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INTRODUCTION 

In the present paper we will consider an autonomous ordinary differential 
equation of the form 

2 = P(E) x + X(x, E), (*> 

where x and X are real n-vectors in the Euclidean space ZP(n > 2), E > 0 
is a small parameter, P is a real n x n matrix, and X(0,6) = 0, E > 0, so 
that the origin x = 0 is an equilibrium point of (*) for E > 0. We will require 
that both P and X be continuous in their respective arguments and that X 
satisfy a suitable Lipschitz condition in x, explicitly stated below, from 
which it follows that 1 X(x, l )I = o(I x I) as 1 x ( + 0. Furthermore, we will 
assume that for each E > 0 there exist two distinct complex-conjugate 
eigenvalues of P(E) which have zero real part for E = 0 and positive real part 
for z > 0. The other n - 2 eigenvalues of P(C), we will assume, have negative 
real parts for all E > 0. Finally, we will suppose that when E = 0 the 
equilibrium point at the origin 3c = 0 is asymptotically stable in the sense 
of Liapunov. 

The object of our investigations is to obtain a complete description of the 
qualitative behavior of solutions of (*) near the origin when E > 0. Our 
principal results can be described as follows. 

For E > 0 and sufficiently small, there exist for (*) two closed orbits 
yl(e) and y*(c), not necessarily distinct, and as E -+ 0 + these orbits uniformly 
contract to the origin. In this sense we can say that n(e) and ys(e) bifurcate 
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U. S. Air Force Office of Scientific Research (Grant No. 942-65) at the University 
of Michigan, Ann Arbor, in 1967. 

661 



662 CHAFEE 

from the origin as E increases from zero. The orbits ri(e) and ~~(6) lie on a 
local integral manifold a/s(,) h omeomorphic to a two-dimensional open disk 
and containing the origin x = 0; regarded as closed Jordan curves in M*(r), 
rr(e) and ~~(6) are concentric about the origin. In a certain n-dimensional 
neighborhood of the origin the solutions of (*) are divided into two classes. 
The first class consists of solutions which, as t -+ +co, approach the closed 
invariant set Q(E) in :W(C) b ounded by or and Ye (when Ye = Ye 
this set degenerates into a single closed orbit of (v)), and the second class 
consists of solutions which approach the origin x = 0 as t -+ +CO. These 
latter solutions fill a local integral manifold homeomorphic to an (n - 2)- 
dimensional open ball. 

Problems similar to the one to be treated in this paper have been studied 
by Andronov ([I], pp. 217-224), Hopf [7], and Brushinskaya [3] under 
hypotheses different from our own and with correspondingly different 
results. In particular, under the conditions assumed by these authors the 
invariant set .Q(c) is always a single closed orbit. An example is given below 
showing that under our own hypotheses such is not always the case. 

1. STATEMENT OF HYPOTHESES AND MAIN THEOREM 

Notation. Throughout this paper we will let En denote the real n- 
dimensional Euclidean space and i * 1 the Euclidean norm on this space. 
For any r > 0 we will let B”(Y) denote the open ball {x E En : 0 < 1 x 1 < Y}. 

We consider an autonomous differential equation of the form 

2 = P(c) x + X(x, E), (1-l) 

where x and X vary in some real Euclidean space En (n > 2), l > 0 is a small 
parameter, and P is a real n x n matrix. Henceforth, we shall assume that 
(1.1) conforms to the following hypotheses. 

(H,) There exist numbers r. > 0 and cc, > 0 such that P is 
continuous on the closed interval [0, Q] and X is continuous on the domain 
WY,) x P, %I. 

(Hs) For each E in [0, E,,] we have X(0, e) = 0 so that the origin x = 0 
is an equilibrium point of (1.1). 

(Hs) For each Y in [0, Y,] there exists a K(Y) > 0 such that on the domain 
P(Y) x [0, l s] the function X is uniformly Lipschitzian in x with Lipschitz 
constant K(r); moreover, K(r) + 0 as r -+ 0. 

(H4) For each E in [0, cc,] the matrix P(c) has a complex-conjugate pair 
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of eigenvalues U(E) f 2(e) whose real and imaginary parts satisfy the 
conditions 

a(0) = 0, u(c) > 0 (0 < E d d 

b(r) > 0 (0 d 6 < %). 

The other eigenvalues Xi(e), X,(C),..., X,&E) of P(E) have their real parts 
negative for all E in [0, e,]. 

(Hs) For E = 0 the equilibrium point of (1.1) at the origin is asymp- 
totically stable in the sense of Liapunov (Lefschetz [9], p. 89). 

Hypotheses (Hi) and (Ha) are sufficient to guarantee the usual properties 
of existence, uniqueness, and continuity in initial conditions for solutions of 
(1.1). In that which follows the solution of (1.1) assuming a given initial 
value x0 at t = 0 will be denoted by x(t, 3c0 , l ). In connection with this 
notation we should mention the well-known autonomous property of (1.1): 
the solution of (1.1) assuming a given initial value x0 at a specified value of t, 
say t, , is given by x(t - t, , x0, E). 

The results to be obtained in this paper can be summarized in the following 
manner. 

THEOREM 1 .l Let (1.1) sati& the hypotheses (Hi) through (H5) and let 
r,, and l 0 be as in (H,). Then, there exist numbers rl , r2 , and cl such that 
0 < f-2 < t-1 < Y, , 0 < El < Eg ) and such that the following assertions are 
true. 

(i) For each E E (E, l 1] there exist for Eq. (1.1) two cZosed orbits yl(e) 
and M(E) (not necessarily distinct) which lie inside a neighborhood of the form 
B”(Y(E)), where 0 < Y(E) < r2 and Y(E) -+ 0 us E -+ 0 +. Mmeover, yl(e) and 
y2(c) lie on a local integral manifold M2(e) homeomorphic to an open disk in E2 
and containing the origin x = 0. Regarded us closed Jordan curves in M2(~), 
n(e) and y2(c) are concentric about the origin with, say, K(E) inside ~~(6) when 
these curves are distinct. 

