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1. INTRODUCTION

If m = p31pse --- pi¥, where the p; are distinct primes, and if we choose the
ordered factorization ¢,, = f, f, --- f, of ¢(m) into its characteristic factors,
then it is well known that to each f; there corresponds a residue class g,
of order f; modulo m, such that every residue class 4; in the subgroup .#,,
of units modulo 7 may be expressed as

a; =gMge o g (modm)  (0<s;; <fy)

in exactly one way (see, for example, [1}, p. 94). For fixed g = (g, , &5 ,--- &»)
and § = (s, , 85 ,... §,) We write

g* = gi'gy -+ &y (mod m),

so that ., ={g*:0 <s; <f} and gﬁ-——gg£ if and only if §=¢ In this
notation an important class of problems in number theory may be conve-
niently discussed at one time: namely, for how many pairs s;, t;, with
0<Cs,t <fy,1s the congruence

g+1=g (mod m)

satisfied. In the special cases oy =y =+ =0, =1 and k=1, k=2,
or k=3, it has become customary (see [2]) to denote this number by
(815 t)m » the cyclotomic number corresponding to m, g;, and the pair
(52, S35e-0 Sp)s (24 23 ,..., 1,); it is here proposed that the same designation
prevail in the general case.

It is, perhaps, a curious fact that, given m and g, , it is not the problem of
establishing the existence of the g; (2 < 7 <{ r) which makes the determina-
tion of the numbers (s, #,),, difficult; it is, rather, that the g, are “too
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THE NUMBER OF SOLUTIONS OF SOME EQUATIONS 19

numerous.” That is, to each f; there in general correspond several admissible
g:, and if g; be substituted for g;, the distribution of the residues a; € .#,,
will apparently change (i.e., a; will be represented by different ). It is there-
fore, prerequisite to the solution of our problem that a “canonical” repre-
sentation of the residues of .#,, in the above m be found. Hence we begin
with a brief resumé of the known results for m = p* and m = p¢°.

2. ResumE 1: THE FieLps GF(p?)

We begin with the case m = p = ¢f + 1 an odd prime, so that the struc-
ture under consideration is the field Z,; here .4, is cyclic with generator,
say, g. If we define the cyclotomic classes

C!J.i ={g** (mod p):s =0, L,..., f — 1}

for i =0, 1,...,e — 1, our problem is to determine the numbers (i, ),,
0 <7, j < e — 1, the number of solutions of the congruence
2; + 1 = 2; (mod p) 2€Cp;, 2 €Cp s

i.e., the number of ordered pairs (s, #) with 0 <(s, t <{f — 1 such that

ges+i + 1] = get+i (mod P)‘

The matrix C, , whose #jth entry is the cyclotomic number (i, j), is called the
cyclotomic matrix of Z, with respect to e and the fixed generator g. We remark
that, since Z, is unique up to isomorphism, replacement of g by a new gene-
rator g* of ), leaves C, , fixed, and at most permutes the remaining C,, ;,
i£0.

The following relations between the cyclotomic numbers for Z, , ¢, and g
are well known (see [2], p. 25):

Lemma 1.
() Gp=(@G+nej+me), foral mnecZ.
(2) (i’j)p = (e —4,j— ps

(7s2)» if  fiseven
B) @ =
(j + g,i+§)p if  fisodd,
e—1

(4) Z (i’j)z) =f— 0D,i7

i=0
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where
1 if [ is even and 1=0

0, =11 if  fisoddand ;= %
0 otherwise.

We now introduce two arithmetic functions on Z,. To that end let N
be a natural number and define

?

we then define the periods of Z,,, g and e to be

i1
’f]p’k — Z Apa — Z )\z:ﬂ-kk‘
aeCy o $=0
for k =0, 1,..., e — 1, and note that
e~-1
Z Np,e = 1
£=0

The periods are related to the cyclotomic numbers by the following lemma
(see [2], p. 38).

LeMmma 2.
e—1

Np.0Mp.x = Z (k’j)p No,3 +f0p,k for k=0,1,.,e—1.
i=0

When e divides none of m, n, or m + n, we define the functions

e—-1

p—2
F ) = 3 At = ¥ X,
k=0 k=0

e—1 e—1
Rymm)y =3 Xt Y X by,

k=0 h=0

The following properties of these functions are well known (see [2], pp. 41-47
and 62-64).

Lemma 3.
F() Fy(X8)

(1) Ry(m,n) = F_(Am+m)
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(2) If £ is the natural number determined by g* = 2 (mod p), then

Fy(— D) F,(02%) = XFF,(\F) Fo(— ).

