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ABSTRACT

The problem of scattering of a scalar plane wave by a spheroid of revolution
is solved for either Dirichlet or Neumann boundary conditions, arbitrary major to
minor axis ratio, and arbitrary incident direction. The solution is obtained by using
an iterative method applied to solutions of the corresponding potential problem and

is expressed as a series of products of Legendre and trigonometric functions, and
ascending powers of wave number. A recursion relation for the coefficients in this
series is derived. These results are employed to calculate the scattering cross sec-

tions for 2:1, 5:1, and 10:1 prolate spheroids.
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INTRODIUCTION

This report presents the complete low frequency expansion of the field scat-
tered when a scalar plane wave is incident from an arbitrary direction on a spheroid
of revolution (prolate, oblate, or disc), on which either Dirichlet or Neumann boun-
dary conditions are imposed. The expressions for the field are valid everywhere in
space and for all values of the ratio of spheroid dimension to wavelength within the
radius of convergence of the low frequency expansion.

The work began as a demonstration of the efficacy of a recently derived tech-
nique for solving boundary value problems for the Helmholtz equation by iterating
the Green's function for Laplace's equation. This new method had been applied to
the problem of scattering by a sphere both for a Dirichlet boundary condition (Klein-
man, 1965) and a Neumann boundary condition (Ar and Kleinman, 1966). The prolate]
spheroid was selected to provide a more substantial test of these methods, which
proved to work even better than anticipated.

The problem of scalar scattering by a prolate spheroid for both Dirichlet and
Neumann boundary conditions has been extensively treated. F.B. Sleator (1964) pre-
sents an exhaustive bibliography. Exact solutions are known in terms of spheroidal
wave functions and both low and high frequency approximations have been found. The|
standard methods for obtaining low frequency approximations, either by direct ex-
pansion of the terms of the spheroidal function Series in powers of wave number or
by determining each term in the expansion as the solution of a potential problem
(cf. Nbble, 1962), are somewhat cumbersome. One may question the purpose of
finding low frequency expansions if the exact solution is known. The answer lies in
the complexity of the spheroidal functions which make analysis and computation dif-
ficult.

The present approach, although certainly not a trivial calculation, avoids

entirely the use of spheroidal functions on the one hand and, on the other, obviates
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the need for solving more than one potential problem. The solution is found in the
form of a series of products of spheroidal potential functions, i.e. Legendre func-
tions, whose coefficients are determinated iteratively. While this in itself might be
ample justification for presenting the results, their value is considerably enhanced l
by the fact that a recurrence relation for the coefficients is found. This means, in
effect, that the iteration process may be carried out completely and the complete low
frequency expansion obtained.

This is carried out explicitly for a plane wave incident from an arbitrary
direction on a prolaté spheroid for both Dirichlet and Neumann boundary conditions.
In addition to expressions for the field valid everywhere in space, the simplifications
occurring in the limiting cases of far zone and nose-on incidence are explicitly given
as is the expression for scattering cross section. The corresponding results for an
oblate spheroid and the important limiting case, the disc, may be obtained by a sim-
ple transformation and these results are also presented explicitly. Some numerical
calculations of scattering cross sections of prolate spheroids have been carried out. |
These results are presented and compared, where possible, with existing data.

In Section II, the iteration method is adapted to take advantage of the symme-
try of prolate spheroid geometry. The method is applied to the Dirichlet problem
for the prolate spheroid in Section III and the Neumann problem in Section IV. Sec-
tion V contains the detailed analytic results for oblate spheroids and discs. The
numerical calculations for prolate spheroids are presented in Section VI. Much of
the detailed mathematical analysis has been relegated to a series of appendices in
the hope of making the method and the results more accessible.

This work was supported by the Air Force Cambridge Research Laboratories
under contract AF 19(628)-4328 and by the National Science Foundation under Grant
No. GP 6140,
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GENERAL COﬁSIDERATIONS

In this section we present the problem, the method of attack, and some def-
initions essential to a clear understanding of the procedures followed.

The problem we are concerned with is the determination of the scattered
field which results when a plane wave of arbitrary incidence impinges upon a pro-
late spheroid. With respect to a rectangular system of coordinates (x,y, z), the
prolate spheroid is oriented with its axis of revolution (major axis 2a) coinciding
with the z-axis, and its geometrical center at the origin. The minor axis is 2b.
Then the relations between prolate spheroidal coordinates (&, n, ¢) and rectangular

. +
coordinates (x,y, z) are

X = cﬁgz— 1)1 —n2) cos f) (2.1)
y=c¢ \/(Ez- 1)(1 —n2) sin f (2.2)
z = cEn (2.3)

where c is half the interfocal distance of the spheroid, and 1< §<m, -1 <<+,
0<P<2r. The surfaces £ = constant represent confocal prolate spheroids. The

metric coefficients of the spheroidal variables are given by by

2 2 2 2
he = o [S=1 hn=c'§—_—n§ ; h¢=0y/(§2—1)(1—n2)- (2.4)
£-1 1-n

Having defined the prolate spheroid, we now turn to the definition of the incident
plane wave. Without loss of generality, we take the x-z plane as the plane of inci-

dence. The direction of propagation forms an angle 90 with the positive z-axis,

+
For a detailed discussion of the geometry of the prolate spheroid see Sleator (1964),
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FIG. 1-1

(see Fig. 1-1), and, if p is the observation point with coordinates (r, 6, §)), we
write

ul(p) _ e—lkr cos O , (2.5)

where ul(p) denotes the plane wave as observed at p and

cos @ = cos 6 cosd _+ smesineocos¢ . (2.6)

When 60 is reduced to zero, the plane wave is seen to propagate along the negative
z-axis. The time dependence is harmonic (e_iwt).

We now stéte the problem:

Let S designate the surface of a prolate spheroid with surface coordinate
g < and let V be the volume exterior to it. Designate by V the union of S and V:
V = SUV. Finally, let us(p) be the resulting scattered field due to the presence of

the prolate spheroid. We wish to determine a function u(p) such that
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(i) u(p) = ui(p)+us(p) s peV (2.7)
(id) (V+H P =0, peV (2.8)
i
(iid) lim r <L - ikus> =0 (2.9)
or
Ir—Q
(iv) Either
(a) u(ps) =0, péeS (2.10a)
or au(ps)
(b) peal 0, pseS (2.10b

Equation (2.9) implies a suppressed time harmonic dependence e_iwt. Moreover,
boundary condition (2.10a) refers to the Dirichlet problem and (2.10b) to the Neu-
mann problem and the two problems will be treated separately.

