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1. INTRODUCTION 

Recently some progress has been made in the structure theory of 
commutators in von Neumann algebras [I]-[3]. The theory is far 
from complete, however, and one of the most intractable of the 
unsolved problems, is that of determining the commutators in a 
finite von Neumann algebra. A commutator in a finite von Neumann 
algebra must, of course, have central trace zero, and is not unreasonable 
to hope that the commutators in such an algebra are exactly the 
operators with central trace zero. However, despite considerable 
effort, this has been proved only in case the algebra is a finite direct 
sum of algebras of type I, [4]. 

In this note, we consider a certain class of factors of type II, 
discovered by Wright [13], and we show that every Hermitian operator 
with trace zero in such a factor is a commutator in the factor. This is 
accomplished by first proving that every Hermitian operator with 
central trace zero in an arbitrary finite von Neumann algebra of 
type I is a commutator in the algebra. 

Finally, we turn our attention to the problem of characterizing the 
linear manifold [GY, ac] p s anned by the commutators in an arbitrary 
von Neumann algebra 67 of type II, . We give three characterizations; 
in particular we show that [G?, ol] coincides with the set of all linear 
combinations C& ariEi where Cbi Qi = 0 and each E4 is equivalent 
in GZ to I - Ei . 

2. FINITE ALGEBRAS OF TYPE I 

A von Neumann algebra is a weakly closed, self-adjoint algebra of 
operators that contains the identity operator on its underlying Hilbert 
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space. Our standard reference for the general theory of von Neumann 
algebras is Dixmier’s book [s]. An operator A in a von Neumann 
algebra GI is a commutator in GZ if there exist operators B and C in 0 
with A = BC - CB. If S is any (complex) Hilbert space, the von 
Neumann algebra consisting of all (bounded, linear) operators on ~4 
will be denoted by Y(Z). 

In this section, we show that every Hermitian operator with central 
trace zero in an arbitrary finite von Neumann algebra Q? of type I 
is a commutator in L?. For this purpose, the following lemmas are 
needed. 

LEMMA 2.1. If {Xi}in=i is any sequence of real numbers such that 
1 hi 1 < 1 (1 < i < n) and CFzI Xi = 0, then there exists a permutation 
r on the set of the Jirst n positive integers such that for all k with 
l<k<n, 

The proof of this lemma is an easy exercise and is omitted. 

LEMMA 2.2. Suppose that A is the n x n diagonal matrix 

A= , 

where & 4 = 0. Then A is the commutator A = BC - CB, where 

and the numbers a, are dejined as crk = xtxl Xi . 

Proof. Compute. 

LEMMA 2.3. Suppose that A is a Hermitian contraction with central 
trace zero in an n-homogeneous, jinite von Neumann algebra of type I. 
Then A is the commutator A = BC - CB of two operators B and C 
in a satisfying 11 B I), 11 C 11 < 2. 
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Proof. One knows that the maximal ideal space X of the center of 
GZ is an extremally disconnected, compact HausdorfI space 1111, 
and that GY is *-isomorphic to the C*-algebra M,(X) of all continuous 
functions from X to the full ring M, of n x n complex matrices [9]. 
(The operations in M,(X) are defined pointwise, and the norm is the 
supremum norm). Thus the problem can be transferred to M,(X). 
If A, is the image in M,(X) of the operator A, then of course A, is a 
Hermitian contraction, and furthermore trace (A,(x)) = 0 for all 
x E X ([9], p. 1409). A ccording to [5], Corollary 3.3, A, is unitarily 
equivalent in M,(X) to an element A, such that A,(x) is diagonal for 
each x E X. It thus suffices to show that A, is the commutator in 
J&(X) of two elements B and C satisfying // B 11, 11 C/j < 2, and this 
goes as follows. Let A, be the function 

and let x0 be an arbitrary point of 3E. Since for 1 < i < n, 

I Ux,)l d SUP{II ~2Wll : x E X> = II A, II = II A II < 1, 

it follows from Lemma 2.1 that there exists a permutation r of the 
first 7t positive integers such that 

Since the functions hi are continuous and X is totally disconnected, 
there exists a compact open neighborhood sz, of x,, such that for 
every x E %z, , 

Furthermore there exists a unitary permutation matrix Uz, in M, such 
that 
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Now the collection (@~O}zOEX is an open covering of X, and since X 
is compact, there is a finite subcovering {‘@%, , %!z, ,..., 4?z,}. Since 
each ez. is compact as well as open, we may suppose, by shrinking 
the ??J~~ if necessary, that the sets az, are pairwise disjoint. A unitary 
element U in M,(X) can now be defined by setting U(x) = Uz, for 
each x E ax, , and the function 

satisfies 

The proof is completed by applying the construction of Lemma 2.2 
to UA,U* to yield elements B and C in M,(X) such that UA,U* = 
BC-CBandIIB[,IICII <2. 