Part (2) of Lemma 3 is known as Jacobi’s Lemma, and we remark that it, as
well as all results listed in the present section remain true (see [2], Part I) if
Z, is replaced by GF(p*), each congruence, of course, then being replaced by
equality (between elements of the field). Further, the method of generalizing
from Z,, to Z. is given in [3], and hence we shall in the future, without loss,
restrict ourselves to the case where m is square-free (corresponding to Z,,).

3. Resumt 2: THe Garois DomaiNs GD(p*¢®)

Now let p =e¢f +1 and ¢ = ¢f’ + 1 be distinct odd primes with
ged. (f,f) = 1(i.e.,e = gecd. (p — 1, g — 1); the analysis forp = ¢f 41
and ¢ = ¢'f' -+ 1, where e # ¢, follows the lines of development below, and
is completely worked out in [4]). Let d = Le.m.(p — 1,¢ — 1) = ¢ff’, and
suppose that g is a fixed common primitive root of p and g¢. If x €Z,, be
defined by

x=g (modp) and x=1 (modyg),

we define, as in the case for the finite field, the cyclotomic classes for' Z,,, and
g to be

Cpoi ={g*%* (mod pg): s =0, 1,...,d — 1}
for i =0, 1,...,e — 1, and immediately verify that the C,,, are pairwise
disjoint and that their union is ,,. As before, the cyclotomic numbers
(s fpes 0 <1, j <e—1, for Z,, and g are defined to be the number of
solutions of the congruence
2; + 1 = z; (mod pg) %; € Cpoys 2; € Cyq,3

i.e., the number of ordered pairs (s, t) with 0 <(s, ¢t <{d — 1 such that

g% + 1 = gtxf (mod pg).

The matrix C,,, whose #th entry is the cyclotomic number (Z,f),, is
called the cyclotomic matrix of Z,, with respect to the fixed generator g.
Now, however, replacement of the generator g by a new generator g* may no
longer leave C,, , (nor, hence any C,, ;) fixed, and so, in general, there exist

€< 9

1 We suppress the “e”’ now, as it is determined by p and ¢.
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several distinct cyclotomic matrices C,, , for Z,, which cannot be obtained
one from another by permutations. Since ¢(p — 1)d(qg — 1) = d(e) $(d),
it is easily shown, however, that there are at most ¢(e) such matrices. *

While much work has been expended in the determination of the entries
of C,,.. (i.e., the cyclotomic numbers) through a detailed analysis of the
structure of the domain Z,, , it might rather naturally be hoped that all the
results derived for the fields Z, and Z, for e and the fixed generator g could
be directly applied to give the corresponding information for Z_, . The first
results in this direction were obtained in [5] through the introduction of
characters on Z,; the method below avoids this complication.

The following theorem is proved in [6].

THEOREM 1. Let g be a common primitive root of the distinct odd primes
p=c¢ +1landqg=cef" + 1, wheree =g.cd. (p — 1,9 — 1), and let P and
O be the permutation matrices

P17 o= (=)

Cm,e = C@,e * Ca,e »

where the matrix product * is defined as follows: The ijth entry of C, x C,
is (P'C, Q%) - C,., , where “dot” denotes the inner product of the two matrices.

Then

Let us give a direct verification of this theorem for the simplest case, e = 2.
We assume, for the moment, that the cyclotomic matrices C,, , are known
(see [2], pp. 92, 94 for the classical derivation based on the structure of the
domain); here the result is an easy consequence of Lemma 4. In the case of
the finite field, Lemma 1 is sufficient to determine the cyclotomic matrices
C,; and, using this lemma, we find that

p—5 p—1
44

if  fiseven
p—1  p—1
T4 | T4

Cp,zz

p—3 | p+1
RS

j if  fisodd.
p—3 »—3

* Here ¢ is the Euler function.
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Now, P =Q = (¢ 1), whence Theorem 1 for e = 2 becomes
Coo2 = [(PPC, o) - Copal,

which we directly verify.