(ii) For each E E (0, l 1] that part of M2(e) which lies inside yI(e) isJiZled 
by solutions of (1.1) which approach the origin us t -+ --OX and which, except 
.for the equilibrium point ar x = 0, approach n(e) as t + +co. No other 
solutions of (1.1) remain in B”(Y,) for all t < 0. 

(iii) For each E E (0, l 1] that part of &Z2(~) lying outside y2(e) but contained 
in B”(z2) is filled by solutions of (1.1) which remain in &P(E) n P(Y,) for all 
t > 0 and which approach yp(e) as t --+ +CD. 

(iv) For each E E (0, cl] there exist solutions of (1.1) which approach the 
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origin x = 0 as t -+ +a and these solutions jill a local integral manifold 
Mnm2(c) homeomorphic to an open ball in Enme and containing the origin x = 0. 

(v) If for a given E E (0, ~1, x(t, x0, 6) is a solution of (1.1) for which 
x,, E Bn(r2), then x(t, x0 , 6) remains in B”(r,) for all t > 0. Moreover, if 
x(t, x, , l ) + 0 as t -+ +co (see (iv)) then as t + + co x(t, x,, , l ) approaches 
the closed invariant set O(E) consisting of those points in M2(e) which lie on 
n(c) or Ye or between them. The solutions which approach Q(E) contain in 
their positive-limiting sets one or more closed orbits (which may or may not 
coincide with K(C) or y2(c)). 

The question arises, is it possible to improve the above results by showing 
that for all E E (0, cl] K(E) and Ye coincide ? Brushinskaya’s work [3] 
indicates such a possibility. She has considered an equation of the form (1.1) 
satisfying (H,) through (HJ with the additional requirement that X be 
analytic in X. In place of (H5) she has imposed a condition on the sign of a 
certain parameter constructed from H. From this condition there follows 
(HJ and results analogous to Theorem 1.1 except that n(e) and r2(e) are 
replaced by a single stable limit cycle. Thus, we may ask whether or not 
Brushinskaya’s conclusion holds under our more general hypotheses. The 
following example shows that this is not the case. 

Consider the system of differential equations 

t: = r(r - l )” (2~ - r), 

e= 1, 
(e b 0) 

2 = -2, 
U-2) 

where r and 0 are to be regarded as polar coordinates of a vector y in E2 and 
where z is to vary in El. Letting x = (y, z), x E ES, we can easily transform 
(1.2) into a system of the form (1.1) and just as easily, we can verify that this 
system satisfies (H,) through (Hs). Now, for each E > 0 (1.2) has exactly 
two closed orbits n(e) and y2(z) which are the circles in the y-plane about 
the origin having radii E and 2~ respectively. It is easy to see that these closed 
orbits have the properties required of n(e) and y2(e) by Theorem 1 .l, with 
M2(e) here being the entire y-plane. Thus, Theorem 1.1 can not be improved 
in the sense indicated above. 

On the basis of (HJ and the continuity of P in E, we may assume that 
(1.1) haa the form 

3 = WY + Y(x, 4 

t = C(E) 2 + 2(x, E), 
x = (Y, 2) (1.3) 

where y E E2, z E En-2, A and C are real matrices having for each E E [0, cO] 
eigenvalues a(e) f ib(c) and A,(E), A,(E),..., A,,-,(E) respectively, and Y and Z 
are they- and x-components of X. That such an assumption is valid follows 
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from standard arguments. Our notation for solutions of (1.3) is the same as 
that already indicated for solutions of (1.1) with the added convention that 
the y- and z-components of x(t, x0, l ) will be denoted by r(t, x,, , l ) and 
z(t, x,, , E). In that which follows we will prove Theorem 1.1 for equations 
(1.3) rather than equation (1.1). 

2. THE EXISTENCE OF THE LOCAL INTEGRAL MANIFOLD A@(E) 

In this section we will prove the existence of the manifold M2(e) in which, 
according to Theorem 1.1, we expect to find the closed orbits n(c) and r2(e). 
Moreover, we will derive certain properties of AcZ~(E) crucial to proving in 
Section 3 the existence of ri(~) and ~~(6). The techniques we will use here are 
modifications of techniques used by Bogoliubov and Mitropolsky [2], 
Likova [IO], [II], and Hale [6] in their studies of integral manifolds. The 
results which are relevant to the proof of Theorem 1.1 are stated in Theorem 
2.3 and its corollaries. 

We begin by performing a number of constructions. From (HJ there 
follows the existence of constants CY > 0 and K > 0 such that 

1 eCk)t 1 < Kecat (0 < if < a, 0 < c d Eo), 
1 ,y4(f)t 1 < Ke-(a/2)t (-al < t < 0, 0 < E < co). 

(2-l) 

Next, referring to (Ha), we choose p. E (0, ~01 so that 

defn. 
’ = hd G 16 2 min {(K + 1)-l, Km2}. (2.2) 

For p. so chosen and for Y as in (1.3) we define a function Y, on the domain 

D = ((y,~,+0 < !y I -=c a,0 < I z I < po,O < E < q,} 

by setting 

In the same way we define a function 2, on D using Z in (1.3). By means of 

(HA, (H,), and (ff2), ‘t I is easy to show that Y, and 2, are both continuous 
on D and that on this domain they satisfy the inequalities 

I Yo(Y, 29 41 < uzpo 9 I Zo(Y, 2, l )I Q 2kPo (2.3) 

I Yo(Y, 234 - Yo($ 1, l )I G k(I Y -y I + I 2 - 2 I), 

I qy, 234 - zoy, f, c)I < h(I y - 7 I + I 2 - 2 I). 
(2.4) 
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Given these new functions Y,, and Z, , we may consider the system of 
differential equations 

9 = 44Y + Yo(Y, z, 4, 

% = C(E) z + Z,(y, z, c). 
(2.5) 

We will denote solutions of this system in the manner previously indicated 
for solutions of (1.3) except that in place of zc, we will write (y,, , a,,). 

