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Abstract-Wgevin’s technique is applied to two energy group space independent reactor model. 
Detection statistics and fluctuations in production and decay rate of delayed neutron precursors are 
also taken into account. Expressions for the auto- and cross-correlation functions of the fluctuating 
sources associated with various random processes such as fission, capture, scattering, etc., are 
obtained and used in finding the auto- and cross-power spectral densities of the detection rates in fast 
and slow groups. Numerical estimates for various break frequencies for a representative set of 
parameters are found. 

1. INTRODUCTION 
REACTOR noise has been the subject of extensive theoretical (COURANT et al., 1947; 
DE HOFFMAN, 1949; RAIEVSKI, 1958; HARRIS, 1958; KLAHR, 1958; MOORE, 1958; 
PAL, 1958; VELEZ, 1959; BENNETT, 1960; DALFES, 1962; OSBORN et al., 1963; 
BELL, 1965; OTSUKA et al., 1965; OSBOIW, 1965) and experimental investigations 
(ORNDOFF, 1957; BADGLEY et al., 1964; TRINKO et al., 1965; NOMURA, 1966; 
DRAGT, 1966; GOTOH, 1966) in recent years. The keen interest displayed in the subject 
has been chiefly motivated by the possibility of obtaining useful information about 
macroscopic properties of reactors by analysing fluctuations in neutron distributions. 
In these investigations, Langevin’s Technique (LANGEMN, 1908; LAX, 1960; COHN, 
1964; COHN, 1960; AKCASU et al., 1966; SHEFF et al., 1966a; SHEFF et al., 1966b; 
SAITO, 1967a; SAITO, 1967b) has been frequently employed and generally one speed 
point reactor model has been used. The two energy group point model for critical 
reactors has been previously considered by COHN (1964) who has given relations 
between Fourier transforms of neutron density fluctuations in the two groups and the 
corresponding fluctuating sources normally known as noise equivalent sources 
(N.E.S.). More recently, SAITO (1967a) has applied Langevin’s method to obtain 
the spectral matrix of the neutron fluctuations in a sub-critical space- and energy- 
dependent reactor model described by a vector whose components represent concen- 
trations of particles (neutrons and precursors) in phase space points. In another paper, 
SAITO (1967b) derived the spectral matrix in the special case of one space group, one 
energy group and six-delay group model. 

The present analysis extends the results of Cohn and Saito by: (1) including the 
detection process statistics (Section 3); (2) Obtaining explicit expressions for various 
N.E.S. (Section 4); and (3) obtaining explicit expressions for the power spectral 
densities showing the break frequencies (Section 5). In addition, a numerical applica- 
tion is included in Section 6. The general interest in investigating a two-energy group 
comes from the desirability of checking the adequacy of one group model, and to 
explore the possibility of obtaining any additional information from the autocorrela- 
tion functions of the fast group, as well as from its cross-correlation with the slow 
group. 

In this work, it is assumed that the external current of the detectors is proportional 
675 
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to the instantaneous detection rate (AKCASU et al., 1966). The filtering effect of the 
detectors, arising mainly from the finite ion collection time, on the power spectral 
densities of the neutron density fluctuations, is thereby eliminated. Since this effect 
can be investigated separately (OSBORN et al., 1966), it is not included in the present 
theory. 

Finally, in Appendix I, a general expression is derived for the spectral matrix of 
the external currents (AKCASU et al., 1966) of the detectors in a “multipoint reactor” 
model, with IZ energy groups. For a definition of “multipoint reactor”, the reader is 
referred to a paper by Saito (1967a). 

2. EQUATIONS DESCRIBING THE SYSTEM 
We consider a subcritical reactor operating at steady state. The reactor is de- 

scribed by a multipoint model consisting of two energy groups and m types of delayed 
neutron precursors. For a generalization to iz energy groups and m types of delayed 
neutron precursors, see Appendix I. Let (iVi), i = 1,2, . . . , m ,f 2 = M denote the 
components of the macroscopic steady state vector (N) describing the system. This 
vector satisfies the equation 

B(N) = (S) (1) 

where B is a matrix whose form depends on the physical assumptions made. The 
first two components of (N) are the fast and slow steady state neutron densities and 
the remaining components are the steady-state precursor densities. The vector (S) 
has components (S,,)S, where (S,,) is the mean value of the external non-fission 
source assumed to emit fast neutrons only. In addition to this assumption, it is also 
assumed that (1) all fission neutrons, prompt as well as delayed, are fast neutrons, 
and (2) no fast fission is produced although fast capture may take place. The reaction 
rates are denoted by “P with subscripts: ffor fission, s for scattering from fast into 
slow group, t for total reaction rate in the fast group, a for absorption in the slow 
group, Dip i = 1, 2 for detection of fast, i = 1, and slow, i = 2, neutrons, and Ci, 
i = 1,2 for capture in both groups. 