The approach employed in solving the problem is based on a new method of
finding itérative solutions of the Helmholtz equation (Kleinman, 1965; Ar and Klein-
man, 1966). Inherent to this method is the assumption of long wavelength compared
to the dimensions of the scatterer. The original iteration scheme was phrased in
spherical coordinates and much of the analysis depended upon expansions in these
variables. Here we essentially rederive these results in prolate spheroidal coor-
dinates in which form the iteration becomes more tractable.

~ We start with a representation theorem (Kleinman, 1965; Ar and Kleinman,
1966):
Theorem: Any function w(p), defined for all pe V, which is twice differentiable in

V, and regular at infinity satisfies the integral equation
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_ D 2 9.D
w(pl) = Go(pl, pV)V w(pv)dV + w(ps) 8nGo(p1, ps)ds , (2.11a)
Vv S

where GOD is the normalized static Green's function of the first kind, and the inte-

gral equation
_ N 2 N 9
w(pl) = Go(pl,pv)V w(pv)dV- G0 (pl,ps) anw(ps)ds , (2.11b)
\% S

where G(I:I is the normalized static Green's function of the second kind. The normal-

ized static Green's function Go(pl, p) of either kind is defined as follows:

2
. v _
(i) Go(pl,p) &(p,|P) , pl,pEV
(2.12)
(ii) Go(pl’ p) regular at infinity
D . .
(iii) (a) GO (pl, ps) =0 (first kind)

9 N _ .
(b) on Go(pl’ ps) =0 (second kind) .

The normal is directed out of the volume V. Moreover, we define a function f(p) to
be regular at infinity if it satisfies the Kellog (1929) conditions
0oL

lim lrf(p),<oo and lim r2 azf)(r)|<oo, (2.13)
r—> 0 r—m ospg2r .

Using expressions (2.4), it can be readily shown that in prolate spheroidal coor-

dinates
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2 1 9 l: 2 9| @ 2.0 | o
- a0 s 4]
c%s?43>{}§ 98] on onj op g2 1x117>8¢

(2.14)
dv = c3('€2— nz)dgdndjb (2.15)
ds = o2 /@2-#)@3- 1) dndg (2.16)
9 _
™ = - (2.17)

The function we wish to substitute in the representation theorem equations is

the scattered field us(p). This function, however is not regular at infinity but, as

ike(Etn) s

we have shown in Appendix A, the function e u (p) is. For this reason we

let

-ike(€tn) s

wp) =e u (p) (2.18)

in equations (2.11a) and (2.11b). From (2.14) and the Helmholtz equation (2.9) we

have

Vzw(p) = ———zéik-—z—[(s 1)-%’(7‘3:‘[-’2 n (n 1) du(p) )+('€-T-Tl)w(p]. (2.19)
e(£7-1") on

Substitution of equations (2.15), (2.16), (2.17) and (2.19) in (2.11a) and (2. 11b) gives,
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[0'0) +1 2T
Wp) =-2ike” | &\ dan)| af G(p ,p>=E.s2— 1)M;(n2-l)iw—(p-)+(§$n)w(;{l
o1 o0& on
§S -1 0
+1 2T
€.\ dn\  dduip)=>c2p.,p) (2.20a)
A P N WPy 88 o P12 Pyl -eva
-1 0

for the Dirichlet case, and

© +1 2m
2 2
olp)) = -2ike?\ g\ dn\ af GNp,,p) Es2- 1) 228 £ (o) %Ezﬂ’s‘;n)w(pzl
ES -1 0
+1 2T

2 N
+ c(‘éS -1) dn d¢GO(p1, ps) g w(ps) , (2.20b)
-1 0

for the Neumann case.
These are the integrodifferential equations that we have to solve. The first

one involves the normalized static Green's function of the first kind (Dirichlet boun-

dary condition) defined by (2.12) and given by

(0 0] n

D _ 1 m (n-m)!

Go(pl,p) =~ aro ; ;(-l) em(2n+1) (atm): | °°S m(¢1—¢)
m m
PUEEY E>E,

TP 0 )P () -——= Q¢ ). ) (2.21)

m m Qn (gs)
P_(5)Q () £<E,

I:éee for example, Morse and Feshbach (1953, p.1291). The existing differences are

due to a different normalization and a different definition of the Legendre functions.
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The corresponding Green's function of the second kind is of similar form except for
involving the ratio of the derivatives of Legendre functions so that the boundary con-
dition (2.12.iiib) is satisfied] Equation (2. 20b) involves the normalized static
Green's function of the second kind (Neumann boundary condition) defined by (2.12)

and given by

(00) n
N 1 N m (n-m)!
Go(pl’p)=-:17r_cz A (-1) € (2[1 1) (n+m) cosm(¢1—¢)
n=0 m=0
m m
P (£,)Q (&) o (g ' §>¢,
P )P - 2= QE )R] (®) , (2.22)
n ]
m . m Q, (S)
P ('«;‘)Qn (El) £ < gl

where a prime on a function denotes differentiation with respect to & S The symbol

€m is the Neumann factor defined by

1, m=0
€ = (2.23)
m 2, m=1,2,3,...

The associated Legendre functions are defined as follows:

2,m/2

1 Mn+m+1) (1-42)

o™ Mn-m+1)"(m+1)

m
= _ . Jl-p
P (w) 2Fl(m n, ntm+1;m+1; D) ),

lu-1] <2, (2.24)

1
P )_2n P(n+2) ( 1)m/Z n-m m - n+1 m—n_l_n._i>
n'¥ T4 Pa-mrnri/z) * - 2F SRV
|u|>1; |arg(y'l‘1)|<7r . (2.25)
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D™ M@a+m+1)r(1/2) (Jf—l)m/2 F C1+m+2 n+m+1 +§._1_>
n+1 2 2 2 Jn 2,“2 >

m
Q (m) =
n 9 r.(n+§) #n+m+1 271

|u|>1;|arg(u—1)|<7r ) (2.26)

Definitions (2.25) and (2. 26) agree with those given by Magnus and Oberhettinger
(1949, pp 64 and 60, respectively), while (2.24) differs by a factor of (-l)m.

To solve the integrodifferential equations (2.20) for w(p) we proceed as fol-
lows:

We write w(p) as a power series in k of the form

Q
wip) = E : (—ikc)MwM(p)
M=0

and we substitute in equations (2.20) to obtain an iteration scheme for wM(p). We
subsequently show that these coefficients of k are of a particular form and develop

recurrence relations through which wM(p) can be found for arbitrary M.