Our first theorem is as follows: 

THEOREM 2.1. For each E E [0, E,,] there exists for (2.5) an integral manifold 
M,,(E) represented by an equation of the form z = F,(y, E), where F, is a function 
defined and continuous on the domain E2 x [0, ~1. Moreover, F,, satisjes the 
inequalities 

I F,(Y, 4 < PO 9 (y, y E E2, 0 < E < l O) 

IFo(y, 4 -Fo(Y, 6): < IY -3 I, 

and, also, F,(O, l ) = 0,O < E < co . Finally, for each E E [0, co], M,(E) has 
the property that solutions of (2.5) in MO(c) are dejkedfor all t; i.e., ifx, E M,(E) 
then x(t, x0 , C) is dejked for all t E El. 

Proof. Consider the integro-differential system 

Fo(Yo ? 4 = jr, edC(‘)’ Z,(Y(T), I;,(Y(T), E), c) dT, 

3(t) = 44 ~(9 + Yo(Y@), Fo(Y(+ 4 4 (2.6) 

Y(O) = Yo (yo E E2, 0 < E d ~0). 

We will show that in an appropriate function space there exists a unique 
function F, for which (2.6) holds. We will then show that for each E E [0, co] 
the equation 2: = F,(y, c) represents an integral manifold for (2.5) within 
which solutions of (2.5) are defined for all t in El. 

Let S be the set of functions f : E* x [0, l o] -+ En-* such that f is 
continuous and such that 

f (0,4 = 0, 

If (YT 4 G PO 3 (y, y E E2, 0 < E < co). 

If(r,4 -f(S4I G !Y -91 

Let d be the metric on S defined by 

d(f,g) = sup{‘f(y, l ) -g(y, 41 : Y E E2, 0 < E < co)) 

(f*gESh 
and note that, with respect to d, S is a complete metric space. 

(2.7) 

(2.8) 
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For each f E S we consider the differential equation 

j = &)Y + Yo(y,f(y, 44 (2.9) 

solutions of which we denote by y(t, y,, , f, E) with the understanding that 
y(O,f, y0 , l ) = y,, . According to (2.3), Y, is uniformly bounded on its 
domain D; hence, any solution of (2.9) is defined for all t. 

Now, define an operator T on S by setting 

(Tf)(y, 4 = j”_, e- C(e)rZ,,(y(~, y, f, 4, f(u(~, Y, f, 4, ~),4 d7 

(f~ S, y E E2, 0 < E < q,). (2.10) 

The improper integral here converges by virtue of (2.1) and (2.5). Our 
intention is to show that T is a contraction mapping of S into itself. 

It is a straightforward exercise to show that Tf as defined in (2.10) is 
continuous on E* x [0, E,-,] and that (Tf)(O, G) = 0,O < E < E” . Also, using 
(2.1), (2.2), and (2.3), it is easy to see that 

:(Tf )(Y, 41 < K&o 11, ear dT d ~0; 

thus, Tf satisfies the boundedness condition required by (2.7). To prove that 
Tf satisfies the Lipschitz condition required by (2.7) and that T is a 
contraction mapping, we reason as follows. 

Let (y, l ), (7, E) E Ez x [0, co] and let f, g E S. Then, by (2.1), 

i(Tf )(y, ~1 - (2X?, e>I 

- Zo(y(~, 7, g, 4, g(Y(T, T, g, E>, ~11 dT. 

But, by (2.4); (2.7), and (2.8), there holds for all 7 E (-co, 0] 

( zo(Y(T,Y,f, c),f(Y(T,Y,f, E), e), l ) - zo(Y(T&g> e),g(Y(T,~,g, <), d, c)i 

< 1 zo(Y(T,Y,f, +f(Y(T,Y,f, E)v l )> c) - zo(Y(T&g, e),f(Y(Td*gv dt d, E)i 

-!- 1 zo(y(T, 7, g, c),f(Y(T, 9, g, l ), E)> l ) - zo(Y(Tv 7, g, l ),g(Y(T, y, g, d, d, <)I 

< 2kIY(T,Y,f,4 -Y(T,y,g,e)i +kd(f>g). 

Therefore, 

I(Tf )(Y, 4 - (Tg)(S 4 

< Kka-ld( f, g) -I- 2Kk I”, ea7 I ~(7, y, f, c) - Y(7,yCig, 41 d7. 

(2.11) 
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Now, by (2.9) and the variation of constants formula, 

y(~, y, f, l ) = eA(c)Ty 

eA(c)(s-s) Yo(r(s, y,f, 4 f (yh y,f, 4,4 4 ds; 

also, this formula holds for ~(7, 9, g, c). Therefore, using (2.1) and estimates 
of the type leading to (2.1 l), we find that 

i Yk, Y,f, 4 - Y(T, 7, g9 41 

< Ke-(alz)T( I y - 9 1 + 2k1d( f, g)) 

+ 2Kk I”, e(mP)(s-7) I Y(S, y,f, 4 - Y(T,Y, g, 41 ds 

(-co <T<O). 

Multiplying both sides of this equation by e(a/2)r and then applying reasoning 
of the type used to deduce Gronwall’s Lemma (Lefschetz [9], p. 40), we 
obtain 

Iy(7, y, f, c) - ~(7, 9, g, c)I fW2)T 

< K( I y - 3 I + 2k1 d(f) g)) e--* (-a3 <T<O). 