Cast I: ff’ odd. 'Then both fand f' are odd, so

0,0 =2B(p—3)@—3)+@+ D@+ D]=1[(r—2)(¢—2) + 3],
0, D=7+ D=3+ -3+ +2p—3)(q—3)
=1l =2 (@ -2 11 =(1,0) = (1, 1)-
Case II: ff' even. 'Then, since g.cd. (f,f') =1, either f is even and
S’ odd, or f’ is even and f odd.
(2) f even, f' odd.
0,00 =15 [( =5 g =3+ —-1D@G+1)+2p—1)(¢g—3)
=1 —2(¢—2) + 11 =(1,0) = (1, 1),
01 =7 —D@g—3)+E—-5@+1+2p—1)(¢g—3)
=1l —-2)(@g~-2-3]
(b) fodd,f' even.
0,00 =7%[—3N@—-5+E+DE—1)+2p—3)(¢g—1)]
=16 —2@—2) + 1] = (1,00 = (1, 1)y,
0, 1y = [(2+D(g—3)+ 32— 3¢ —1]
=1l -2 (-2 3]

Hence
P—2D@—=2+1 ] (p—2@G—2—3
4 4
if ff'iseven
P—2@—2+1|(p—2@g—2 +1
4 4
szz

(r—2)(¢g=2)+3

P—2)@¢g—2)—1
4

4

(—2)(g—-2)—1

(—-2)(¢—-2)—1

4

4

if ff'is odd,

which is known to be the case. We remark that Theorem 1 can be directly
proved as above for those e for which the cyclotomic matrices for'Z, , Z,,
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and Z,,, are known. At present, this knowledge is limited by what is known
for Z,,; namely, e = 2, 4, 6, and 8.

We also note that Theorem 1 provides us with an effective computational
tool for determining the number of solutions to the types of equation which
we have been considering, for the structures GD(p*¢®) or Z;,,B. In the exam-
ples below, the numbers of solutions for the summand fields were easily
determined manually, the number for the domains from Theorem 1. Even
for these relatively “small” examples, the amount of time saved through the
use of Theorem 1 is considerable.

ExaMPLESs.
Ta pg —65¢e=4; g =2, x=27.
p=5=4-1+1, g=13=4-3 +1,

of1]oTo ol1lz]o slol2la
olojo
Cs .4 1 Cisa: | 1]1]0]1 Cos,a; L0]4]2]2
ojojo]o ol1lol1 2lz2|2]2
ofjol1]o 1lol1]1 4l2]2]o0
g=2
b: g =17, x =27.
of1fo]o olol2T1 ol2]3la
olofol|1 1l1)1]o0 2|4
Cs,1. Cia,4; Ce5,4: L
ololo]o ol1|of1 si1]3|1
ojof1]o 1{1{0]1 41f1]2
g=1
Ia:pg =85e=4;g=3,x=18.
p=5=4-1+41, g=17=4-4-+1,
ololoj1 ol2{1]o0 2(1]6f2
olof1]o 2lol1(1 al4]|2]1
Cs,4: Ci7,4: Cs5,4:
olojolfo 1011111 214]2]4
ol1i0]o o[1]1]2 4f2]1]a
g=3
b: g =12, x =52;
ol1]olo oj2]1o0 4[s5]0]2
00|01 21011 2121214
Cs,4: Ci7,4: Cgs,4:
ojojolo 1l1l1]1 4l2)4]2
olol1]o ol1l1]e2 2]2]s5]2
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Using Theorem 1, we can easily derive the analogue of Lemma ! for the
domains Z,,:

LemMma 4.
(1) Gojdpa =G +ne,j+me)yy forall mneZ,
@) Gia=(e—1] —1)n

(J59)wa if  ff'isodd
G o= . .

(j+5itg) i ff iseven.

rq

e—1

@) Y (i) =M+38,,, where eM =(p —2)(g—2)—1 and
=0

e—1

‘Spq,i == Z 0p.k+i0q,k .
1=0

Direct computation shows that
1 i  fflodd, i=0
Spa,i = (1 if ff even, i= %
0  otherwise

gl lf —1le Cm,k
10 otherwise.

The periods of Z,,, and g are defined to be

d—1
— a . gk
Mo, = Z /\pq - Z )‘pq
aeCpy i 5=0

for k =0, 1,..., e — 1; clearly,

—1
Z Noae = 1.
k=0

Here, as in Z, , there is an intimate connection between the products of the
periods and the cyclotomic numbers; the following lemma (see [2], p. 98)
is the domain-analogue of Lemma 2.
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LeMmma 5.

ot . , —1
Npe.0Mva.k = Z (&, 1) Noa,i — 2f + (Pq )Sm,ld (k=0,1,...,e —1).

=0 €

When e divides none of m, n, nor m + n, we introduce two arithmetic
functions on Z,,;:

e~1
F, zoq()c) = Z ’\?k"]m.k
k=0

and
ks O =
R, (m,n) = Z hye Z A7 MRy By -
k=0 h=0

We have shown in [6] that Theorem 1 implies that these functions split over
the summand fields, as indicated in the following lemma.

LEMMA 6.

(1) IfqeC, and peC,p, then

F(07) = Xy O, (00 F5™).

(2) Ry(m,n) = Ry(m, n) R(— m, — n).