10
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III
THE DIRICHLET PROBLEM

3.1 The Iteration Scheme

The appropriate integrodifferential equation for the Dirichlet problem is

(2.20a) which we repeat here for convenience

(o) +1 27

w(pl)=—21kc2 dg dn d¢G?(p1,p)[(‘g' 1)‘;2. +(n l)a“()+(§+n)w(p-£}
£ -1 0
+1 2T
2
—c('g's—l) dn d¢w(ps ag G (pl,p) (3.1)
=1 0

The appropriate Green's function is given by (2.21) and the boundary condition satis-

fied by w(p) is seen to be, from equations (2.7), (2.10a) and (2.14),

i —ikc('g'si'n)
w(ps) = -u (ps)e . (3.2)

The incident plane wave ul(p) is given by (2.5) which can be written in prolate spher-

oidal coordinates as

. . [ 2 , 2
e_ikrcose=e—1kcE;osOO§n+s1n90 £ -1 1-n cosﬁﬂ

ui(p) = (3.3)
Denote the surface integral of (3.1) by Is(pl):
+1 27
Plp) =-clg;-1)\ dn\ dulp) <> T3 =G, p) . (3.4)
-1 0

In Appendix B we show that Is(pl) may be written in the following form

11
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-ike€
. WM
Pe)=e %/  (-ike) I (p)) (3.5)
M=0
where
M 2
£ (p,) = E E ZAM’ Mg )P (n,)Q™(E, )eos mp (3.6)
M1 — 7y s’ % Y5 1 :
=0 m=0
with
€ cosHO T
M Pm S (o)
(&8 Tcoso) 2 \ & *cosb
e T s O (20+1) (£- m)! S 0
m 2M+1 (L+m)! [ M-£ o M+ +§_ Qm(E) ’
2 /" 2 2/ s
M+£ even
M,m _
A (’g’s)
0, M+£ odd .
(3.7)
s
Note that IM is independent of k. Moreover, let
+ick3§’S
t//(pl =e w(pl) (3.8)

where lp(pl) is assumed to have a power series expansion in k of the form

®
Up) = Z (—ikc)MwM(p) . (3.9)
M=0

Substitution of (3.9) in (3.8) and the resulting equation together with (3.5) in (3.1)

gives

12




THE UNIVERSITY OF MICHIGAN

7133-5-T
(00} (04 (o) +1 27
E M 2 } : M D
(-ike) " ¢, (p,) = -2ike (-ike) dg dn dp G (p,,p)
M™1 o1
M:O M=O
gs -1 0

. (p) 9y, (p) ~
2 M _, 2 M _ o WM
. Eg -1) o 3 (n —1)——an +(E+n)l//M(pJ + M§=0:(_1k0) IlsVI(pl) .

The interchange in differentiation and summation, and summation and integration

was made by assuming (3.9) to converge absolutely and uniformly and to be term by
term differentiable with respect to each of the variables and the resulting series to
be uniformly and absolutely convergent. Collecting the coefficients of equal powers

of k in the above equation, we arrive at the following iteration scheme:
v (p,) = (p,) (3.10a)
o1 o1 :

(o) 1 2T
U (p)=2c\ dE\ dn\ df ¢ 2p,,p|(E%-1) awM(p)'( 2_1) Yo
M+1 Py o' P1’ or +\1 an

g -1 0

+(E J:n)wM(% + Ilsvm(pl) , M=0,1,2,... (3.10b)

3.2 The Recurrence Relations

We shall now solve for the M+ 1st iterate in (3.10b). In order to do this we

need to establish the fact that l[/M may be written as

M M t

0 = D2 o e el @rttcosts (3.11)
t=0 r=0 £=0 7’

for all M (M=0,1,2,...). This is accomplished using the principle of mathematical
induction, that is, first we show that (3.11) holds for M =0 and secondly we show

that if it holds for M, it also holds for M+1.

13
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That the representation holds for M =0 is obvious since, with equations

(3.10a) and (3.6),

_ .0,0
v = A E )R (6) (3.12)

which clearly is of the form (3.11).

Next assume that (3.11) holds for M. We wish to show that ¥__ _(p) may

M+1
then be written as

M+l M+l _t
{ {
bt = > 2 2 oA gt @t cosss
t=0 r=0 £=0 ’

The analysis which establishes this is somewhat tedious; however, in the process

+ Ji
M, £ in terms of DM’ which in fact is

we actually arrive at an expression for Dr ¢ et
L 2

the major goal of this section.

First note that the second term in (3.10b) has already been shown to be of the
form (3.11) {see (3.6), (3.72_J . Next denote the volume integral of (3.10b) by

IX/I +1(p1) and substitute in it the Green's function of (2.21). Then,

Q0 n
2
v _ 1 m (n-m)! m
IM+1(p1) Y Z;; Z;;(_l) €m(zn.‘-l)[(n+m)! Pn (nl)

00 +1 2T
2
dg cf(s,gl,ss> dnp‘n“(m d¢cosm(¢-—¢1)|:(§ -1)
Es -1 0

&l/M( p)

23

9 BwM(p)
-?(n-l)Tn—ﬂé';n)wM(p) , (3.13)

where

14
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m
. (E )Qn (&) P (g ) §>8,
Cn(s,sl,’s‘s) = - Q e )Q Me) . (3.14)
Q, (E )
P (E)Q (s ) E<§

1
Substitution of (3.11) in (3.13) leads to

n

Q0
fl\’/I+1(p1)='2_17fZ ZZ( ™e_(2n+1) fn )

n=0 m=0 t=0 r=

© +1
Dy (e )P (nl)g dgc;n(g,sl,'gS)S dn P_(n)

5 -1

2m er('é) o de(n)
. d¢cosm(¢—¢1)cos£¢ ( ~1)p* (n) S Fn-1Q (&) 3

0

- £ !
+ (§+n)Qr(§)Pt(n£]

Performing the angular integration and rearranging terms we get

ooMM

v _ n-4)! M,ﬂ
Yo == ) D Z( 1(2n +1>|:( | o)

nOtOrO £2=0

@ +1
1 1 4 2
-Pn(nl)coswl g dg Cn('s‘,'él,'g's)g dn P (n) {[('g" -1) 3‘,1: +§] Pf(n)
g -1
i i
-Q (8% Enz_ 1) -O% +n Pf(n)Qr(&‘i} . (3.15)

15



THE UNIVERSITY OF MICHIGAN
7133-5-T

To perform the n integration we use the relation (Magnus and Oberhettinger, 1949,

