIa : pq = 85; e = 4; g = 3, x = 18. 

p=5=4-1+1, q= 17 

b:g=12,x ~52; 

c65,4: 

c65 

c85,4: 
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Using Theorem 1, we can easily derive the analogue of Lemma 1 for the 
domains Z,,: 

LEMMA 4. 

(1) (i, j),, = (; + ne, j + me),, for all m, n E Z, 

(2) (i, j),, = (e - i,i - i),, 

CL i),, if ff’isodd 

(3) (iA, = 
( j + +, i + t),, if ff ’ is even. 

6-l 

(4) c (i, j),, = I@+ 6,,,i where eti = (p - 2) (q - 2) - 1 and 
j=o 

e-1 

h9.i = 2 kk+i4,k * 
k=O 

Direct computation shows that 

1 if ff’ odd, i=O 

h,i = 1 if ff’ even, i=L 
2 

0 otherwise 

if - 1 E G,*k 
otherwise. 

The periods of Z,, and g are defined to be 

d-l 

rlP9,k = c A;* = c q" 
a%w.k S=O 

for FE = 0, l,..., e - 1; clearly, 

e-1 

k=O%q,k = I. c 

Here, as in Z, , there is an intimate connection between the products of the 
periods and the cyclotomic numbers; the following lemma (see [2], p. 98) 
is the domain-analogue of Lemma 2. 
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LEMMA 5. 

rlpq.orlpn,k = lg (k,.d rl,,,i - Xf’ + ('G) L,k; (k = 0, l,..., e - 1). 

When e divides none of m, n, nor m + n, we introduce two arithmetic 
functions on 2,: 

and 

e-1 
‘--l R,,(m, n) = c A?” c 6 h+dh(k, h), . 

k=O h=O 

We have shown in [6] that Theorem 1 implies that these functions split over 
the summand fields, as indicated in the following lemma. 

LEMMA 6. 

(1) If 4 E CD,, and p E C,,, , then 

(2) R,,(m, 4 = R,(m, 4 %(- m, - n). 

The many well-known properties of these function now follow directly 
from Lemmas 3 and 6; we state the two of interest to our discussion below. 

COROLLARY 1. 

(2) If L’ and 8’ are the natural numbers determined by gd = 2 (modp) 
and 8’ E 2 (mod q), then 

F,,( - 1) &,(A;“) = @--d’)kFVp(Aek) F,( - &k). 

The significant feature about the above approach is that all results con- 
cerning the domain structure were derived entirely within the structures of 
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of the finite fields, and then “patched” together via Theorem 1. We have 
shown in [6] that a direct generalization of Theorem 1 obtains for all the 
domains Z, with N = JJ:=~P~, and consequently for GD (ni==,pp) (using 
[2]) and Zn;=$$c (using [3]). In th e next section we prove the analogue of 

Theorem 1 for Z,,, , and explicitly derive the class-structure results for these 
domains. 

4. THE GALOIS DOMAINS GD(p”qW) 

The recent interest in equations on and the structure of the domains 
GD(p”qW) stems from the concluding remarks in [5], where the number of 
times that an element of the maximal cyclic subgroup of Z,, is immediately 
followed by another such element was explicitly determined (using characters) 
in the very special case 

e = l.c.m.(g.c.d.(p - 1,q - I), g.c.d.(p - 1, Y - l), g.c.d.(q - 1, Y - 1)) =2 

(when the maximal cyclic subgroup is unique). A complete determination 
of all the cyclotomic numbers for this case was subsequently done in [7] 
by a purely algebraic technique, and the method developed in [5] was 
extended to other specialized domains in [8]. Each of these approaches 
depends heavily upon an analysis of the structure of the domain; here, 
as in the case for GD(pqB), our analysis is carried out in the summand fields. 

We now change our notation slightly, to facilitate the subsequent exposi- 
tion; since several constants will be associated with each of the three distinct 
primes involved, it will be convenient to relate these via the subscript nota- 
tion. To that end, let p, = efO + 1, p, = efi + 1 and p, = ebz + 1, with 
fO , fi , and fs pairwise relatively prime, and for A, CZPO , A, CZD1 and 
12, CZPe define the class product 

44% = ~PlP,arl+ PoP2% + PoP,%(mod POPIPJ : a0 E A0 9 a1 E 4 Y a2 E 43 

so that 

Further, if m, , m, , and mp are integers such that 

PlP2mo + PoP2ml + Pow2 = 1, 

defme the natural numbers 06, g , and 01s by 

ma E Go,uQ 9 m, E cl$q Y m2 E Cg2 a2 
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so that 

Finally, define the classes 

We are now able to realize the cyclotomic classes for Z903)11)2 as sums of products 
of the corresponding classes in the summand fields. 