The many well-known properties of these function now follow directly
from Lemmas 3 and 6; we state the two of interest to our discussion below.

COROLLARY 1.

FpXe') FypefXe)

(1) R, ) =250

@ If ¢ and ' are the natural numbers determined by g’ = 2 (mod p)
and g' = 2 (mod q), then

Fm(_ I)Fm(’\gk) = Aﬁ(l_r)ka()‘ek) Fm(_ ’\ek)'

The significant feature about the above approach is that all results con-
cerning the domain structure were derived entirely within the structures of
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of the finite fields, and then “patched” together via Theorem 1. We have
shown in [6] that a direct generalization of Theorem 1 obtains for all the
domains Zy with N =[], p,, and consequently for GD (TT;_, p;*) (using
[2]) and an lpg‘f (using [3]). In the next section we prove the analogue of

Theorem 1 forZ,,, , and explicitly derive the class-structure results for these
domains.

4. Tre GarLois DoMmains GD(p*¢°r)

The recent interest in equations on and the structure of the domains
GD(p>gPr¥) stems from the concluding remarks in [5], where the number of
times that an element of the maximal cyclic subgroup of Z,,,, is immediately
followed by another such element was explicitly determined (using characters)
in the very special case

e=lcmdgecd(p—1,g—1),ged(p—1,r—1),gcd(g—1,r—1))=2

(when the maximal cyclic subgroup is unique). A complete determination
of all the cyclotomic numbers for this case was subsequently done in [7]
by a purely algebraic technique, and the method developed in [5] was
extended to other specialized domains in [8]. Each of these approaches
depends heavily upon an analysis of the structure of the domain; here,
as in the case for GD(p*g®), our analysis is carried out in the summand fields.

We now change our notation slightly, to facilitate the subsequent exposi-
tion; since several constants will be associated with each of the three distinct
primes involved, it will be convenient to relate these via the subscript nota-
tion. To that end, let py =¢fy + 1, py =¢f; + 1 and p, = ef, + 1, with
fo» fi, and f; pairwise relatively prime, and for 4,CZ, , 4,CZ, and
A, CZ, define the class product

AoAr Ay ={p1Pay + PoP2t1 + Popras(maod popips): ag € Ay, a3 € Ay, ay € 4y},
so that

e—1

?oﬂli’z = Z Po, ¢ 1‘1,: 1’2 x°

247y k=0

Further, if m,, m; , and m, are integers such that
P1PaMy + Popatty + popriny = 1,

define the natural numbers o« , o , and «, by

0 € Cpprag > meC, ., mye Cy, o,
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so that
iec, .C, . C, .. C.MH

Dgstlp " P1.01 " Da,0g DoD1Ps *
Finally, define the classes
e—1

Cpozzlpz,i,a' = Z Cp[,,(ao+i)+kcp1,(a1+j)+kcpz.a2+k§ L] = 0,1,.,e—1.
k=0

We are now able to realize the cyclotomic classes for Z,, ,, ,, as sums of products
of the corresponding classes in the summand fields.

Lemma 6. Let gy, g, , and g, be generators of Z, ,Z, ,and Z,, , respectively,
and let g €Zy, ; 5, be the corresponding common primitive root of po, Py, and
po - Define x, and v, modulo p,p,p, as follows :

_ {80 (mod p,) y, = & (mod py)
0 1 (mod p,p,) ! 1 (mod pyps,).

Then, if d = ef, f, f, , we have that

X,

Cogpypaini = 18°%0'y’1 (mod popypo) : 5 =0, 1,...,d — 1}

for 4,j=0,1,.,e—1

Proor. Clearly C, , 5, i,; consists of d elements, distinct modulo pgpyp, -
Further, there exist natural numbers s, ¢, and u such that

1= p1Pag87™0 + Pobagt™™™ + Poprgs” ™ (mod popypy)-

Hence

8= ppags O L ppogt ) popg8 T Cr D) (mod popyps)

is an element of Cp . 11Cy 0 11C 0,41 € Cppo 005 DY definition. Further,

%o == P1Pag0 Gott) 1 Pobogs T + poprgl’ T (mod popy )

V1= piba8o 0+ Pol’zg;H(alﬂ) + Porgs"** (mod pyp, p,),

and so

t
gs‘xo € Cmomlp,,l.o and g V1 € Cpomwg.o.l

for all s and £. Thus the lemma is proved. ||
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Using Lemma 6, we define the classes Cy, ; ;; to be the cyclotomic
classes.
We now define the periods

b . ;] —
7)170’.01132,;'.5 = Z Apoglyav L] = 03 1)"'7 e — 17
beC.