THEOREM 1. A Hermitian operator with central trace zero in an 
arbitrary Jinite won Neumann algebra of type I is a commutator in the 
algebra. 

Proof. If 02 is an arbitrary finite von Neumann algebra of type I, 
then there is an increasing sequence N (finite or infinite) of positive 
integers and a corresponding sequence {GZ,JnEN of n-homogeneous 
algebras such that 6l! = CnpN @ G& . Since a consists of all operators 
A = &,, @ A, , where A, E cll, and the sequence (11 A, lI}neN is 
bounded, the result follows immediately from Lemma 2.3. 

3. THE I1l-F~~~~~~ OF WRIGHT 

We begin this section by reviewing the construction of a special 
class of II,-factors that were discovered by Wright [13]. Throughout 
this section N will denote the set of all integers greater than 1. For 
each n E N, let Zm be n-dimensional complex Hilbert space, and let 
a = CILEN @ ,Ep(=?‘Q. Then G!! is a finite von Neumann algebra of 
type I whose center 9 can be (and is hereafter) identified with the 
algebra of all continuous complex-valued functions on p(N), the 
Stone-Tech compactification of the discrete space N. Let the unique 
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central trace on the algebra 01 be the mapping denoted by A -+ A”, 
and recall that if A = 2 @ A, E GZ, then A” is the continuous 
function on /3(N) whose value at an integer n is Ah(n) = (l/n)t,(A,), 
where t, denotes the unnormalized trace on the algebra Z(Z%). 
It is known ([13], Th eorems 2.6 and 3.1) that there is a one-to-one 
correspondence between the maximal (two-sided) ideals J&’ of CY 
and the points p of ,6(N) defined by 

J@ = (2-E ol: (T*T)‘I (p) = O}. 

Wright showed in [Z3] that, if Jlte is a maximal ideal corresponding 
to a point p in /3(N) - N, then the quotient algebra YY = a/&? is an 
A IV*-factor of type II, . Subsequently, Feldman showed in [7] 
that ?V’ has a faithful weakly closed representation, and hence is a 
von Neumann factor of type II, . (He also showed that every such 
faithful representation of #‘” necessarily acts on a nonseparable 
Hilbert space.) Throughout the remainder of this section, w will 
denote the II, von Neumann factor YY = GZ/& corresponding to 
a fixed point p of/3(N) - N. It is easy to identify the unique numerical 
trace on the factor YY; its value at an element A ;t. JZ of ?Y is Ah(p) 
([6] Corollaire, p. 272). 

We proceed now to the central lemma of this section, which shows 
that any element of w whose numerical trace is zero can be “lifted” 
to an operator in a having central trace zero. 

LEMMA 3.1. Let A + 4! be an element of W such that Ah( p) = 0. 
Then there exists an operator B in 02 such that B + JI = A + J? 
and such that Bh = 0. Furthermore, if A + JZ is a Hermitian element 
of W, then B can be taken to be Hermitian. 

Proof. To prove the first assertion of the theorem, it suffices to 
exhibit an operator C in Jz’ such that 0 = Ah. (Then define 
B = A - C.) For this purpose, define C = A”. Then at least 
C” = A”, and we proceed to show that Ah lies in A, i.e., that 
[(A’I)*A@Jh(p) = 0. Note that [(Ab)*Ah]b = (Ah)*Ah, and that the 
value of this continuous function [on p(N)] at an arbitrary integer n 
is 1 A”(n) 12. Thus for every n EN we have (C*C)h(n) = 1 Ah(n) 12, 
and since N is dense in /3(N), we have (C*C)b( p) = 1 Ab( p) I2 = 0, 
so that C E &’ as desired. 

Observe that in the argument just completed, if A is a Hermitian 
operator, then B = A - C = A - Ah is also Hermitian. Thus the 
second assertion of the lemma follows by noting that if A + .M is 
Hermitian, then A - A* E & and A + JZ = &(A + A*) + A. 