LEMMA 6. Letgo , g, , andg, begenerators of ZpO , Z$,+ , and Zp2 , respectively, 

and let g GoslDz be the corresponding common primztzve root of p, , p, , and 
p, . DeJine x0 and y1 module p,p,p, as follows: 

x 
0 

_ ‘go (mod P,) 
I 1 (mod PlPJ ” = 1 (mod pop,). t 

& WdPl) 

Then, if d = efo fi fi , we have that 

C qelp,.i.j = ~g”xo4il (modpoplp2) : s = 0, I,..., d - 11 

for i,j = 0, I,..., e - 1. 

PROOF. Clearly G,D,p,.i.~ consists of d elements, distinct modulo p,pd, . 
Further, there exist natural numbers S, t, and u such that 

Hence 

1 = P~P&?‘~ + P~P&~+“~ + P~P&~‘~ (mod P~P~PJ. 

g z p,p~~+‘“o+” + pop2g~t+(ul+1) + poplg~+(~~+l) (mod pop& 

is an element of CP,,a,+l C BI,aI+lCPZ,Or,+l L CP0P1P2,010 , by definition. Further, 

x0 = PlP&?O es+(ao+l) + popg;t+a1 + pop,gF+“a (mod poplpd 

y1 = plpg;+ao + P~P&+(~~+~) + poplgFz (mod P~P~,P~>, 

and so 

@o E cPo91P$.1,0 and FYl E cP&DB*O.l 

for all s and t. Thus the lemma is proved. 1 
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Using Lemma 6, we define the classes CP,P,,p,,i,j to be the cyclotomic 
classes. 

We now define the periods 

so that 

7 = 9O9192.Z.3 C A&s19e; i, j = 0, l,..., e - 1, 
bd 9,9,,9,,i,i 

e-1 

c 79~9,l,pi,i - - - 1. 

i,j=O 

As before, we define the cycZotomic numbers (i,j; m, n)D,,9,S,, to be the number 
of solutions of the equation 

zi,j + l E zm,n (modPOPlP2); zi,j E C909,1*zsi,i; Gw E cPo919zm.n; 

i.e., the number of ordered pairs (s, t); 0 < S, t < d - 1, such that 

&,W + 1 = gtG’W (mod p&pJ. 

Then, analogous to Lemmas 2 and 5, we find that the products of the periods 

for zPo9’192 are related to the corresponding cyclotomic numbers by the follow- 
ing formula. 

LEMMA 7. 
e-1 

7909~9'a.O.~ 37PlJ919*.i.i = c (Ci; 4 m)90919z 7?909192r~,m 
d,m=O 

+ fo “c’ %,*ti+t “c” (j + 6 f4PlP, a, 7919~.m--A 1 - t=0 m,n=O 

e-1 e-1 

+ fl tzo e91,j+t ,;, @ + t* 4, ('9 49,a 7909&n 
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where the above constitutes a de$nition of A,,j , a polynomial in X,,‘s, for n any 
proper divisor of p,p,p, (the terms of which arise for those t such that gtx,$y,,j + 1 
is a nonunit in ZD0Q192), and 

'1 if f”fif2 is odd and i=j=O 

1 if fo is even and i=f- 
2 ’ 

j=O 

5 9iJ9#J~*i.j = ‘1 

i 

if fi is even and i = 0, j=: 

1 if f2 is even and i=j=L 

2 

b otherwise. 

PROOF. The proof is entirely similar to the proof of Lemma 5, (see [2], 
p. 98) upon noting that 

and 
e-1 

6 9091.i-j = z. e90,i+te91,jt t . I 

We now prove an analogue of Theorem 1 for the domains Z903)198 , including 
a complete statement of the situation. 