DoPyPartd
so that
e—1
Z Npyprpg,ind — 1.
i,§=0
As before, we define the cyclotomic numbers (i, j; m, 1), , »_ to be the number
of solutions of the equation

Zi,j + 1= Zm,n (mOd POP1P2); Zi,i € Cpuplrz.i,i; Zm.'n € szoplmz.mm;
i.e., the number of ordered pairs (5,2); 0 <s,# <<d — 1, such that

g%ty + 1 = giag™y,™ (mod pypypy)-

Then, analogous to Lemmas 2 and 5, we find that the products of the periods
forZ, ;. ,, are related to the corresponding cyclotomic numbers by the follow-
ing formula.

LemMma 7.
e—1
Dpo9192.0,° Mogp10s,80F — Z @, Z, m)iin.'!’]ﬁg Noop10s.f m
£,m=0
e—1 e~1
+1{fo Z Opg. i+t Z (J + & m)y, (8 1)p, Mpyppmn
=0 m,n=0
e—1 e—1
+f1 Z 01)1,3+t Z (’ + t) f)azn (t9 n)_fpg ‘qpugz.l—n
=0 £,n=0
e~1 e—1
_‘_f2 Z opg.t z (t + t, J)Do (.] +t, ”z)m Nogpy.f—m
=0 Zym=0

""‘foflfz(sp.,m.iwj + Sm,mg,i + Smlp,.j)

+ (@ + fofs + fofe + f118) Lopprpaninif >
e—-1

= Z (g5 m, n)romlna Nogpi0g + A,
£,m=0
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where the above constitutes a definition of A, ; , a polynomial in A’s, for n any
proper divisor of pop,p, (the terms of which arise for those t such that gixyty,? + 1
is a nonunit in Zy, ; , ), and

1 if  fofif:  isoddand i=j=0

1 if f is even and i:—Ze—’ i=0
Cogpnis = S 1 i S isevenand i=0, j= %

1 if [ is even and i:j:%

0 otherwise.

Proor. The proof is entirely similar to the proof of Lemma 5, (see [2],
p. 98) upon noting that

e~—1 ‘ :
L e Z 8 .08 ..0 — 81 if —le szoplpz,i,:i
DoD1P2,t,7 Do, i+1Y 01,5 +1Y Do, t )0 otherwise

=0 : ’

and
e—~1
Spopl,i—]' = Z 61’0,i+t0111'5'+5 N I
t=0

We now prove an analogue of Theorem 1 for the domainsZ, , ,, , including
a complete statement of the situation.

THEOREM 2. Let py=cefg+1, pp=¢fy +1, and p,=ef, +1 be
distinct odd primes, with fy , f, , and f, pairwise relatively prime, let g, , g, and
g be generators of Z, , Z, , and Z,, , respectively, and g the corresponding
common primitive root of py , py , and p, modulo pyp,p, . Let C,; (n = py, P15
or p,) be the cyclotomic classes, C,, , the cyclotomic matrices, and let Cy, , 5, ;.5 5
be the cyclotomic classes inZ, , ,, . Then, if P and Q are the permutation matrices

e 0 :Ie'l
P = Circ (0, 1,0,...,0) = —— =
1 ! 0
. 0 i 1
Q = Circ (0, 0,...,0,1) = —— =0
|
1
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we have

(i 75 £, M)pypip, = (PPCy, 0QF) * (PICy, . 0™) - C,
foralli,j, £, m=0,1,..,e— 1, and this defines C 5 , . . Note that here, if

A ={[a":4,j=0,1,,e -1}  n=0,1,2,
then

e—1
A g0 4@ z ai(g)ai(pal{’z]}‘

4,720 '

Proor. We proceed to gi.ve an alternate evaluation of 7y 5 5, 0,05,7,2,..1
based on Lemma 6. Clearly, in terms of the %’s, Lemma 6 says no more than
that

e—1

Npoepype.i.d — Z Nog.ap+i+tpy.ay+i+ g, 00+t
t=0

forall7,j =0,1,...,e — 1. Hence

N pgP193,0,0M0gD1D2.7.5

e—1 e—1
= (Z npo,ao+s’7m,a1+s77ﬂ,,a,+s) (Z 77120,«0+i+t7]z71,a1+i+t77p2.a,+t)
3=0 =0
e—1

= Z ("Ipo.a0+s"lmo.(a°+s)+(i+t)) (17121.&1+s77171.(ot1+s)+(i+t)) (7]175.&2+s’7113.(a,+s)+t)
8,1=0

e—1 e—1
= z ; (Z (i +1¢, /)mo Nogug+s+f + f 001;0,1‘+t)