1 pp 61-62)

Ji
' P(z) P (2)
nt+1
[z _1)__+] _(m+1)(n-£+1) 1

2n+1 1
Q (z) Qnﬂ(Z)J
Pfl_l(z)
n(n+ 1) ] —
- T , ; n,£=0,1,2,... (3.16)
Qn—l(z)

Substituting this relation in (3.15), we get

(n-9)! M,ﬂ
IVM+1(P1) = - J LT( 1) (2n+1) (n+£) (E )P (nl)cos£¢

r=

0 +1
. 4 (t+1)(t- £+1) 4
g dSCn(*é,é‘l,%s)S an (n) { Yo +1¢ )Q A8

g -1
2 .. d Loy L w+) o
+ [(%‘ -1) d§+§]Qr(§’)Pt(n)+ 571 t (NQ (s{}
00 +1
(n-0!
——> } J> (- 1) (2n+1) P (n )cos £f
n=0 t=0 r=0 =0 (n+4): L L

(0] +1
' , £ / t(t - !2)
S d«scn@,gl,sS)S P ()P, (n) {+ e Dy (5 )Q(8)
1

3

S

M, £ 2 .. d Ligy+ (EHD(E+HL+T) M, L
* Dr t (gs) Eg -1 d§ +§:| Q (€) - 2t+3 r t+1(gs)Q (g} ’
(3.17)

16
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£
where in this last expression we have adopted the convention that DM’ ('g"s) is iden-
tically zero whenever any of the subscripts or the other superscript is greater than
M. We now employ the following orthogonality property for the Legendre functions

of the first kind (Magnus and Oberhettinger, 1949, p. 54),

+1
Lo 4 2 (n+dr
den(x)Pm(x) " 2n+1 (n-0)!
-1
to obtain
M+1 t
(t (t-2): (¢
t= 0 r=0 £=0
fod)
i t(t - 1) (t+1)t+L+1) M, ¥
dgct(g,gl,gs>{[+ 21 Dy, Mg R D, oy S]Q(E)
€

S

M, £ 2 . d 2
+Dr,t (ES) [(E -1) d§+€] Qr(é‘z}

Employing once more the relation (3.16) in the equation above, we write

M+1 (0]

(t-2) 1 £
s (P = -2 Z Z Z( 1y (exr); Ppineostp \ dEC (5,8, 8)

3
s

(r+1)r-£2+1) M,ﬁ tHt-2)
{ 2r+1 ¢ (&g >Q (§)+|: 2 -1 D, (gs)

r, t—l
(t+ 1)(t+£+1) r(r+£)
T t+1(§‘)—_| &6~ 51 Dyt ‘&, (§

(cont'd)

17
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M+l M+l t '

_ N ) L -0 r(r-£) M,4
= 2_0_‘ 2—0‘ (-1) Tin P (nl)cos£¢ {r-l Dr—l t(gs)

He-2) M, (t+1)t+L+1) M, 2
+ Tot-1 r t-1(§s)' 2t+3 Dr,t+1(§s)

[00)
(r+1)(r+1 +1) M Y] 2 Y

3

S

2
In arriving at this last expression, one must bear in mind that Di\'/{’t (gs) is iden-

)

tically zero whenever r, t or £ is greater than M. As shown in Appendix C,

@ Qﬁ(g )
2 0 1 (t+£)’ s { 2
gS
rit. (3.20)

Furthermore, whenever r =t in (3.19), the bracketed coefficient is equal to zero.
This follows from the fact, established in Appendix D, that the relationship

r+tM.€

M, £ +
Dr,t (& ) (1) t,r (~§S) (3.21)

holds among these coefficients. Thus we need not evaluate terms in (3.19) when

r = t. Substituting, then, (3.20) in (3.19) we get
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M+1 M+1 vt
r{r-£) M1
IM+1 2> > > r(r+1) t((t+1) |:2r—1 r—l,t(gs)

t= O r= O ,
_tt-0 M, 4 (t+1)Nt+L+1) M, 4
+ 2t-1 Dr,t—l(gs)i- 2t+3 Dr t+1(§s)

_{r+1)r+L+1) oM ] Qr(gs) )
97+ 3 r+1 t(gﬂ [QE(E ) Q (§,)- Q A& Pt(nl)cosm1

(3.22)
where the prime on the summation for r indicates that the term t=r must be de-

leted. This may be rewritten as

M+l M+l _t
_ T OMHLL L ; ,
M+1( p,) ; ;Z;Eﬁ[’t (gs)Qr(gl)Pt(nl)cos“bl , (3.23)
where
gL, L 2 r(r-4) _M,2 _t(t-4) M, 2
r, (g )= r(r+1)-t(t+1) |:2r-1 Dr—l,t(gs)"' 2t-1 Dr,t-l(gs)
+ 1)+ +1) M, L (r+1Nr+£+1) oM i
- 2t+3 r, 14158 " or+3  DpH, t(gs{J rft o,
(3.24a)
M+1
Q ()
f‘:l"(s ) =- L= A, (3.24b
r=0 Qt(‘s‘s) ’

and the prime on the summation indicates that the term r =t must be deleted (see

Appendix E). Thus (3.10b) can be written as
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M+1 M+l ¢t
— _ M+1, £
Ve P = gy (P +Iney () = > ,E > , Dy E )Q(E)P, (nicos £
t=0 r=0 £=0
(3.25)
where
M+1 18 M+1,£
r t r, (g ) r :f t
Etl:w;;rl’l(ﬁ )+AM+1 L =t

Equation (3.25) is clearly of the form (3.11) which is what we wished to establish.
Not only have we completed this inductive proof but, in the process, we have derived

yi
recurrence relations for the coefficients Di\‘d’t (& S):

pM*L, L _ 2 r(r-4) M,Z Ht-4)
r t (g ) r(r+1)-t(t+1) |:2r 1 r—1 t(:‘3 Y¥ o1 2t-1 Dr,t—l(gs)
+ (t+1)(t+L+1) ) (r+1)r+£4+1) M 4 ) r#t
- 2t+3 r, t+1°°s’ 2r+3 r+1t S M=0,1,2,...
(3.26a)
M+1
' Q (é’ )
F:l’l(g )=- —= M )+al e ) m=0,12,
r=0 Q (E )
(3.26Db)

with
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0,0 _ ,0,0
,o(gs) = Ao ('s's) s (3.26¢)