Introducing the notation 

I1 = X , I2 = : , PIE = z , K = (j) F 
a a 

the matrix B becomes: 

B= 

1 
7 - : (1 - p> --ia.. . --1, 
11 1.2 

PlZ 1 
-- 

II 
G 0 . . 

0 -;A A f* 3 
2 

. . 

. . 

. . 

0 - f Px 0. 
a 
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with (i), pi and &(i = 3, . . . , M = m + 2) having their conventional meaning. 
Equation (1) can be solved for (N1) and (Nz) yielding the following result: 

(2b) 

Let us define n(t) as a vector whose components are the deviations from (N(t)) of the 
instantaneous values of the densities. This vector satisfies Langevin’s equation 
(AKCASU et al., 1966) 

% n(t) = -Bn(t) + s(t) (3) 

where s(t) is the noise equivalent source vector of the system. The components of 
s(t) are noise equivalent sources associated with the fluctuations in the various nuclear 
processes, absorption, fission, scattering, detection, decay, and emission by external 
source, going on in the reactor. The properties of s(t) will be the subject of the dis- 
cussion in Section 4. 

3. DETECTION STATISTICS AND POWER SPECTRAL DENSITIES 

We assume that two detectors are present characterized by their detection rates 
rDi(i = 1,2). Since the reactor-detectors system is operating at steady state, the mean 
number of neutrons being detected per second is rDi(Ni), i = 1,2. The actual 
number fluctuates about this mean and we postulate the existence of the following 
relations : 

z&> = rDiniO) + soi(t) i= 1,2 (4) 

between zi(t), the instantaneous deviation of the number of neutrons detected in each 
detector per second and ni(t). The deviations of the actual output currents of the 
detectors about their mean are assumed to be proportional to si(t). For convenience, 
the constants of proportionality are assumed to be unity. The noise equivalent 
sources sD,(t) are associated with the fluctuations in the detection process. 

In a noise experiment, one measures z,(t), i = 1,2, as the fluctuations in the output 
currents of the detectors. One can compute digitally or measure directly by analog 
techniques, the Fourier transforms of (zi(t)zi(t + T)), i = 1,2, and (zi(t)z2(r + T)) 
which are the auto-power and the cross-power spectral densities of the two energy 
groups. Since these are the observed quantities, the procedure to follow in their 
calculations consists of solving the stochastic equations (4) for them by eliminating 
the unobserved variables ni(t) i = 1,2, . . . , M, in terms of the auto-power and cross- 
power spectral densities of the various noise equivalent sources. 

Let us indicate byf(w) the Fourier transform off(t). Taking the Fourier transform 
of equations (3), solving for n,(w), i = 1,2, and substituting in the Fourier trans- 
formed equation (4), we can obtain expressions for zi(co), i = 1, 2. The details are left 
for Appendix II. 
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The power-spectral-densities of the output detector currents are then defined as: 

@mn(~) = 
s 

_ydT e-i”7(z,(t)z,(t + T)) m,n = 1,2. (6) 

This is the quantity that is measured in an experiment. By writing zi(t), i = 1, 2, in 
terms of zi(o) we can rewrite equation (6) as follows: 

<D,,(w) = & /_rdw’ exp [-i(m + o’)tJ(z,(w’)m), 

This function depends on the stochastic properties of s(t), the discussion of which will 
be the task of the next section. 

4. STOCHASTIC PROPERTIES OF THE NOISE 
EQUIVALENT SOURCES 

It is convenient to write the components of s(t) as a sum of various noise equivalent 
sources representing the stochastic processes originating the fluctuations in n(t). This 
splitting up of s(t) is introduced to facilitate the calculation of various auto- and 
cross-correlation functions of noise equivalent sources in the framework of certain 
assumptions. With this in mind we write: 

and 

~10) = ~2~~0) - 31”(t) - Q(t) - s,$) + s,,(f)+ $ d,(r). 
1=3 

@a) 

s&) = -QL(t) + $(t) - sz”(t) - sn,(t) 

se(t) =p#) - d,(t) 1=3,... ,M. 