THEOREIVI~. Let p,=ef,+l, p,=ef,+l, and p,=ef,+l be 
distinct odd primes, with f. , fi , and fi pairwise relatively prime, let go , g, and 

g, be generators of ZDO , ZD1 , and ZS2 , respectively, and g the corresponding 

common primitive root of p, , p, , and p2 moddo poplp2 . Let G; (n = p. , pl , 
or pJ be the cyclotomic classes, C,,,, the cyclotomic matrices, and let C~O~Ie,,i,j , 

be the cyclotomic classes in Z9091D)2 . Then, sf P and Q are the permutation matrices 

A 
P = Circ (0, 1,0 ,..., 0) = 

P 1 0 I 1 
Q = Circ (0, O,..., O,l)= --I-- 

IO-1 j 0 
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we have 

for all i, j, 8, m = 0, I,..., e - 1, and this defines CDD91Z)z,e . Note that here, if 

A’“’ = {[a&‘] : i, j = 0, l,..., e - I} n =o, 1,2, 

PROOF. We proceed to give an alternate evaluation of ~,op,p,,O,O~,o~l~a.i,l 
based on Lemma 6. Clearly, in terms of the T’S, Lemma 6 says no more than 
that 

e-1 
7uoulu2,i,j 7u~.a,+i+t79~.a,+i+t79~,~~+t 

for all i, j = 0, l,..., e - 1. Hence 

( 

e-1 

c 7~~,ug+i+t79~,orl+j+t7eg.a~+t 
t=o 1 

= 
#FO j (Y (i + t9 49, 7?90,%+s+G +fo~,,.i+j ,= d-0 

+ A;, . 

where, since every term of the first expression on the right is a constant times 
a primitive pop&nd root of unity, and every term of A:,, is a constant times 

GoP1U2 [where v-d. (n, PAPER) > 11, we must have Ai,, = A,,j of Lemma 7. 
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A simple computation shows, in fact, that the seven summations occurring 
in Ai,, are termwise identical to those appearing in Ai,j . 

But, we also have that 

e-1 

= t e gnzo (i + t, 410 (i + t+ m),, (4 49, rlPoalP&-%m-n 
,9 3 

Hence, comparison of coefficients between the above expression and that 
obtained in Lemma 7 yields 

e-1 

(i, j; 4 m)sos1D2 = 
t:, (' 

2 + t, 8 + nJDo (j + t, m + nLl (4 n>,, 

for all i, j; t, m = 0, l,..., e - 1. This is the elementwise formulation of the 
matrix product defined in the theorem. B 

COROLLARY. 

If, for the (e x e)-matrices 

Acn) = {[ajr;!] : i,j = 0, l,..., e - l} n =o, 1,2, 

we define the product 
A(O) * AU’ * A’21 = fj, 

where B is the (e2 x e2)-matrix [bJ, i, j = 0, l,..., e2 - 1 defined as follows: 
if 

i = eq + u1 0 < u, , vl < e - 1 

j = ev, + u2 O<us,vs<e-1, 
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then 

then the conclusion of Theorem 2 may be more compactly written 

with the pairs 
listing several 

where the cyclotomic numbers (i, j; 8, m),OPIDz are identified 
(ej + i, em + &91P’2 of CDO’a”lPz,e . We shall, however, after 
examples, continue to work with the cyclotomic numbers as ordered qua- 
druples. 

We present two examples of Theorem 2; (I) pop& = 385, e = 2, and 
(II) p,p,p, = 1105, e = 4. The matrices C P,Po”lVz,e were constructed directly 
from the domains Zs,, and Z,,,, , in order to verify Theorem 2 in these cases. 

EXAMPLES. 

(I) pop,p, = 385, e = 2; g = 17, x0 = 232, yl = 276 

p. .= 5 = 2.2 + 1, g, = 2 pl.= 7 = 2.3 + 1, g, = 3 pz = 11 = 2:5 + 1, g, = 6 

c5,2:Fi ‘7,2: Kj %,2: : 1 

c385,2: 

g = 7, x0 = 222, y, = 1021 

p1=13=4.3+1,g,=7 p,=17=4.4+1,g,=7 

c13,4 : c17,4: 

409/25/l-3 
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As in the case of the domains ZDO,, , replacement of the generator g by a 
new generator g* may no longer leave CDOPIPz,O,O, nor hence any CzrOplBz,i,j , 
fixed, and so in general there will be several distinct cyclotomic matrices 
C P09192,e which cannot be obtained one form the other by permutations. 
Here we have 

+(Po - 1) +(A - 1) W2 - 1) = M412 #Q 
and hence we can show that there are at most [4(e)]” inequivalent cyclotomic 
matrices definable on ZSOQIP2 for a given e; there is no guarantee that there are, 
in general, at least this many. 