This and (2.2) allow us to write 

1 Y(T, y,f, c) - y(T, y> g, l )I 
< K( / y - 7 1 + 2.kr1 d( f , g)) e-(8a/4)7 (-a < 7 < 0). 

Substitution of this into (2.11) and the use of (2.2) yield 

IK.f)(y,4 -G%)W4 G IY -81 + Sd(f,g). 

From this last inequality it easily follows that Tf satisfies the Lipschitz 
condition required by (2.7) and that T is a contraction mapping. 

Thus, T is a contraction mapping of S into itself and so, by the Banach 
Contraction Mapping Principle, T must have a unique fixed point F, E S. 
F. is the required solution of (2.6). 

Now, to show that for each E, 0 ,< c < cc,, the equation z = F,(y, c) 
represents an integral manifold for (2.5) within which solutions of (2.5) are 
defined for all t, we argue as follows. Let (yO , c) E Ee x [0, c] and let 
zzO = F&Y,, , 6). Then set 

y(t) = y(t, yo , Fo ,E), f(t) = FobW 4 (2.12) 
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and note that y(t) and z(t) are defined for all t. By (2.6) 

z(t) = i” e-c(~)Tzo(y(T, T(t), F. , ~1, Fo(3f7, T(t), F. , ~1, l ), e) do. - -72 
(2.13) 

However, since solutions of (2.9) satisfy the usual uniqueness conditions 
and since (2.9) is autonomous, ~(7, y(t), F,, , 6) = y(r + t, y0 , F, , 6) = T(T + t). 
Substituting this into (2.13) and changing the variable of integration by letting 
7 + t + 7, we obtain 

a(t) = J-4, ec(c)+T)Zo($(T), Z(T), l ) d7. 

From this result and the equations 

4Wldt = 44jQ) + YoW), W, 4, 

80-J = Yo 9 

which are a direct consequence of (2.12) and (2.6), it is easy to show that 
Y(t) = YP, Yo 9 20 9 6) and a(t) = z(t, y, , z. , l ). Thus, ~(t,y, , z, , l ) is 
defined for all t and z(t, y. , a0 , e) = F,(y(t, y. , z. , l ), l ). Q.E.D. 

Our next object is to obtain an attraction property of the manifold MO(e) 
with respect to solutions of (2.5) nearby it. To this end we introduce the 
following lemma. 

LEMMA 2.2.1. On the domut’n 

(5 = F + 11-l PO) (2.14) 

there is dejined a continuous function h with range in Enm2 such that 
if x(t, y. , z. , l ) is a solution of (2.5) with 1 z. 1 < yl then x(t, y. , z. , l ) is 
defined for all t > 0 and satisfies the identity 

44 YO 9 zo , 4 = 44 r(t, yo , xc, , 4, q, , 4 

(0 < t < co). 

Moreover, h satis+ the inequalities 

; W,Y, 2, 4 < ~1 ,. 

(2.15) 

/ h(t, y, z, C) - h(t, y,Z, l )I < 1 y - 7 + 2Ke-(m’4)t I z - s 1 (2.16) 

((4 Y, a,4 (6 7, f, 4 E 4. 
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Proof. Consider the integro-differential system 

h(t, , y. , z. , E) = eC(c)tozo + 
J 

Pc”*o-“Z,(y(7), h(T, y(7), z. , E)’ 6) UT, 
0 

j(t) = e)~(t) + Y,(Yw, he, ~(9, z. , 4, 4, t 2 0, (2.17) 

Y(to) = Yo 9 ((to 9 Yo 1 zo 1 4 E RI* 

By arguments paralleling those used in the proof of Theorem 2.1, one can 
show that there exists a unique continuous function h : R + En-2 for which 
(2.16) and (2.17) hold. Following this it is easy to show that h has the property 
embodied in (2.15). For lack of space we omit the details. 

THEOREM 2.2. Let F, be as in Theorem 2.1 and let Y, be as in (2.14). If 
x(t, y0 , z. , C) is a solution of (2.7) for which 1 z. / < rl , then x(t, y. , x0 , l ) 
is dejked for all t > 0 and its components satisfy the inequality 

(2.18) 

’ Proqf. First, we show that F, on its domain E2 x [0, co] is uniformly 
bounded by y1 . This follows from the fixed point property of F. exhibited 
in the proof of Theorem 2.1 and from (2.1), (2.2), and (2.3); specifically, 
for all (y, c) E E* x [0, co] we have 

/ Fo(y, e)I = I(TF,)(y, <)I < 2Kkpo I’, ear dT < rl . 

This inequality and Theorem 2.2 imply that all solutions of (2.5) lying in 
MO(~) are subject to (2.15). 

Now, let x(&y, , z. , E) be any solution of (2.5) for which I z, ) < rr . 
By Theorem 2.2 this solution is defined for all t > 0. Choose any t, 3 0 and 
then let y = y(tl ,yo , z. , l ) and z = Fo(y, E). For y and z so defined, 
consider the solution x(t, y, z, E), which by Theorem 2.1 lies in M,(E) and is 
defined for all t. We set yr = y( - tl , y , z, c) and z, = z( - t, , y, z, c) and 
then note that y = y(tI ,yl , z, , 6) and z = z(t, ,yl , z, , e). But on the 
other hand, by (2.15), 

z(t, 9 ~0 9 zo t 4 = Wt, , y(tl , yo , zo ,4 zo , e) = h(t, , y, z, , E), 

4t1 7 Yl , ~“1 , c) = W, , y(tl , ~1 , ~1, E), z1 , c) = h(t, , y, 21 ,4. 

Hence, by (2.16) 

I z(t1 > Yo 7 zo s 6) - z(t, , y1 , z1 , l ) < 2Ke-(“la)fl j z. - z1 ;. 
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Since, however, x(t, yr , z, , l ) is a solution of (2.5) lying in M&E), it follows 
that 

and, also, that 1 zr 1 < rr . Recalling, finally, that 1 z0 1 < y1 and that 
y = y(tr , y,, , z,, , E), we obtain (2.19) with t replaced by t, . Since t, > 0 
was chosen arbitrarily, the proof is complete. 