(gb) 

(8~) 

The minus sign in front of some of the noise-equivalent sources indicates that they 
are associated with processes that produce a loss in the number of neutrons. The 
superscripts P’G and FL mean fission gain and fission loss, that is the noise equivalent 
sources carrying those superscripts are associated with the fluctuations in the gain of 
fission neutrons in the fast group and with the fluctuations in the number of neutrons 
lost in the slow group due to a fission absorption, respectively. The remaining 
superscripts have the same meaning as in the subscripts for the reaction rates. Finally 
the noise equivalent source pi(t) is associated with the production rate of delayed 
neutron precursors of the I-th type and d,(t) with the decay of the said precursor. 
Some assumptions are necessary to proceed further in the study of the noise equivalent 
sources. First it is assumed that the random fluctuations in the number of events of 
capture in both energy groups, scattering, fission, and decay of delayed neutrons 
precursors are independent of one another. This implies that in our terminology, 
only cross correlations exist among ssF”(t), szpL. (t) and am. Second, the probability 
per unit time of occurrences of each event mentioned in the above assumption is con- 
stant in time. Third, the fluctuations in the number of events of a given kind in two 
non-overlapping time intervals are statistically independent. And fourth, in any 
fission not more than one delayed neutron precursor is produced. In view of these 
assumptions and following Akcasu and Osborn (1966), the correlation functions for 
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TABLE l.--Ai”(sik(t).vik(t + 7)) = Ai’( 

i\k C s D 

1 
2 

r, 
- ‘01 

'Dr 

TABLE 2.-B,*, I, k = 3,4, . . . ~4 (fct)gO + T)> = &Wd&d 

Pl m $2 S2 PL fk 

the different noise equivalent sources can be easily obtained. The results are given 
in Tables I and II and equations gab. 

(&!&)~e& + 7)) = (%XP(4 (9a) 

(d,(G40 + 4) = &c~j)18~rfW2)W (9b) 

In Tables 1 and 2 the subindexes 1 and 2 refer to fast and slow groups respectively and 
the subindexp in (ID,> and (jP2) refers to prompt neutrons. It should be noted that the 
result given in these tables and equations (gab) obtained by application of the Langevin 
technique, could have been obtained directly using the fact that the time evolution of 
the neutron population in a reactor is a Markoff random process. -- 

It is easily seen that to obtain ensemble averages of the form (s(cJ)s(w’)) one 
merely replaces 8(~) by 2&(w + o’)‘in equations (9). For instance: 

(&Y)W)) = rC1(N,)27r6(w + C0’). 

A relation between (j2) and (j”) was developed by AKCASU et al. (1966): 

<j”) = Cj:> + 2(j>2B(l - B> + Cj>B 
which is based on two physical assumptions: (a) the number of prompt neutrons 
produced in any fission event is independent of the production of delayed neutrons 
and (b) not more than one delayed neutron is produced in any fission event. Other 
relations can be found in the literature based on a set of different assumptions. 
(OTSUKA et al., 1965) 

5. ANALYTICAL EXPRESSIONS FOR THE SPECTRAL DENSITIES 

As outlined in Section 2, once expressions for zi(m) are obtained, substitution into 
equations (7) yields analytical formulas for 011, (D22, and Q12. The results for a 
general case are given in Appendix 2. If we consider one delayed group only and 
notice that quite generally 1(I, + I,) < 1, il < ra,, Z2 < II, the spectral densities can 
be written in a simple form: 

@‘11(~~) = A,rD(W)(w2 + Q) + C,, (loa) 
@22(o) = A22Wo) + c22 (lob) 

Re %2W = 42W3) UOc) 

Im Q12(c0) = A,,wD(w) (lad) 
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where 
B(W) = (w2 + o&c02 + c+2)--1(w2 + cu22)-1(os + 0$)-r. (1Oe) 

The break frequencies and the constants in equations (10) are given below in Table 3. 

TABLE 3.-TWO GROUP CONSTANTS AND BREAK FREQUENCIES 

A,B 

A, = ro;q 

GI = r,,(Nd 

& = ro22r,2PI,Zq 
CZB = r,,CNd 

Aal = rnIrozrtraP12q 
AIs = -rnIrozrtP12q 

q = rfW2)[(j(j - 1)) - 2(iYB(l - B)l 

w 

WI2 = rt2 

wz2 = [l - KP,,(l - f9)]2ru2 
w32 = (1 - KP1$[l - KP,,(I - @)]-“I” 
wd2 = ro2 

w, 2 = r,(N&j(j - l))q-‘,I2 

Letting Zr = 0 and P 12 = 1, we obtain from Qz2 the one-group P.S.D.: 

Q(o) = A,(WZ + c&$2)(& + cc)&-1(02 + fB02)-1 + B,. 