(see equation 3.12),
We are now ready to write the expression for the scattered field us(pl). By

equations (2.18), (3.8), (3.9) and (3.11) we have

. +
T
Py Py
—1kc§ +1kc('g‘ In.)
1
=e Se lp(pl)
-ikeE  +ike(E i'n) &
S 1 11 E . M
=e e (-ike) g[/M(pl)
M=0
1kc§ -ike(€ +ﬂ M‘ M, t
_ 1 M M, £ ,
=e le ( ike) /D, (€)
t= r=0 £=0 °’
' 1(5 )P (n.) sip (3.27)
QIS /Py inyJeos P, . :
—ikc(Es-T-nl)
If we expand e in a power series of k and employ the Cauchy formula

for the product of two infinite series, the above expression becomes

. 08]
W(p,) = elkcgl Z(—ikc)n z ¢ ; nlM), ZZZ D M, (ig's)
‘5 r,t

n=0 M=0

£ Ji
'Qr('*s'l)Pt(nl)cosﬁ;l)1 , (3.28)
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where, in both of the above equations, DM’ (‘g‘ ) is given by equations (3.26a, b, c)

and, in turn, A ’ (§ ) is given by (3. 7)

3.3 The Far Field and the Scattering Cross Section
From the definition of Q:l('g‘) in (2.26) and (3.28) the far field is given by

1kc'g’ (00}

Z( ike)® Z (g(:nllm, ZZ( e pM )

{
. Pt(nl)coslljbl . (3.29)

sf
u (pl) =
Since the incident wave is of unit amplitude and r ~ c& in the far field, the scatter-

ing cross section is given by

s (3.30)

0 2
2 E (-ikc)n qu(pl)
n=0 n

= lim 47r02§‘f Iqu(pl),2 =47

3 1—9 @
where

(§ ¥n,)
uzf(pl) = Z @ lM), ZZ( 1) L1 D M, (%’ )P (nl)cosﬂy)l

M=0 t=0
(3.31)

Assuming k real, we can rewrite (3.30) as follows:
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0'=47rc2

Q0
. f
;(-lkc)n “i (p,)

—

[o") 00
2 2 n sf n sf
= 4re : :(—ikc) u (p )-§ (-ike) u_ (p,)
— n "1 £— n 1
n=0 n=0
[0'%)

[43)
= 47 c2 Z(—ikc)n uzf(pl) ; (—ikc)n u:f(pl)

n=0

(o) ©
2 .. 0 sf .. 0 sf
=4rec ;(-mc) u (pl);(lkc) un(pl)
o n
2 . \n m sf sf
= 47¢ ;(qko) ;(—1) un_m(pl)um(pl)

(00) 2n
: E E +
= 47r02 (kc)2n (-1)" mqu (p )qu(p ) . (3.32)
2n-m 1" m"1
n=0 m=0

3.4 Nose-on Incidence

In the case of nose-on incidence (90 = 0) quite a few simplifications occur.

If we set 90 =0 in (3.7), it becomes obvious from the definition of the
Legendre function P;n(u), !u-ll <2, equation (2.24), that Aiy[’m('g‘s) becomes zero |
unless m=0. We then conclude that in the case in which the incident plane wave
propagates along the z-axis there is no dependence on the azimuthal angle . This
simplifies the results as follows:

Equation (3.6) can be written

M
S _ E M

with
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(¢ t 1)M(2t+1)
'F M+1 Ms-t M+t 3 ’
2 ( 2 )"F( 2 +§> Q&)

M+t even

M _
At ('s‘s) =
0, M+t odd . (3.34)

Equations (3.26a, b, c) become

2 r2 t2
t (Ss) T HWr+l)-t(t+1) I:Zr 1 r 1, t(gs)“‘ lDr t- 1(§s)

+(t+1)2DM € )- (r+1) @)l r#t
- 2t+3 r,t+l’s 2r+3 r+lt s|’ M=0,1,2,...

(3.35a)
M+1
Q (‘s‘ )
M+1 M+1 . -
tt(g)—_z(; Q(S) (g )+A (gs); M 0:1:2:0"
= (3.35b)
with
o)
Do, 0(‘s‘s) =A (%’ ) . (3.35¢)
The scattered field, us(pl), becomes
ike& © (§+T)nM M M
s 1 ! 1 M
u(p,) =e (-ike) - D (£)Q(§,)P(n,) ,
1 ; ;(nl\’l) rZO;I‘,tSI‘ltl
(3.36)
and the far field,
ikeE, n - \n-M M
1 (& Iny)
sf _ € Ry s 1 M
u(p,) E :é—;( ike) g———_—(n-M)l ; Do,t(gs)Pt(nl) . (3.37)
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The expression for the scattering cross section remains the same except for

sf
u (pl).

(E +n,)
st _ E 1 E
“n (pl)— - T (a-M)! Dy, t(gs)Pt(nl : (3.38)

M=0
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v
THE NEUMANN PROBLEM

4.1 The Iteration Scheme

The appropriate integrodifferential equation for the Neumann problem is

(2.20b) which we repeat here,

0 +1 2m
wp)) = -2ike” | ag\ an| apalip, p)[@ 1)—9 7 (n )—%’2
g J-1 Jo
+1 2m
+(S;n)w(;)]+ c(&’z-l) dn dp G (pl, E w(p) (4.1)
-1 Jo

with G(l:I(pl, p) given by (2.22). The appropriate boundary condition is given by
(2.10b), which through equations (2.17) and (2.18), may be written,

= 0. (4.2)

Excluding the case in which the prolate spheroid degenerates to a wire of finite

length (SS = 1), we can write
. ike(¢ tn)
9 i S _
ags [u (ps)+e w(pS)A_] =0 (4.3)

from which

dulp) -ike(g_*1) u'(p)
3§S =-1kcw(ps)—e ags

(4. 4)

Substitution of (4.4) in (4. 1) leads to
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o A+l 2T
wlp,) = -2ike S dg dng dfG _(p;, p) E’é —1)__2_3‘;2 ) Fn —1)—-123‘;;)

3 -1 0
S
+1 2w
+(£ Fn)wip)|- ikc2(§2— 1)\ dn| dfuwip )GN(p p)
s s 0o°1'"s
-1 0
+1 27 i
-ikeg -, du(p )
e s +iken N s
c(ES—l)e dn dfe Go(pl’ps) ags

-1 0

Denote by Is(pl) the second surface integral in (4.5)

+1 21 i
-ikeE —y du(p)
s _ 2_ s - Yiken N s
I (pl) = c(ES l)e S dng dfe Go(pl,_ps) B .
-1 0

In Appendix F we show that Is(pl) may be written in the following form

s -ikeg | 9 ( M .S
I(p,)=e -ike)" I (p,) ,
1 £ M1
where
M Ji
 (p,) = E , § :AM’m(s )P (1, )Q™(E, Jcos mf
M*1 / s L1 1°
£2=0 m=0
with
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(S TcosH )M_1 (1= m)!