COROLLARY 2.2.1. Let M,,(E) be as in Theorem 2.1 and let yl be us in (2.14). 
Suppose that x(t, y, , z,, , E) is a solution of (2.5) defined for all t < 0 and 
having theproperty that ( z(t, y0 , z0 , <)I < rl for all t < 0. Then x(t, y,, , zO, C) 
lies in M,(e). 

The proof of this corollary is easy enough so that we need not render 
it here. 

From the manner in which Ys and 2, were constructed and from the 
inequality rl < p0 , it follows that Eqs. (1.3) and (2.5) agree on the domain 
P(Y,) x [0, ~1. Therefore, by Theorems 2.1 and 2.2 and Corollary 2.2.1 
we have the following results. 

THEOREM 2.3. Let y. and E,, be as in (H,). Then, for each E E [0, l 0] there 
exists for (1.3) a local integral manifold M2(c) represented by an equation of 
the form z = F(y, c), where F is a function defined and continuous on a domain 
P(Y,) x [0, ~~1, rl E (0, rO], and satisfying there the conditions 

F(0, l ) = 0, 

IQ4 -W,4I G IY -7 I. 
(y, j E B2(Yl), 0 < Q < Qo). (2.19) 

Moreover, rl can be chosen so that M2(e) has the following properties. 

(i) There exist constants L > 0 and j3 > 0 such that if x(t, x0 , l ) is any 
solution of (1.3) with 1 x,, 1 < rl then for all t > 0 such that 1 x(7, x0 , E)/ < rl ) 
0 < 7 < t, there holds the inequality 

I 44 x0 3 c) - F(y(t, x0 , E), e)I < Le+. 

(ii) If x(t, x0 , l ) is a solution of (1.3) for which 1 x(t, x0 , l )I < rl , t < 0, 
then x(t, x0, e) E M*(E), t < 0. 

Proof. See the remark preceding this theorem. For yl here we take y1 as 
in (2.14), and for F we take the restriction of F, in Theorem 2.1 to 
B*(Y,) x [0, es]. For L and /I we take SKY, and CL/~, where K and 01 are as in 
0-h). 

The following two corollaries, whose proofs are trivial, will be of use to us 
in the next section. 
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COROLLARY 2.3.1. For each E E [0, z,,], &P(e) is homeomorphic to the open 
disk B2(r,), a homeomorphism being given by the correspondence y +-+ (y, F(y, E)), 
y E B2(r,). Also, for each t E [0, E,,] the origin x = 0 is contained in M2(e). 

COROLLARY 2.3.2. For F as in Theorem 2.3, we consider the differential 
equation 

Y = 44~ + Y(Y,F(Y, 4 4 (2.20) 

solutions of which we denote by y(t, y,, , l ) with the understanding that 
~(0, y,, , 6) = y. . If x(t, x0 , 6) is any solution of (1.3) for which x0 E Ma(e), 
i.e., for which x,, has the form x o = (y. , F(Y, ,4), y. E B2(r,), then the cm- 
ponents of x(t, x0 , l ) are related to the solution y(t, y. , l ) of (2.20) through 
the equutions 

r(t, xo, 4 = r(t, yo 9 444 xo , 4 = F(y(t, yo > 44, 

these equations holding at all t for which x(t, x0 , l ) remains in B”(Y&. 

(2.21) 

3. THE EXISTENCE OF THE CLOSED ORBITS n(c) AND y2(c) 

In this section we will study the behavior for E > 0 of solutions of (1.3) 
in a neighborhood of the origin x = 0. Our first theorem is as follows. 

THEOREM 3.1. Let y. and l o be as in (H,). Then, fm each l E (0, co] there 
exists for (1.3) a local integral manifold Mn-Z(e) homeomorphie to an open ball 
in En-2, containing the or+@ x = 0, and having the prope@ that ifxo E A!P2(e) 
then x(t, x0 , l ) + 0 as t + + co. Moreover, there exists a positive-valued 
continuous function u = u(e), 0 < Q < 6 , approaching zero as l + 0+, for 
which the following assertions are true. 

(i) For any E E (0, l o] a solution x(t, x0 , l ) of (1.3) with x0 E B* (o(e)) 
- ilW2(r) cun not remain in B”(u(e)) for all t > 0. 

(ii) For each E E (0, eo] the manifold W-*(e) con be represented by an 
equation of the form y = G(z, l ), where G is afl(nction defined and continuous 
on the domain 

{(a, l ) : 0 < I 2 I < U(E), 0 < E d co}. 
The proof is a slight revision of that of Theorem 4.1 on p. 330 of [4], the 

modifications being made to take into account the presence of the parameter 
P in (1.3) and to incorporate the remarks made in lines l&14 on p. 342 of [4]. 

We consider now for e > 0 those solutions of (1.3) in a neighborhood 
of the origin which do not approach the origin as t 4 + co. For these solutions 
we have the following two theorems. 
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THEOREM 3.2. Let l ,, be us in (H,) and Zet Y, and Ms(e) be as in Theorem 2.3. 
Then, there exist numbers r2 E (0, YJ and ei E (0, q,] such thut ;f x(t, x0, B) is a 
solution of (1.3) with Ix,1 <r, and o<e<e; then Ix(t,x(),E)I <r1, 
t > 0. Also, for each c E (0, C@ there exists an ~(a) E (0, Y;I so that ;f x(t, x0 , l ) 
is a solution of the type just described, then x(t, x0 , e) has a nonempty positive- 
limiting set w+ ([8], pp. 57-58) contained in kP(e) n P(r(e)). Moreover, wf 
is compact, connected, and invariant, and x(t, x0, E) -+ w+ us t + +a. 
Finally, r(e) can be chosen so that Y(E) -+ 0 us E -+ Of. 