8,t=0 | \/=0

e—1 e—1
X (Z (j+4¢ m),,l Npy,0q+5+m + fi 10p,.j+t) (Z (ta ”)p, Npg,0g+s+n + f: 201;,.1)%
n=0

m=0

e—1 e—1
= Z (( Z (i + 1, {)po (] +t, m)pl (tv n)p, 7}1;0.uo+s+£")m1.u1+s+m"lp,_a2+s+n)

8,t=0 \/,m,n=0
+ 47,;.
where, since every term of the first expression on the right is a constant times

a primitive p,p,psnd root of unity, and every term of A4; ; is a constant times
Xpopio, [Where g.c.d. (n, pypip;) > 1], we must have A ;=A;; of Lemma 7.
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A simple computation shows, in fact, that the seven summations occurring
in A} ; are termwise identical to those appearing in 4, ;.
But, we also have that

e—~1
2 (i + ¢, /)ann (J +t, m)ﬂl (t, n)pg Nog.ag+s+£Mpy,00+8+m Mg, 00+s+n
s, t,0,m,n=0
e—1 e—1
= Z (l + ¢, /):oo (] + 1, m)pl (t7 n)pz Z Npg, g+ (f—n)+8Mpy, a3+ (m4n) +sMpg, a9+
t,£,m,n=0 $=0
e—1
= Z (Z +t, /)po (] =+ t, m)pl (t’ ”)pz oDy P, f~n, M—7
t,4,m,n=0

e—1 e—1
- (z (i+t,f+n>m,<f+t,m+n>pl(t,n)p2) Aot -

£,m=0 \t,n=0

Hence, comparison of coefficients between the above expression and that
obtained in Lemma 7 yields

e—1

(l’j; f’ m)?oﬂlﬂg = z (Z + t’ / + n)?g (j + t’ m + n)ﬂ] (t’ n)ﬁg

t,n=0

for all 4,j; £, m =0, 1,...,e — 1. This is the elementwise formulation of the
matrix product defined in the theorem. |}

COROLLARY.

(0,0;0,0),,5,0, = Cope *Cope "Coye -

If, for the (¢ X e)-matrices

A ={[a:4,j=0,1,,e—1} n=0,1,2,

7,7

we define the product
A® % AW x 4% =B,

where B is the (¢2 X e%)-matrix [8;,;],7,7 =0, 1,..., 2 — 1 defined as follows:
if
i =ev; + U 0<uy, v <e—1

j = evy + u, Oy, v<e—1,
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then

-1

_ G 1) (2).

bi,j— Z Ayt tugtnBoy +1, 0408, 05
t,n=0

then the conclusion of Theorem 2 may be more compactly written

Cwoz)lvg,e - Cpo,e * Cz)l.e * sz,e >

where the cyclotomic numbers (i, j; ¢, m), 5 ,, are identified with the pairs
(¢ +i,em+ )y, of Cppy, .- We shall, however, after listing several
examples, continue to work with the cyclotomic numbers as ordered qua-
druples.

We present two examples of Theorem 2; (I) popip, = 385, e =2, and
(IL) pop1p, = 1105, e = 4. The matrices C,;, ,, , Were constructed directly
from the domains Z,g, and Zy;; , in order to verify Theorem 2 in these cases.

ExampLEs.

(1) pop1p. =385, e=2; g =17, 2y, =232, y, =276

p°.=5=2-2+1,g0=2 p=7=23+1,¢g =3 p2=11=2;5+1,g2=6
0| 1 1| 2 2 | 3

Cs,2. Cq,2. Ci1,2:
1 1 1 1 2 2

10 6 7 8

10 10 9 9

Cass,2:

g =17

IL pop,p, = 1105, e=4; g= 7, %, = 222, y, = 1021

Pg=56=4-1+1,g,=2 p,=18=4-3+1,¢g,=7 P, =17 =4-4+1,g,=17
01110310 o021 gj0f1|2
0j0101(1 1]1|1]60 0] 2

Cs,4: Ci3,4; Ci7,4: 111
olofofo of1]o]1 1l1f1]1
0j0f11}0 1111011 21111]0

409/25/1-3
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As in the case of the domains Z, , , replacement of the generator g by a
new generator g* may no longer leave C,, ; ; ¢, nor hence any C, ; ;, .;,
fixed, and so in general there will be several distinct cyclotomic matrices
C,,oplpz_e which cannot be obtained one form the other by permutations.
Here we have

$(po — 1) d(pr — D (e — 1) = [$(e)]* (),
and hence we can show that there are at most [¢(e)}* inequivalent cyclotomic
matrices definable onZ, , ,, for a given ¢; there is no guarantee that there are,
in general, at least this many.
As a final example, we remark that the Corollary to Theorem 1 has been
applied in [6] to very simply obtain the final result of [5] (mentioned in the
introductory paragraph of the present section). This we state below.