The new constants and break frequencies are given below in Table 4. 

(11) 

TABLE ~-ONE-GROUP CONSTANTS AND BREAK FREQUENCIES 

A,,& W 

A,, = rD2q woz2 = [l - K(1 - p)]2r,2 

Co = r,(N) WJ = (1 - Kyql - K(1 - /T)]-“A” 

A comparison of Tables 3 and 4 shows that a two-group model provides the same 
information as the one group model if one replaces K by KP,,. In addition to this 
the two-group model used in this paper predicts direct observation of the fast and 
slow neutron life-times. All the break frequencies contained in the slow group P.S.D. 
and in the C.P.S.D. are contained in the fast group P.S.D. However, the fast group 
P.S.D. contains an additional frequency, namely r,,. Therefore, a measurement of 
or1 will yield all the information in all the spectral densities. The phase of the C.P.S.D. 
obeys the simple rule tan or2 = --01, which suggests an alternate way of measuring I,. 
A measurement of either the real part or the imaginary part of the C.P.S.D. will 
remove the so called detector noise which is known to be an advantage from an experi- 
mental point of view. 

6. NUMERICAL APPLICATIONS 
The values of the parameters used in this numerical application are given in Table 

5 (THIE, 1963; ANL-5800, 1963). The order of magnitude of the parameters chosen 
represents a thermal reactor operating at low power level and has low resonance 
absorption. The numerical value of (S,,) was chosen arbitrarily to yield (iV1) = 10 
neuts/cm3 which simplifies the numerical calculations. The results are given in Table 
6. Graphs for Q1r and tan 8,, are given in Figs. 1 and 2. Very low and high frequen- 
cies which lie outside the range of practical interest are also included in the graphs for 
the sake of completeness. 
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TABLE 5.-Two GROUP PARAMETERS 

PIZ = 0.995 
K = 0.99 
I, = 7.8 x lo-@ set 
Is = 1O-4 set 

(j) = 2.5 
(j(j-I)) = 4.97 

A = 7.6 x 1O-2 set-1 

/J3 = 7.5 x 10-S 
rn, = 3.5 x lo3 se+ 
rol = 6.8 x lo2 set-’ 

i-f = 3.9 x lo3 set-’ 
(N1) = 10 neuts-cm-a 
(Nz) = 1.3 x lo4 neuts-cm-3 

(S,,) = 1.9 X 106neuts-cm-3-se4-1 

TABLE 6.-NUMERICAL VALUES OF TWO-GROUP SPECTRAL DENSITY CONSTANTS 
AND BREAK FREQUENCIES 

All = 3 x lOI set-3 cm-3 
As2 = 1.4 x 10z8 sec5 cm-3 
Al2 = 7.4 x 10z5 set-6 cm-3 
AZ1 = 7.4 x 10zl secc4 cm-3 
B,, = 3.4 x lo* se& cm-3 
Bzz = 8.6 x IO6 set-’ cm-3 

w1 = 1.3 x lO’sec-’ = r t 
o2 = 2.2 X lo2 set-1 = 2.2 x 1O-2 x rt 
o3 = 5.1 X 1OP set-’ = 0.7 x 3, 
wp = 10” set-’ = ra 
ws = 7.68 x 1O-2 set-’ = 1.01 x il 

Frequency, rad/sec 

FIG. l.-Fast-group power spectral density (db) vs. frequency (rad./sec). 

The break frequencies introduced due to the inclusion of delayed neutrons in the 
analysis are seen to be proportional to A. In the graph for Q, they are noticeable as 
a ripple in the low frequency range. If the C.P.S.D. CD,, is written in the form: 
@I2 = A(U) exp [O,,(o)] where A(w) is the gain and Q,(U) the phase angle, the 
following relation is found to be valid for all frequencies: 

tan 0r2(co) = -01~ (13) 

which suggests a way of measuring 1, directly. 