Proof. In order to simplify our notation, we will throughout this proof 
use Eq. (1.1) in place of Eq. (1.3). 

Let T,, be as in (HI). From hypothesis (Ha) and the autonomous property 
of (1.1) it follows that for E = 0 the origin x = 0 is a uniformly asymptotically 
stable equilibrium point of (1.1) ([J], p. 63). Therefore, by well-known 
theorems ([5], pp. 64 and 70), th ere exists a p1 E (0, Y,,] such that on the domain 
P(pl) there is defined a continuously differentiable Liapunov function V 
such that (i) V is positive-definite on Bn(pl) (i.e., V(0) = 0 and V(x) > 0 
for 0 < 1 x 1 < pr), and (ii) the function r defined by 

v(x) = (grad V(x)) - (P(O) x + X(x, 0)) (x E B%N 

is negative-definite on P(h) (i.e., -p is positive-definite). We immediately 
extend the domain of definition of P by letting 

v(x, c) = (grad V(x)) * (P(c) x + X(x, l )) (3.1) 

(x E B’Tpl), 0 < l d et,). 

Without loss of generality we may assume that pJ2 < Ye . 
Arguing from the continuity of V and its positive-definite property, 

one can show the existence of numbers m > 0 and r, , 0 < t, < pJ2 < r1 , 

such that 

V(x) 2 m (I x I = ~$9, 

V(x) G 42 (I x I < 5). 
(3.2) 

Since v is continuous on Bn(h) x [0, e,,] and, as a function of x, is negative- 
definite when E = 0, it is possible to choose an l 6 E (0, es] so that P is negative- 
valued on the domain (Bn(pJ - Bn(yg)) x [0, ~3. Having selected such an 
l : , it is then possible to choose for each E E (0, l J an Y(C) E (0, rs] in such a 
way that r(e) + 0 as l + Of and 

W, E) < 0 (x E B”(pJ - B”(+)), 0 < E < e;). (3.3) 

Now, using (3.1), (3.2), and (3.3) it is easy to show that if x(t, x,, , E) is a 
solutionof(l.l)forwhichIxsI <rsandO<e<e~thenIx(t,xs,r)l<~~, 
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t > 0, and ) ~(t, x,, , E)I < r(c) for t greater than some to > 0. Since the 
closure of P(r(r)) is compact, it follows that .r(t, x,, , l ) must have a nonempty 
compact, connected, and invariant positive-limiting set W+ in B”(r(c)) and 
that ~(t, X, , l ) -+ w+ as t -+ ‘~0 ([8], p. 58). From Assertion (i) of Theorem 
2.3 it follows that W+ C M*(E). Q.E.D. 

THEOREM 3.3. Let r2, c;, and Y(E) be as in Theorem 3.2. Then, for each 
E E (0, l 3 there exists a p(~) E (0, r(e)] such that if x(t, x0, l ) is a solution of 
(1.3)for which 1 x,, 1 < r2 andifx(t, x0, l ) -+ 0 as t -+ j-co (see Theorem 3.1), 
then x(t, x,, , l ) has its positive-limiting set (whose existence is guaranteed by 
Theorem 3.2) in M2(c) n P(r(e)) - P(p(c)). 

Proof. Choose any E E (0, ~3. Throughout this proof E will be fixed and, 
where appropriate, suppressed in our notation. 

By (HJ the eigenvalues of A(e) have their real parts positive. Hence, by a 
theorem of Liapunov ([9], pp. 356-358) there exists a real 2 x 2 symmetric 
matrix Q = Q(e) such that the quadratic form W = W(y) = y*Qy (* 
denotes transpose) is positive-definite and such that for all y E E2 

y*(A*(d Q + Q44)~ = I Y 1’. (3.4) 

Let r0 be as in (H,). Regarding W as a Liapunov function for (1.3), we see 
that on the basis of (3.4) 

W(x) = I y L2 + Y*(x, 4 Qy + y*QY(x, 6) 

(x = (Y, 4, x E m,)). 

Hence, by (H,) and (H,) there exists an 7 = v(c), 0 < T(E) < Y(E), such 
that on the domain 

W is positive-definite, i.e., W(0) = 0 and W(x) > 0 for x # 0 in R. 
From the continuity of W and its positive-definite property there follow 

the existence of numbers m > 0 and p = p(e), 0 < p(c) < T(E), such that 

WY) 2 m (I Y I = 4, 
(3.5) 

WY> G F (0 G I Y I ,< P>. 

We will prove our theorem for p = p(e) as just chosen. 
Let x(t, 3s , l ) be a solution of (1.3) such that I x,, 1 < r, and such that 

x(t, x0 , E) + 0 as t + +co. Then, by Theorem 3.2 x(t, x0 , G) has a nonempty 
connected positive-limiting set W+ C Ma(c) n P(Y(E)). If w+ n P(p(s)) is 
empty then there is nothing to prove. Hence, let us suppose that there exists 
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an X, E w+ n B”(P(E)). Since x(t, x,, , 6) ++ 0 as t -+ +co and since W+ is 
connected, we may assume that x1 f 0. We will deduce a contradiction. 

Let 6, = 1 x1 ,/2. Then, since W is continuous and positive-definite, 
there exist numbers p > 0 and 6, , 0 < 6, < 6, , such that 

W(Y) 3 CL (I Y i = U 
(34 

Now, by assertion (ii) of Theorem 3.2 there exists a t, > 0 such that 

I 4, x0 9 c> -F(y(t, x0 , E), 4 < 6, , t > to. 