LEmMMA 8. Lete = 2 and
M = (po ~2)(p1 — 2(p2 —2) + po + p1 -+ P2 — 8;

then
M+2Apo+p+p)—4 i fifify isodd
) _ )M+ 2p, i f is even
160,050, Qo = V11 1 2, f h is even
M + 2p, if  f, 1s even.

Note that here there is exactly [¢(2)]? =1 distinct cyclotomic matrix for
Z,,»,»,» and the entry (0, 0; 0, 0),,, , of this matrix is given by the Corollary
to Theorem 2.
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We now use Theorem 2 to prove an analogue of Lemma 1 for
these domains.

LemMma 9.
(1) G+ ae, ]+ axe; £+ age, m -+ a,€)pp.0, = (1 £, M)pomyps for all
a,,a,,4a;,d,€Z.

(2) (ivj; /3 m)moplpg = (e — i€ '—j; {—i,m _j)pomlwg .

B) @756 Mg,

GRS ) - if  fofife odd
(¢+5 mitg ,j)mlpz if o
T am i %} if  fi even
s R A
-
@) T il = @ —fofs = fofa =S

+ f2 Spopl,i—a‘ +f1 Spopg,i + fo Splmz.f - Cl’oﬂﬂ?g.i,i .
Proor.

(1) Obvious.

(2) (e —1i,e —j; £—i,m _‘j)pompg

e—1
=Y (e—i—§—t,/-—z'—}—n),,o(e~j—{—t,m—j-}—n),,l(t,n),,ﬂl

t,n=0

e—1
=Y (i—t,f——t—}—n)po(j—t,m~t+n)”l(e—t,n-t)pn

t,n=0

e—1
= Z (i + 1, £+ ”)po(j +t,m+ n)pl (t» n)pa

t,n=0

= (i»j > /’ m)ﬂommz .
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(3) If f,f,f is odd, then
e—1

(f’ n; i’ ]‘)1701)1172 - Z (/ + t’ l + n)po (m + t’ ] + n)ﬂ] (t’ n)ﬂz

t,n=0

e—1
= Z @ +mn 4+ t)po (j+nm-+ t)v; (n, t)pz

n,t=0

= (i’j; f’ m)mompz .

If £, is even, then

e .,.oe . s e . e
(/+—2—’m,l + ‘2_’])1)01711’2 B t,n21=0(f+_2_ + t,l —'_ 7_1— n)Po
X (m "I_ tvj + ”)m (t’ n)ﬂ’z
e—1
= z (i +n, ¢+ t)po(j +n,m+ t)m (”! t)ﬂz
nyt=0

= (1’].; /’ m)poﬁlpz M

The case for f; even is entirely similar.
If f, is even, then

rgmegingies)

DoD1P2
_ t;io(/+%+ bitg ) (mdgobaid g ) (¢,

= . . e e
= Y CHtitapmti (5t )

t,n=0 k21

e~}
= 3, (40, +nmt )y (1),
n, t=0

=@, J; Z, m)PoDﬂ?z .

e—1 e—1 e—1
(4) Z (1"]’ /’ m)ﬂ’opﬂ’z = Z 2 (l + t; / + n)l)o
£,m=0 ¢, m=0 t,n=0

X(j+t,m+ ”)91 @ ”)pz
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e—1

=Y (fo—Oppixe) (1 — Oppise) (t M)y,

=3 U= Opy10 Ui — B (fo — O

=d _'fofl —fofz “‘f1f2 ‘{“fz apop,,i—j
+f1 Bpopz.i +f0 81»1112.5 - zpomwz.i,f . l

Finally, a few remarks concerning arithmetic functions on the domains
Z,»p, are in order. For each pair gy, py, with 1 <po, m<e—1,
#o + 1 2 0 (mod e), and, without loss of generality, g.c.d. (i, py) = 1, we
define

e—1

F(uo,ul)(Ae'rn) . Z Xren(uoi+u1j)

DyP1 Py P npop1p2,i,j
L=

and

e—~1 e—1
R(uo.ul)(m’ n) — Z sz(uoiﬂqk) Z )\;("H—") (u0i+u1f)(i’ k,], /)

PoP1P2 DyPy Py’
1,k=0 3,£=0

whenever none of m, n, nor m - n is divisible by e. We then have the follow-
ing analogue of Lemma 6, Part (1).

Lemma 10.