We now turn to the main result of our investigation. 
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THEOREM 2. Every Hermitian operator with trace zero in the 
II,-factor W = U/J? is a commutator in W. Thus, every operator in W 
with trace zero is the sum of two commutators in W. 

Proof. If A + ~6’ is a Hermitian element of W with Ah(p) = 0, 
then by Lemma 3.1 there exists a Hermitian operator B E GZ such 
that A - B E A! and Bh = 0. By Theorem 1, B is a commutator 
in GZ, and hence A + ~8’ = B + .A! is a commutator in W. 

The last assertion of the theorem follows by decomposing an arbi- 
trary operator in W with trace zero into its real and imaginary parts, 
and observing that each part also has trace zero. 

4. COMMUTATORS, NILPOTENTS AND PROJECTIONS 

In this section we shall give three characterizations of the linear 
span [a, 6Y] of the commutators in a von Neumann algebra GZ of 
type II, . 

LEMMA 4.1. Every commutator in a von Neumann algebra 02 of 
type II, is the sum of ten operators in Ul each having square zero. 

Proof. By the “halving lemma” ([a, Corollaire 3, p. 229), there 
is a projection E E GZ such that 02 is spatially isomorphic to the algebra 
M,(E@E) of all 2 x 2 matrices over the algebra EOTE. 

Thus we may regard a commutator T E GZ as the commutator of 
two 2 x 2 matrices in k&(E&‘E). By so doing, we see that the resulting 
matrix for T has the property that the sum of its diagonal entries is 
the sum of four commutators in E0lE. Thus T may be written as the 
sum of two 2 x 2 matrices in M,(E@E) each having the property 
that the sum of its diagonal entries is the sum of two commutators in 
EGZE. The construction of [IO], Theorem 5 can now be applied to 
show that each of these two matrices is the sum of five nilpotents in 
EGZE of index two. 

LEMMA 4.2. Let GZ be a von Neumann algebra of type II,, and 
let T be an operator in GZ such that T2 = 0. Then there is a projection E 
in 0l with ET = T, TE = 0 and E N I - E. 

Proof. The partial isometry I’ appearing in the canonical polar 
decomposition of T maps the orthogonal complement of the null 
space of T isometrically onto the closure of the range of T. The 
projections F = V*V and G = VV* are orthogonal and TG = 0 
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since the null space of T contains its range. Clearly GT = T and 
the product of I - F - G with T in either order is zero. Now apply 
the “halving lemma” ([6], C orollaire 3, p. 229) to write I - F - G 
as the orthogonal sum of two equivalent projections. Either of the 
latter added to G gives a projection E having the desired properties. 

LEMMA 4.3. If T is an operator satisfying T2 = 0 in a van Neumann 
algebra aZ of type II, , then T can be written as a linear combination 

T = f oliEi , 
i=l 

where C:2, cq = 0 and each Ei is a projection in GZ equivalent to I - Ei . 

Proof. According to Lemma 4.2, there is a projection E E 12 
satisfying ET = T, TE = 0 and E N I - E. The projections E 
and I - E together with a partial isometry implementing their 
equivalence can be used to establish a spatial isomorphism between 
6Z and M,(EC?lE) h h w ic carries T onto a matrix in M,(EGYE) of the 
form 

0 A 
i 1 0 0 

Since A can be written as a linear combination of four unitary 
operators in EGlE ([q, Proposition 3, p. 4), it suffices to deal with 
operators in M,(EG’lE) of the form 

where U is unitary. 
Now define 

f’=;(;* ;j, Q=;(&, -I“), 
&I ' c i 0 0' H = 8 "I , ( 1 s = (; 3, 
x=2P-I, and Y =2Q-I. 

Then 
N=P+iQ-(+j~-(y)~ 

expresses N as a linear combination of four projections so that the 
coefficients sum to zero. 
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Finally, note that S, X, and Y are symmetries (Hermitian unitary 
operators) in M,(EGK?Z) satisfying SGS = H, XQX = I - Q, and 
YPY = I - P. This shows that each projection in question is 
equivalent to its orthogonal complement. 

The preceeding lemmas enable us to give several characterizations 
of [a, a]. 

THEOREM 3. In a von Neumann algebra a of type II, , the following 
four linear manifolds coincide: 

(1) The set [a, a] of all$nite.sums of commutators in CPI. 

(2) The set Jr/-, of all finite sums of nilpotent operators of index 
two in a. 