Mm, ., _
A (ES)—_emﬁ M+1<M £> <M+£ > (24+1) T m):
2 —_ Q, (%‘ )
2
g cos6 1 . o m coso 1
+
<§ Fooss ) 2 l}‘gsws@o—l”’f & Tooso )
'g"s—l S o]
£ cosO T1
—(£+m)(’§s‘l'cos90)131211 ?S-rg()—‘s,o-g")j] , for M+ £ even,
s~ )

(4.9)

m(’g‘s) =0, for M+{ odd . (4.10)

From now on, the procedure for developing an iteration scheme parallels that of

the Dirichlet problem. After writing

ichS
Up,) = e w('pl) (4.11)

and assuming a low frequency expansion in powers of k for w(‘pl),

M
w(pl) = % (-ike) sz(pl) , (4.12)

we substitute (4.11) in (4.12) and the resulting expression together with (4.7) in
(4.5). Equating coefficients of equal powers of k, we obtain the following iteration

scheme:

t//o(pl) =0 (4.132)
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(0] +1 2T
: ay_ (p) oy (p)
N 2 M* _, 2 M
¢M+1(p1) =2c\ d§\ dn d¢Go(pl,p)lE€ -1) ot (n"-1) on
g J-1 Vo
+1 27
2
+(E.;n)¢M(pzl+ (§ -1)\ dn d¢G (p1 P )Yy (p)
-1 0]

4.2 The Recurrence Relations

The procedure we shall follow here is practically identical to that for the

Dirichlet case. We assume ;//M(pl) to be of the form

, £ Vi
wM(pl) = Z.:LLD (§S)Qr(§1)Pt(n1)cos1¢l , M=0,1,2,...
t=0 r=0 (4.14)

which we substitute in (4.13b) and solve for t//M_I_l(pl). If (//M+1

of the form (4. 14), then because of wo(pl) being zero we can conclude that (4.14) is

(pl) turns out to be

true.

The volume integral of (4.13b) is practically identical to that of (3.10b) ex-
cept for the Green's function. From equations (2.21) and (2.22) we see that these
two functions are identical except for their dependence on the surface coordinate & o
If we denote the volume integral of (4.13b) by v
(3.19) and write

M +1(p1), we can use the result of
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M+1 M+1 t
L(t-0) £,
M+1 ZZZ (1 ey Bplngdeostpy
t=0 r=0 £=0
r(r-2) M yi : t(t - 12) + (t+I)t+L+1) M, 2L
{21« T Dpp, ¢ F 2t-1 D, t 1(5 e T D. t+1(g )
" ,
(r+1)(r+£+1) Ji y
or+3 r+ (‘s"% dEK (5,€,,€)Q (4.15)
ES
where
i i |
, P (£,)Q, (8) Pf(gs)' , , E>¢g,
K (5,8,8) = - Q (£)q (§) (4.16)
" et Q) b
P(G () ) s g<t,
M,

It is understood in (4. 15) that Dr ’t (gS) is identically zero whenever r, t or £ is

greater than M.
From Appendix G,

o'od k(e e ke = —& 1’1 (e 2); Q o < )- QL)
: Q, ()

S
r#t.  (4.17)

Furthermore, through an inductive argument identical to that given in Appendix D

for the Dirichlet case, we can show that

M, £
r,t

r+t

_ M, £
D (SS) =(t1) Dt,r (%’S) . (4.18)

Employing (4.17) in (4.15), we obtain
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M+1 M+1

t
r(r-£) . M,L
-2 =0 r=()J ZO—IJ r(r+1) t(t+1) [:21*—1 .Dr—‘l«,t(gs)

M+1(p1

- Ht-2) M,2 + (t+1)(E+L+1) M, 4
2t-1 r t- 1(§s) 2t+3 T, t+1(§s)

2r+3 r+1 t £

(§ )!

] .

_(r+1)r+2+1) M/z (ESEI[ r°s Q (g) Q’l(g {l Pﬁ(nl)'coswl
('s' )!

(4.19)

Having evaluated the volume integral of equation (4.13b) we now turn to the surface

integral of the same equation and we denote it by I(p'l).

+1 27
2 N
I(pl) = c(§s— 1)\ dn d¢Go(p1, ps)wM(ps) . (4.20)
-1 0

Substituting equations (2.22) and (4.14) in (4.20), we obtain

Ip,) = - o (2 —1)§ I,Z( e (nr | 2om) m), n,)
. |

w

>S o™z ) qlE ) e™eE) [P ) E 6 )
=0 EsQr sQn 1 n s Qn

r.t Qe )

s=0 0

+1 27
m 4 :
X dn Pn (n)Pt(n) df cos m(¢-¢1)cos£¢ )
-1 0
Using equation (B.4) for the Wronskian and at the same time performing first the

integration with respect to ) and then the integration with respect to n according

to (3.18), we obtain
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Q ('s’ ) y
Ip ) = > > > D Q (S )P (n, )cosL@_ . (4.21)
1 IR t 1 1
£=0 r=0 £=0 Q ()

From equations (4.19) and (4.21), it is clear that 'z,l/M_*_l(pl) of (4.13b) is of the form
given by (4.14). At this point, then, we not only have concluded the inductive argu-
ment that the representation (4. 14) of wM(pl) is correct, but in exactly the same

fashion as in the Dirichlet problem we end up with the following recurrence relation-

ships:
pM+L, £ 2 r(r-2) M4 - t{t-£2) M, 4
r t (g )= r(r+1)-t(t+1) [21-—1 r—l,t(gs)-l_ 2t-1 Dr,t—l(g )
J_r(t+1)(t+£ +1) () (r+1)r+2 +1) &)
2t+3 r,t+1°°s’ T 2r+3 r+1t s
M=0,1,2,...
r#t (4.22a)
M+1
' Q (g) Q (§)
DMLy o ) IS ML ———-,f = pMfe e aMHlde
s S 20 Q(‘g" ) r,t s =0 Q. (£ )" r,t s
t t'Ss £\ Ss
M=0,1,2,... (4.22b)
with
o, o(’g's) =0, (4.22¢)

where A (55 ) is given by (4.9a,b). The prime on the first summation in (4.22b)

denotes that ’che term r=t must be deleted.
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The scattered field uS(pl) for the Neumann problem is given by the same

expressions as for the Dirichlet problem (equations (3.27) and (3.28)) with the under-
M, £
] r,t
(3.22). The same is true for the far field and the scattering cross section expres-

standing of course that the coefficients D (‘g‘s) are this time given by equations

sions (see Section 3.3).