This and (2.19) imply that 

I z(t, x0 , 4! < 6, + I r(t, x0 , E)I, t > to (3.7) 

Moreover, recalling that x1 E W+ n Bn(r(e)) and that S, < I x1 I, we may 
assume that to is large enough so that 

I roe P x0 9 4 > 8, , 

I YK x0 , 4 < +> (t > to). 
(3-g) 

Now suppose that there exists a t, > to such that ) y(tl , x0 , E)! < 6, . 
Then, from standard connectedness arguments there follows the existence 
of numbers t, and t, , to < t, < t, < t, , such that 

But, taking into account (3.7), we see that I z(t, x0, l )] < 2 I y(t, x0, c)I 
when t, < t < t, . Thus, x(t, x0, l ) E: R when t, < t < t, . However, W 
is positive-definite on R; hence, by (3.6) and (3.9) we have a contradiction. 
Therefore, t, can not exist, which means that 1 y(t, x0 , c)I > 6, for all t > to . 

This conclusion and (3.7) and (3.8) imply that x(t, x0 , E) remains in the 
region (x = (y, 2) : 0 < I z / ,( 2 1 y /, 6, ,( I y j < r(c)) for all t > to . 
However, recalling that 6, < 6, < p(e) < T(E) < T(E), we note that 
W is positive-valued in the sub-region {x = (y, z) : 0 < I z I < 2 j y I, 
8s -< IY I G 71(4). F rom this observation, (3.5), and the known inequalities 
S, < ) x1 ) < p(c), it follows that x1 can not be in the positive-limiting set of 
aft, x0 , E), which is a contradiction. Q.E.D. 

~OBQLLARY 3.3.1. Let r8 and 4 be as in Theorem 3.2. Iffor any l E (0, 4 
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x(t, x,, , e) is (I nonzero solution of (1.3) for which x0 E M*(E) n P(r,) then 
x(t, x, , c) + 0 as t + +co. 

Proof. Fix any E E (0, l A] and let 7 = q(f), R, and W be as in the proof 
of Theorem 3.3. From (2.19) it easily follows that M2(e) n P(T) is contained 
in R. Now let x(t, x0 , e) be a solution of (1.3) with x,, E M2(e) r\ Bn(y2) and 
x,, # 0. By Theorem 3.2 I x(t, x0, c)I < rr for all t > 0; hence, 
x(t, x0, E) E M2(c) f or all t > 0. Since Wand @are both positive-definite on 
R it follows that x( t, x,, , l ) -+ 0 as t --f + 30. Q.E.D. 

The next theorem, for which we need a trivial lemma, will give us infor- 
mation concerning the structure of the positive-limiting sets whose existence 
we deduced in Theorem 3.2. 

LEMMA 3.41. Let r2 and e; be as in Theorem 3.2. Then, there exists an 
r3 E (0, ~2] such that fm each E E [0, c,,] the origin x = 0 is the only equilibrium 
point of (1.3) inside IIn( 

Proof. From (H,) it follows that the matrices A and C in (1.3) are 
continuous in E. From (H,) it follows that each of these matrices has nonzero 
eigenvalues for all E E [0, us]. Hence, there exists a constant T] > 0 such that 

144~1 2~1~1, 
(y E E2, x E En-2, 0 ,< c < to). 

I w 2 I 2 ?1 I 2 I - 

From (H,) and (Ha) it follows that there exists a constant r, E (0, ra] such that 

The above inequalities imply the result required by our lemma. 

THEOFEM 3.4. For rg and l 6 as in Theorem 3.2, there exists an Q E (0, ei] 
such that the following is true. Let x(t, x0 , e) be a solution of (1.3) for which 
(x,~<r,andO<~<~~,andsupposethatx(t,x,,r)+Oust~+~. 
Let x1 be any point in the positiwe-limiting set of x(t, x,, , c). Then, x(t, x1 , l ) is 
dejined for all t, --OS < t < CO, and, far such t, is contained in the set 
M*(E) n [*(r(c)) - P@(E))], where T(E) and P(E) ure us in Theorems 3.2 und 
3.3 respectively. Moreover, x(t, x1 , l ) satisfies one and only one of the follmhg 
descriptions : 

(i) 3C(t, x1 , G) is a closed orbit of (1.3), which, regarded as a closed Jordan 
curve in Ma(c), contains the or@ x = 0 in its interior. 
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(ii) There exist two distinct closed orbits lu and r- of (1.3) mh that 
x(t, x, , l ) + p as t -+ +a, and x(t, x1, E) -+ r- as t -+ -a~. These orbits 
lie in M*(e) and are concentric about the origin x = 0. 

Finally, ;f x,, E Mu then x(t, xl , c) must satisfy (i). 

Proof. For ra as in Lemma 3.4.1 we choose <I E (0, E,,] so that r(c) < r3 
for all E E (0, <iI. Such a choice is possible because r(E) + 0 as E + O$. 
Now let x(t, x,, , c) be a solution of (1.3) for which 1 x0 1 < ra and 0 < E < c1 , 
and suppose that x(t, x,, , c) + 0 as t + fco. Let x1 be any point in 
the positive-limiting set wf of x(t, x,, , 6). From the invariance of W+ 

(Theorem 3.2) and from Theorem 3.3 it follows that x(t, x1 , e) is contained 
in M2(c) n [B”(r(E)) - B’$(E))] and, hence, is defined for all t E El. 

Now, referring to Corollary 2.3.2, we let y(t, yl , E) be the solution of 
(2.20) corresponding through (2.21) to x(t, x1 , l ). Then, by (2.19) and (2.21), 

y(t, y1 , c) remains in (B2(r(E)) - B2(p(e)/2)) for all t E El. By the above 
choice of e1 and by Corollary 2.3.2, this region contains no equilibrium points 
of (2.20). These observations together with the autonomous property of 
(2.20) and a theorem of Bendixson ([9], p. 230) imply the following: either 

y(t, yi , c) is a closed orbit of (2.20) or (2.20) has two closed orbits II’ and (1- 
such thaty(t,y,,E)+A+ as t-++co andy(t,y,,E)+kas t--+---co. 