7. CONCLUSIONS AND DISCUSSION 

Langevin’s technique has been applied to a two energy group, space independent 
model and explicit expressions for the auto- and cross-power spectral densities of the 
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fast and slow groups have been obtained. The correlations due to fluctuations in 
production and decay of delayed neutron precursors, which are not included in the 
paper by COHN (1964) are also taken into account. They are, however, shown to be 
proportional to the delayed neutron fraction /? and are observed to be small as com- 
pared to other correlations. The correlation between the fluctuation sources in the 
fast and slow group is observed to be not only due to fluctuations in fission process 
but also due to random nature of scattering from fast to slow group. The general 
results agree with those given in a paper by SAITO (1967b). 

The analysis yields additional break frequencies, as compared to the one group 
case, some of which could be used for measuring certain group constants and reactor 

Frequency, rod/set 

FIG. 2.-Negative of the tangent of the phase angle of the cross-power spectral 
density vs. frequency (rad./sec). 

parameters. It is observed that information contained in the break frequencies of the 
slow group P.S.D. in the two group analysis is essentially the same as that resulting 
from the break frequencies in one group analysis in which K is modified to include 
resonance escape probability. The information contained in the P.S.D. of the fast 
group is the same as that in the P.S.D. of the slow group except for the frequency L-l 
which is not directly observable in the slow group P.S.D. This frequency may also 
be obtained from a measurement of the phase of aI2 which obeys the simple rule: 
tan O,,(o) = -01~. 

The results of this paper assumed a space independent model as well as a detector 
of infinite size. The influence of the finiteness of both medium and detector has been 
the subject of considerable discussion in papers by NATEUON et al. (1966), SHEFF et 
al. (1966a; 1966b) and more recently by WILLIAMS (1967). According to the latter 
author, for an infinite medium, the size and geometry of the detector greatly affects 
the shape of the P.S.D. Only for detectors many diffusion lengths in size, the P.S.D. 
becomes the conventional one of the infinite medium, infinite detector case. For 
finite media, the influence of the detector shape on the functional form of the P.S.D. 
is not very strong, and the smaller the reactor, the less strong this influence is, pro- 
vided measurements are made in a restricted frequency range. For large systems, the 
reverse effect occurs, so that direct application of the infinite medium model may be 
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more efficient. In view of these remarks, the results of this paper might be applicable 
to either a very small reactor or to a very large one with large detectors. 

Finally, from a mathematical point of view, the application of Langevin’s tech- 
nique to more complicated models where many energy groups are considered is 
straight forward, This is due to the fact that the stochastic equations resulting from 
its application are the same in number as the equations for averaged quantities 
describing the system, an advantage which is not demonstrated in other techniques 
(MATTHES, 1966; NATEL~~N et al., 1966) recently developed for noise analysis. As 
shown in the present analysis, the application of Langevin’s technique to a multigroup 
description involves noise equivalent sources in each group whose correlations can 
easily be obtained from simple physical considerations. All of the new break fre- 
quencies arising from the multigroup description may not be physically observable 
in general if the detector samples only the thermal group. In the two group treatment 
in which detectors respond to thermal and fast groups, one can expect distinct break 
frequencies in the measured P.S.D. which can be related unambiguously to the life 
times associated with each group. In this case, the division of the energy spectrum 
into two groups is not only a mathematical convenience but it also has a physical 
origin since the detectors are assumed to be sensitive to neutrons in each group. 
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APPENDIX 1 
Let us consider a reactor model with n energy groups and m delayed neutron precursors. The 

vector n(r) has then, n + m components. Solving equation (3) formally for the column vector n(t) 
gives : 

n(t) = 
s 

m 
e--uR s(t - u) du. 

0 
(I-l) 

Defining row vectors nT(t) and sT(t), and the noise equivalent source spectral matrix 20 by (SAITO, 
1967a): 

(s(r)#‘(t + 7)) = 2Dd(~) (I-2) 
equation (I-2) gives: 

a, m 
Q*(T) = (n(t)tF(t + 7)) = 

ss 
du do e-UB2D .PBT6(~ + u - u) 

0 0 
(I-3) 

where BT is the transposed of B. Following Saito (SAITO, 1967a), we make use of the generalized 
Schottky formula (COHN, 1960) 

2D=Q+BE+EB” (I-4) 

where E is a diagonal matrix whose elements are (iv,), i = 1,2, . . . , m + n, and Q = BV + VBT 
where V is the modified covariance matrix defined by Saito (SAITO, 1967a). 