4.3 Nose-on Incidence

When 90 =0, (4.9a) becomes zero unless m =0. This is so because of the
definition of the Legendre function P:l(,u) for |u-1| <2, equation (2.24). Conse-
quently, when the incoming plane wave propagates along the z-axis, there is no de-
pendence of the scattered field on the azimuthal angle ¢, a result we should expect
since the z-axis is the axis of symmetry of the prolate spheroid. Due to the sub-
stantial amount of simplification, we redefine our results for the Neumann problem
as follows:

Equation (4. 8) becomes

M
Iy(py) = ; ANEIPQUE) . M=1,23,... .
where
7 (2t+1)(gst1)M—1 .
Ai"f(gs) _ VT 2M+1(_1\_/1_2__§>! F<—M§ﬂ+§> o) : even

(4.24)

0, M+t odd.

The scattered field us(pl) is given by (3.36) with Dll\_/I t(‘g‘s) given by
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2 2
M+1 _ 2 . r _  t M
t (gs) T or(r+1)-t(t+1) l:Zr—I r—l t(gs) + 2t—1Dr, t—l(gs)
2
+{+1)" M (r+1) M=0,12,...
- 2t+3 Dr,t+1(§s)' 2r+3 r+1 t(gszl *ordt (4.25a)
M+1,
'Q(E) Q.(§)
M+1 _ E r’s M+1 r’s M M+1
M=0,1,2,... (4.25b)
with
D’ (£)=0. (4.25¢)
0,0°s - 49C

The expression for the far field is the same as the one for the Dirichlet problem

(equation (3.37)) with D (SS) as above. The same is true for the coefficient of the

scattering cross section, ulr1 (pl), which is given by (3.38).
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A%
THE OBLATE SPHEROID AND THE DISC

The method employed in the preceding sections to determine the field scat-
tered by a prolate spheroid can be employed in a straightforward manner to deter-
mine the fiéld scattered by an oblate spheroid. This is not necessary, however,
since we can transform the prolate spheroid into an oblate Spheroid and utilize the
results already obtained to determine the field scattered by the oblate spheroid.
Specifically, if we let § — i§ and ¢ —-ic, the prolate spheroid is transformed into
an oblate one with the axis of revolution (minor axis 2b) coincident with the z-axis of
a rectangular coordinate systems (cf. Morse and Feshbach, 1953, p. 1502). The

ranges of the variables now are 0 <§ <o, -1&<n<+1, and 0K ¢ < 2m. Moreover,

FIG. 5-1.

if we let ES—+ 0, the oblate spheroid degenerates into a disc of infinitesimal thick-
ness, radius c¢ (the semifocal distance), and coplanar with the x-y plane. In the

remainder of this section we shall treat each body separately.
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5.1 The Oblate Spheroid

With the incident field given by (see equation (3. 3)),

. , . ¢ 2 ] 2 |
- + - -
il P ikc{cos O En+sinf Y€ -1 yl-n cos¢ ,

the scattered field is given by (3.28) with £ = i§ and ¢ = -ic and can be written as

ui(p) =

follows
(00) n n -M M
ike€ (15’_,_77
us(p1)=e 1 E (—ikC)nE :(—i) (oo 13,1)' > S > D M, (ig‘)
n=0 M=0 t= O r= £=0 r,t S
£ Y
'Qr(iEI)Pt(nl)coslfb1 , (5.1)

where, for the Dirichlet problem, the recurrence relations (3.26a, b, ¢) hold among

£
the coefficients Di\'/[’t (i’g‘s), with

2

i€ cosO t+1
Pll s 0

(1'g° coseo) (t- 1)1 t i’g"s_' coso
- 2t+1 :
Ez‘[; 2M+1 ( )(t+l): <M—t),r1<M+t+§> Q’Z(ig y

Alz/[,z(igs)= 2 2 2 t s
M+t even

0, M+t odd

(5.2)

£ .
For the Neumann problem the coefficients DM’ (i’g“s) are related through equations

r,t
(4.22a,b, c) with
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(1g . \]__ (1‘g’ Tcos6 ) NN (t-2)1
M+1<M- <M+t +_§> Ql(ig" ye (t+2)!
2 2 t s

1'g' cos @ tl 1 2 iEscoseéfl
= . +
MP 1§ "‘cosG g2 t(1'g‘scos eo'l)Pt< i’g‘s T cos 60
)
' igscos Go'l'l
- (t+£)(1‘g’ tcosh )P —ig—s—t-‘;ge—o:] s

M+t even, (5.3)

and

L
AiVI’ () =0, M+t odd (5.4)

The prime on Q (i& ) in (5.3) 1mp11es differentiation with respect to 1&'

The Legendre function Q (1§ ) in (5.1) must now be redefined since 'g" can
now assume values between 0 and 1 as well as values greater than 1. This has
been done in Appendix H where we show that

1

( 1)m 2 _Em
- Cn+m+1)(1/2) _ (§7+1)

Q:l(ig) T~ ntlm 3 n-m+1
i 2 r'(n+-§) C§+ JE +1>
1 3 1
* F{n-m+1, —-m; n+—;-—-———-——-—>, £E20.
2 1< 2 2 (E+ ,§2+1)2

(5.5)

The far field is given by (5.1) by letting & L >
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1kc€ ® _
g GE Fn )
sf -1 € Fn)
u (p1)= ‘é’ Z( ike)" Z( i)’ (n L
M t
- Ly, ML . 4 |
; ;(—1) 2! Do,t (,1’g‘s-)‘Pt(nl)cos£¢1 . (5. 6)

The scattering cross section is given by (3.30) and, in the present case, can
be written in the form

© 2n
-4 ) (ko)™ PRSI
n=0 m=0

Uy m (P (P (5.7)

where we have taken k to be real, and

(13';’ n,)
st _, -1 1 .
u (p,) = (-1 M2=o (a-M)! : 2 .,( 1) £t D ( £ )P (nl)cosi’fb