In the latter case a simple argument shows that df and /1- are distinct. In 
both cases a theorem of PoincarC ([9], p. 200) implies that the orbits in 
question contain the origin y = 0 in their interiors. Assertions (i) and (ii) of 
our theorem now trivially follow. 

To prove the last assertion made in our theorem, suppose x0 E Mu. 
Then, again applying Corollary 2.3.2, we let y(t, y. , l ) be the solution of 
(2.20) corresponding to x(t, x0 , 6). Since y(t, y1 , c) is the positive-limiting 
set of r(t, y. , E), it follows from Bendixson’s Theorem cited above that 
y(t, y1 , c) is a closed orbit; hence x(t, x1 , l ) is a closed orbit. Q.E.D. 

We are now in a position to prove Theorem 1.1. 

Proof of Theorem 1.1. Consider Eq. (1.1) written in the canonical form 
(1.3). Let cl be as in Theorem 3.4, let rl , r, , and r(E), 0 < c < or , be as in 
Theorem 2.3. We will first prove the existence of the closed orbit n(c). 

For any E E (0, cl] let P(E) be as in Theorem 3.3 and let x(t, x0, E) be a 
nonzero solution of (1.3) with x0 E M2(c) n Bn(p(e)). Then, by Corollary 
3.3.1 x(t, x0 , l ) + 0 as t -+ +co. Hence, by Theorems 3.2 and 3.3, x(t, x0 , l ) 
has a nonempty positive-limiting set w+ in M*(E) n [B”(r(c)) - Bn(p(~))] 
and x(t, x0 , <) + w+ as t + +CQ. By the final assertion of Theorem 3.4, 
w+ is a single closed orbit of (1.3) and, regarded as a closed Jordan curve in 
M2(r), w+ contains the origin x = 0 in its interior. 

Now, if x(t, 3, , l ) is any non-zero solution of (1.3) such that 4 E Ma(c) 
and such that Z. is inside wf, then by repeating the above arguments we cm 
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show that as t - t-co x(t, Lea , e) approaches a single closed orbit W+ in 
111’(c) n [P(Y(E)) - @(P(E))] and that W+ contains the origin x = O in its 
interior. Since ! .x~ I < p(6) it follows from Corollary 2.3.1 that wf = WT. 
We now let rl(c) = WY-. The preceding argument shows that any nonzero 
solution of (1.3) lying in M2( ) E and inside ri(<) must approach ~~(6) as 
t -+ +CO. We next show that such solutions approach the origin x = 0 as 
t--t -co. 

Consider again the solution x(t, f,, , l ). This solution must remain in M*(~) 
and inside n(c) for all t < 0. By the choice of or in Theorem 3.4, the origin 
x = 0 is the only equilibrium point of (1.3) inside EP(r(c)). Hence, by 
Corollaries 2.3.1 and 2.3.2 and Bendixson’s Theorem ([9], p. 23O), the 
following is true: as t - --co x(t, f, , l ) approaches either the origin x = 0 
or a closed invariant curve r lying in Ma( e an ) d inside n(e). If the latter case 
holds then solutions of (1.3) lying in iW’(E) and inside r cannot approach 
K(E) as t + +co, and this contradicts the stability property of rr(c) obtained 
above. Therefore, x(t, zo, c) --) 0 as t + -co. This shows that any nonzero 
solution of (1.3) ly. g m in M2(~) and inside n(c) must approach the origin 
x=Oast--t-m. From Assertion (ii) of Theorem 2.3 it is clear that no 
other solution of (1.3) can have this property. Thus, (ii) of Theorem 1.1 is 
proved. 

The proof of the existence of Ye and of its stability property ((iii) of 
Theorem 1.1) is analogous to arguments given above, the only difference 
being that one starts with a solution ~(t, x0, E) for which x,, E M*(E) n 
[P(Y,) - B”(Y(E))]. We will omit the details. 

Assertion (iv) of Theorem 1.1 follows directly from Theorem 3.1. It only 
remains now to establish assertion (v). 

For any E G (0, <i] let Q(e) be the closed invariant set in IM2(c) consisting 
of points on or between rl(c) and Ye. Then suppose that x(t, X, , E) is a 
solution of (1.3) with 1 x,, ! < yg and suppose that x(t, x, , c) + 0 as t + +-CO. 
By Theorems 3.2 and 3.3, i x(t, sa , c)I < rl for t > 0 and x(t, x0, c) has a 
nonempty positive-limiting set W+ in &P(E) n [P(Y(E)) - P+(e))]; moreover, 
x(t, x0 ) E) -+ oJ+ as t - +c;o. To prove (v) of Theorem 1 .l it suffices to 
show that WT C Q(E) and that W+ contains at least one closed orbit of (1.3). 

Let x1 E uL and suppose that x1 lies inside yi(~) on M2(e); then, x(t, X, , E) 
lies inside n(e). Therefore, by (ii) of Theorem 1.1 x(t, x1 , E) cannot be a 
closed orbit. Hence, by Theorem 3.4 there exist two distinct closed orbits 
r+ and P of (1.3) in -%Z2(e) concentric about the origin x = 0, and 
x(t, x1 , E) -+ r+ as t + -j-cc and x(t, x1 , E) -+ I’-. But, by (ii) of Theorem 
1.1, x(t, x1 > E) --f K(E) as t + $-co; hence, I’+ = yi(~) and, therefore, 
I’- # n(c); i.e., r- is a closed orbit inside n(c) on M2(c). This contradicts (ii) 
of Theorem 1 .l. Thus, we can not have xi inside n(c). Similar reasoning 
shows that ZC~ can not be outside Ye. It follows, that X$ E Q(E), i.e., U+ C Q(b). 
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Now let x(t, x2 , E) be any solution of (1.3) in OJ+. Then, by Theorem 3.4 
its positive-limiting set is a closed orbit r. But then F itself is contained in CO+. 
The proof is complete. 
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