From equations (I-2) and (I-4) one obtains Bn(7) as the sum of two terms: 

@Ad = du dv e-UBQe-uBT8(r + u - V) + 
E e-TBT, T > 0 
e-~T~~~, 7 < 0 

I 
. (I-5) 

This equation is easily Fourier transformed giving: 

G,(o) = G(-o)QGT(w) + EGT(w) + G(--w)E 
where : 

(I-6) 

G(w) = 
s 

m 
e-uBe-imU& 

0 

is the Laplace-Fourier transform of the Green’s function eeUB. G,,(w) is the neutron-precursor power 
spectral density matrix (SAITO, 1967a). 

Suppose now that we have n detectors characterized by their reaction rates rod, i = 1,2, . . ., n. 
We postulate the stochastic equation: 

z(t) = Rn(t) + an(t) (I-7) 

where R is a diagonal matrix whose diagonal elements are rDI, i = 1,2, . . ., n, the remaining ones 
being identically zero. The vector s,(t) is the noise equivalent source vector associated with the 
fluctuations in the detection process and its only non-vanishing components are s&), i = 1,2, . . . , 
n. Thus z(t) has only non-vanishing components zi(t) for i = 1,2, . . . , n. 

It is easy to see that (AKCASU et al., 1966) 

(s(t)~,~(t + 7)) = (sB(t)sT(t + 7)) = -A&T) 

where A is a diagonal matrix whose diagonal elements are r+(Ni), i = 1,2, . . . , n, the remaining 
ones being zero. From equations (I-7) and (I-l) one obtains immediately: 

QZ(~) = (z(t)zT(r + T)) = R@*(r)R + A&T) 

0, T>O Ae-TB,T>O 
-R R. 

e-HBA, 7 < 0 0, 7<0 I 

Fourier transforming equation (I-8), we finally get: 

G,(W) = RG,(~u)R - RG(--w)A - AC%@ + A (I-9) 

This formula is the counterpart in matrix form, of equation (70) given by ACKAKI and OSBORN 
(1966) in the space and energy dependent case. 
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APPENDIX 2 

Equation (3) is equivalent to the following set of equations: 

g n1(t) = $ (1 - /9nz(t) - f a(t) + f n#) + s,(t) 
2 z=3 

; n&) = pF q(t) - f n&) + se(t) 
1 2 

(11-l) 

(H-2) 

$ n&l = $Pin,(t) - &n,(t) + p&l - d,(r) 1=3,...,M. (H-3) 
z 

Fourier transforming these equations, solving for n,(w), i = 1, 2 and substituting into the Fourier 
transformed equations (4), gives: 

+ sdol(1 + ie&) + s&)kg(iw) (H-4) 

- 
+ sd(w)IP12 + h(w)(l + 4) 

I- 
+ sA4 (H-5) 

A@) = -0~1~1, + iw(& + I,) + 1 - KP,,g(im) 

dimI = 1 - F(iw); F(i0) =lz3 __$I!$ 

Defining 

- M iwd,(o) + 2.$,(w) 
s&w) = 1 

1=3 
iw+J.: ’ 

S,, = (is2)r,W2) + r,(Nd + CL> 
S2, = r&N,) + r,Wd 
S12 = --(iJr,CN,) - r,(Nd 

Sdd = +(jWWr, 

S&w) = 2 -L- 1=3 ~~ _ iw (jp)(j%rt(N~) 

&d(w) = -lzs & (ih%r,W 

A(W) = KS,,g(iw)(l - iwl,) + srI(w)(l + wV2) + KS,,(w)g(iw)(l - iw/d 

- y (1 + iol,)A*(io) 

B(w) = P,,2Sla(iw) + P,,S,,(w)(l + iwll) - y (1 + iw&)A*(iw) 
a 

where * means complex conjugate, the spectral densities can be written as follows: 

Q.,,(w) = ,$$ &S,, + S&(1 + 02&‘) + SazK2 Ig(iw)l” + ZReA(w)} + r,,(Nd (H-6) 

%(w) = ,$);* - {(SU + &,)Pu’ + S&l + e%*) + 2Plz& + 2ReB(w)) + r,,(N,) (11-7) 

@&w) = $$ \ J’,,(l + iwW[S,, + S,, + ZRe&(w)l + &Kg(iw)(l - iw4) 

+ P,&g(i~)tS,, + Sdw)I + (1 + i&)(1 - iwMS,, 4 S,,*(w)1 (11-8) 

- y Kg(iw)A*(iw) - ‘F PIgA( . 