As a final example, we remark that the Corollary to Theorem 1 has been 
applied in [6] to very simply obtain the final result of [5] (mentioned in the 
introductory paragraph of the present section). This we state below. 

LEMMA 8. Let e = 2 and 

~2 = (P, -UP, - W2 - 2) +I', +A +P, - 8; 

then 
Ja + mo +A +p2> - 4 if fofif2 is odd 

W’, 0; 0, O)po)op1z)2 = 
if f. is even 

if fi is even 

if f2 is even. 

Note that here there is exactly [4(2)]” = 1 distinct cyclotomic matrix for 
Z po’o”lpl , and the entry (O,O; 0, %oDIDe of this matrix is given by the Corollary 
to Theorem 2. 
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We now use Theorem 2 to prove an analogue of Lemma 1 for 
these domains. 

LEMMA 9. 

(1) (i + a,e, j + w; e + a3e, m i- w%OelP,z = (i,i; 8, N80P1P2 for all 

a1 9 % 7 a3 I a4 E Z. 
(2) @Ii 4 m)90a192 =(e-i,e-j;t--i,m-j),,,,,,. 

(3) 63 4 ~)90elP2 

(4) 

(G++,m++;i++,j++j if f2 even. 
%R% 

PROOF. 

(1) Obvious. 

(2) (e - i, e -3 8 - i, m -j)90plPa 

e-1 

=t~O(e-i+f,d--i+n),(e-j+t,m-j-1-~)~~(4~)~~ 

e-1 
= t,zo (’ - t’ ’ - t + n)9, (j - t, m - t + n),, (e _ t, n _ t)9, 

e-1 
= t z, (i + 4 e + n),, (i 4 t, m + n>,, CC 490 
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(3) Iffofifi is odd, then 

= (i, j; 4 m),,,l,a . 

Iffo is even, then 

The case forfi even is entirely similar. 
Iff, is even, then 

(C+$,m+-Ej;i+$,j++j 
wJ192 

e-1 e-1 e-1 

(4) L zzo (4 ii 4 4s09192 = p,,c_o ,g, G + 6 8 + ~)~o 

x ( j + t, m + h, (G +a 
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e-1 

= ,;, (fo - 4bt+t) (fl - e,l,i+t> (4 a* 

e-1 

= go (fo - %,.i+t) (fl - f-G,,i+t) (fi! - 4%.t) 

= d -fofi -fofi -fifi +fz %ww 

-tfi %m.i +fo %m*j - L%mP2.i.~ * I 

Finally, a few remarks concerning arithmetic functions on the domains 

q)DIPZ are in order. For each pair p,, , p1 , with 1 < p,, , pI < e - 1, 
p,, + pI f 0 (mod e), and, without loss of generality, g.c.d. (p,, , pl) = 1, we 
define 

and 

whenever none of m, n, nor m + n is divisible by e. We then have the follow- 
ing analogue of Lemma 6, Part (1). 

LEMMA 10. 

PROOF. 
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We remark that, since e is even, one of pO, pL1 , or - (p,, + pl) must be even; 
further, F$,$a,’ (- 1) is expressible as a constant times the product 

FJ( - I)““] FD1[(- l)“‘] FD2[(- 1)2e--(“o+U1)], 

so no direct analogue of Jacobi’s lemma [Lemma 3, Part (2)] holds for these 
domains. 

The R’s also split over the summand fields, as in Lemma 6, Part 2, and 
they are related to the F’s as in the Corollary to Lemma 6. 

LEMMA 11. 

x %,(wn, ,w) R&m 1-4 R,,(- ho + 1.4 m - b. + 14 4. 

Hence, it remains to show that 
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e-1 B-l 

=c e 
~n[lLoi+ulk-(rrs+ul)sl (m+n)[fid+u,d- (IQ+LQ) tl . 

(6 dP, (k 411 (s, al2 
i,k,cT=O 

By using Lemmas 10 and 11, the many properties of the functions F and R 
can be derived in this more general setting. For definiteness in what follows, 
we define 

and remark that, if we define the more general functions 

and 

R %w% (m, , ml; no ,4 

for primitive eth-roots of unity /I8 and ye such that j&ye + 1, then the methods 
above will prove results for these functions analogous to Lemmas 10 and 11. 
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