F(“o-ul) (A em) — /\;m[uoa‘ﬁul«!l— (u0+ul)a2]Fpo(A::0m) F?I(X;lm) sz(/\:(uoﬂq)m)‘

P19
PrOOF.
wooiz) T ymluoitugd)
Flot )y my _ m gty .
110121112( e ) ,Zer o0, Dyri,i
z,3=
e—1 ( ) e~1
_ m (pgituyd
= Z Y Z Ny, cg+i+kDy, 00+ 45100, 09+K
4,j=0 k=0

e—1 e—1
_ /\;m[unao+u1a1——(uo+u1)a2] (Z ’\‘;omz.")po,i) (z )\‘e‘lmjnmzl.i)

=0 j=0

e—1
% (Z Az(u0+“l)mknpg.k)

k=0

—_ A;m[“oao‘l'“l‘!r‘ (ugtugdagl Fgo(}\‘;"m) Fpl( X;lm) sz()\; (u0+u1)’rl'l). l
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We remark that, since e 1s even, one of uy, py , 0r — (g + ;) must be even;

further, Fj ‘;1’ (— 1) is expressible as a constant times the product

Fyl(— D1 Py [(— IPFp(— D],

so no direct analogue of Jacobi’s lemma [Lemma 3, Part (2)] holds for these
domains.

The R’s also split over the summand fields, as in Lemma 6, Part 2, and
they are related to the F’s as in the Corollary to Lemma 6.

Lemma 11.
(u Litq) m (g, eq) n
(guuty) p";lp; (A )Fpoil‘)ﬁplz (/\e )
PoPy Py (m, 71) F;):;,,;;;)(Azl+n)
= Ri’o(”‘l)m) I-"(]n) Rﬂl(l“'lm’ ‘uln)
X Rp(— (ko + 11) my, — (o + 1) ).
Proor.

F(“""ul)()\em) F(uo,ul)(Aen)

Do) Py PyP1P,

—_ A; (m+n) [uooz0+u1a1— (uo+u1) mg]Fpo(ALZOM) Fpo(ALéo’n) Fpl(A‘;Im) Fpl(A:ln)

X sz(/\;(uoﬂq)m) Fpa(A;(“°+u1)")

(g, 1) (Y40
popiy e )

X Ry (pom, pon) Ry (ym, pyn) Ry (— (o + pr) my — (o + 1) 1)
Hence, it remains to show that

( )
RE=)m, ) = R, (gm, )

X Ry (pym, pyn) Ry (— (po + p1) my — (1o + 1) 1)
But,

Ry, (g, pont) Ry (pym, pym) Ry (— (o + 1) my — (o + p1) 1)

e—1
— (Z Xéom Z A—uo(m+n)7(l ])Po) (Z /\ul'nk Z /\-—ul(m+n)t(k /)pl)

i=0 i=0

-1 e—1
X (eZ: )\e—(uo+u1)ns Z A£“°+"1)(m+")t(s, t)p,)

3=0 =0
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e—1

e—1
— Z )\Z[uoi+u1k—(uo+u1)8] Z Xe-(m+7l)[uoj+ull— (sgtuyg) t](i, j)l’o (k, f)pl (S, t)pz
i,k,8=0 3y, t=0

e—1 e—1
- Z X;(uoz‘+u1k) Z )‘;(mm)(uoi-i-ulf)

t,k=0 §,6=0
e—1
X Z (l + s’] + t)Po (k + s’ { + t)])l (s’ t)”z
8, t=0
e—1 . e—1 . ¢
— Z XZ(“"H“Ik) Z )\—e-(m+n)(u07+u1 )(i, k;j, {)?01’11’2
i,k=0 §,4=0

= R““m, ). |

PoP1 Py

By using Lemmas 10 and 11, the many properties of the functions F and R
can be derived in this more general setting. For definiteness in what follows,
we define

Fﬂol’lﬁg(Aem) :F(Ll) (Aam)

PoP1P2
(1,1)
Rpoplpg(m’ ”) = Rploaallm(m’ ”)>

and remark that, if we define the more general functions

e—1
F, poplpg(ﬁemv ')’eﬂ) = Z ﬁzm'}’:]"]poplpz,i.i

2,j=0
and
Rpoﬂlﬂg(mo y My By nl)

e—1 e—1

i Mk ( )i, —( 7% W)
— Z ,Bzol’)’::l z /3: Mg+7y. J_ye my+ny, Z, k, 7, /)ponlpz ,
i,k=0 7,4=0

for primitive eth-roots of unity 8, and y, such that 8,y, = 1, then the methods
above will prove results for these functions analogous to Lemmas 10 and 11.
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