(3) The set yU, of all linear combinations CFzl aiEi , where 
CyE1 Bii = 0 and each Ei is a projection in 02 equivalent to I - Ei . 

(4) The set 9, of all linear combinations of symmetries S E 6!! such 
such that the projections l/2(1 f S) are equivalent in GF!. 

Proof. We prove the inclusions 

[a a] c Ma c Pa c yh c [a?, a]. 

That [a, a] C JV= is Lemma 4.1, and that Ma C Pa is Lemma 4.4. 
To see that 9a C yh: , it suffices to note that if E is a projection in 
C’Z equivalent to I - E, then S = 2E - I is a symmetry in a, and 
&I + S) = E - I - E = +(I - S). 

Finally, to show that 9a C [a, 4, let S be a symmetry in fl and 
suppose that E N I - E, where E = +(I + S). If U is a partial 
isometry in QI implementing the equivalence of E and I - E, then 
H = U + U* is a symmetry in GZ, and an easy calculation shows 
that SH = -HS. It follows that 

S = *[(SH) H - H(SH)], 

so that S is a commutator in GZ, and the proof is complete. 

The following corollary is an immediate consequence of Theorems 
2 and 3. 

COROLLARY 4.4. If ?V is one of the II,-factors of Wright, then each 
of the four linear manifolds [W, WJ, NW ,9”, , and .9& coincides with 
the subspace of all operators in %‘- with trace zero. 
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We remark that Theorem 3 is valid if a is any properly infinite 
von Neumann algebra. In that case, all four of the linear manifolds 
mentioned coincide with OT itself ([IO], Theorem 5, [12], Theorem 2, 
p. 295). Furthermore, it is an easy exercise (using [4], Remark 1, 
p. 866 and Lemma 4.1 of the present paper) to verify that if O! is a 
finite von Neumann algebra of type I, then [GZ, 4 = Ma . Thus 
the equation [a, a] = Na is valid in an arbitrary von Neumann 
algebra G?. 

5. CONCLUDING REMARKS 

(1) A more difficult version of Lemma 2.1 in which the hi are 
allowed to be complex and it is required only to find a permutation 
rr such that for all 1 < K < n, 

was recently proved by John Dyer (unpublished). This has the 
immediate corollary that every normal operator with central trace 
zero in a finite von Neumann algebra 02 of type I is a commutator in GZ. 
(For the proof, just copy the proofs of Lemmas 2.2 and 2.3 and 
Theorem 1.) 

(2) Let @ be a von Neumann algebra, and denote by &a the 
linear manifold of all linear combinations in Q? of the form 2 aiEi 
where for each i, Ei - I - Ei . It is clear that 9, is a hyperplane 
in &‘,, and it follows immediately from Corollary 4.4 that if a is a 
II,-factor of Wright, then G$ = C!!. Conversely, one can ask which 
algebras GZ of type II, satisfy I$~ = a. This question seems difficult, 
but Theorem 3 shows at least that such an algebra a must be a factor 
in which [a, CSI] is norm closed and consists exactly of those operators 
in GZ with trace zero. 

(3) We conjecture that &a = GZ in every III-factor GZ. If indeed 
this turns out to be the case, and if this could be established, along 
with the fact that I $ [a, GZj, without a priori use of the trace, a new 
proof of the existence of the trace would be available. For then by 
Remark 2, [G?, G-J would be a proper norm closed hyperplane in a, 
and would therefore coincide with the null space of the numerical 
trace. Thus one would have a norm continuous linear functional 
vanishing on all commutators and taking the value one at I. By 
Dixmier’s Approximation Theorem ([q, Theoreme 1, p. 272) this 
functional would necessarily be the trace. 
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(4) Note that if OZ is a III-algebra which is not a factor, then 
Gl? # C$ . However, a method employed by Fillmore and Topping [S] 
can be used to show that the set 3 of all projections E E GY with 
E - I - E generates OZ as an algebra. 

Furthermore, if 6Z is spanned by 3! ozter its center, then the above 
arguments can easily be adapted to conclude that [GZ, a] is equal to the 
null space of the central trace of GY. (We are indebted to Professor 
Irving Kaplansky for this observation.) 

(5) Sunouchi [12], using the theorem of Dixmier just mentioned, 
showed that if GZ is any finite von Neumann algebra, then [a, at] 
is norm-dense in the null space of the central trace on a. 
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