(5.8)
Nose-on Incidence:
When 90 = 0, we can rewrite (5.1) as follows:
s tkeg, EOO n En : (i +”1 ‘2_ EM M
ulp) =e (-ike) (-)" NCSTT (1§’ S E )P (),
n=0 M=0 t=0
(5.9)

where, for the Dirichlet problem,
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2 2
) _ 2 r M -t M .
D t (lgs) T or(r+1)-t(t+1) [Zr—l r—l t(1§ )+ 2t-1 r,t—l(lgs)
s Mo @r)? . TFt
- 2t+3 Dr,t+1(lgs)— 2r+3 r+1 t(g):l ’M=0,1,2,... (5.10a)
M
Q (i'g‘ )
M+L M+1
D, (1§s) = rZo _—Q(lg) (E )+A (1‘s‘) 0,1,2,... (5.10b)
O e\ _ A0,
Do’ O(l‘g‘s) = Ao(l’és) ) (5.10c¢)
with
(2t+1)(iE M
Skl swever M+t » M*t even
aMig ) = 2 (45 r( +3) auie,
t s
0, M+t odd (5.11)
The corresponding expressions for the Neumann problem are
2 2
. _ 2 T - _t M .
¢ U8 = TerD-ter D) [:Zr 1 Dpo, {388 F 377 Dy g 186
(t+1) . (r+1) r#t
- 2t+3 Dr t+1( 1)~ 2r+3 r+1 t( gﬂ M=012,... (5.12a)
- % Q) Z Q)
D, (E) = - - Q(lg ), (1§ )+ (1's' )+A (155);
M=0,1,2,... (5.12b)
p° (i&E)=0, (5.12¢)
0,0 °8
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with
\2t+1)(i‘g'si' M-
- M . M+t even
M = M+1 <M-t>, <M+t 3> ’
. = +—- 3 1
At (lgs) 2 2 e 2 2 Qt(lgs)
0, M+t odd
(5.13)
In both the Dirichlet and Neumann problems the far field is given by
k n-M M
sf fkef; nq 8 +n1) M
u (p) = g 2 :( ike)" E ;( i) Y T __>__t=0 D, LJEJPUn,)
(5.14)

and the scattering cross section be equation (5.7) where in the present case,

M

(18 Fn,) -——u
_ n-1 1 M .
u (pl) (-) E (n M) tZ= Do, t(lgs)Pt(nl) . (5.15)

5.2 The Disc

As we mentioned earlier, when & S = (0 the oblate spheroid degenerates to a
disc of radius ¢ in the x,y plane, with center at the origin (Morse and Feshbach,
1953, p. 1292). It is easy to verify from the corresponding formulas for the oblate

spheroid that the scattered field due to the presence of the disc is given by

n—MMMt

@© n
ikeg » (¥n,)
w(p) = e IE (—ikc)nE eI Z 2 > o 0)
n= M=0 r=0 r,t

Y/ y/
Qr(i'é’l)Pt(nl)cosUbl , (5.16)
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where, for the Dirichlet problem, the recurrence relations (3.26a,.b, ¢) hold among

the coefficients D ’ (0) with

’

N o 2 1
I('l'coseo)M (f 1)‘ P <cos€ >
—elﬁ M (2t (t+4)! M t M+t ’
ML) = 2 Q (0)
t
M+t even
0, M+t odd o (5.17)

For the Neumann problem, the coefficients DII\‘/I’tE(O) are related through equations
(4.22a, b, c) with

M-1
(% coso ) o
J Y
AiVI’ (0) = —61\’” cos 6 0 C - 0!

M+l (M-tY, M+t 3\ Loy (t+2)D
M (M2t), (M3 gl
/] 1 0 /1

. EM-t)(t—lZ +1)Pt+1<cos eo> +(M+t+1)(t+£)Pt_1<c.oseo>:] .

M+t even, (5.18)
Aiw"q(o) =0, M+t odd . (5.19)
From (5.16) the far field is
} ikc«‘g1 0 n (3n )n—M M t
sf -1 't ) M, £
«*p,) = eg , (-ike)™ E :( )" P E Z (- 1)sz - (0)
~1 n=0 M=0 ©t=0 £=0
. Pz(n )cos £ (5.20)
t 1 1° ’
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The scattering cross section is given by (5.7) with

n n-M M _t
(¥n,)
sf _.n-1§: 1 E:E:_Jz,m,z g
u, (o) = (1) G @-M Lpdo (141D " (0P (ny)oos L,

(5.21)

Normal Incidence:

When 90 = 0 , we can write, as we did in section 5.1,

s ikc§1 > n Y (+T71 M
uw(p) =e nZ;(—ikc) Z_;(-i) rmY Z;Z (0)Q_(i&,)P(n,)

(5.22)

where, for the Dirichlet problem, the coefficients DI:I t(O) are related through

equations (5.10a, b, ¢), with

=M 2t+1
M ﬁ('l) 2M+1<M-t> .F<M+t+§> (0) , MTE even
A'(0) = WAANTIRETA

0, M+t odd
(5.23)

For the Neumann problem the coefficients Dll\‘/I 1;(0) in (5.23) are related through
(5.12a, b, c), with

M-1 2t+1

-\ (% . +
. m(EDT M oML M-t), r(ME L 3N 0y Mt even
A (0) = SN2/ \2 T2

0, M+t odd.
(5.24)
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Equations (5. 23) and (5. 24) were derived from (5.17) and (5.18),(5.19), respectively,
by letting 60 =0 and £=0, and they are in agreement with the corresponding
equations (5.11) and (5.13) for the oblate spheroid.

For both the Dirichlet and Neumann problems the far field is given by

1kc'g' 03] (3n.)
o*p) = 2 3 Z( ike) Z( )t IM), 4:‘ D, (0P (n,) .
) (5.25)
while the scattering cross section is given by (5. 7) with
B (g0 )M M
uzf(pl) = (™! é: —(ﬁjli,[—),— ; lglft(O)P (n,) . (5.26)

In Appendix I, we give the first six terms of the far field expansion for both

the Dirichlet and Neumann problems.
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‘NUMERICAL C;/zLCULATIONS

As a demonstration of their usefulness, the theoretical results have been
employed to calculate the scattering cross section of some representative prolate
spheroids for both Dirichlet and Neumann boundary conditions. The prolate spher-
oids considered had major to minor axis ratios of 10:1, 5:1, and 2:1. Back scat-
tered and forward scattered cross sections were determined as functions df wave-
length, and complete polar diagrams of bistatic cross section were obtained for a
few special values of kc. All calculations were carried out for a plane wave incident
along the axis of symmetry of the spheroid.

The expressions employed for this calculation, which we repeat here for con-

venience, were equation (3.32)

Q0 2n
_ 2 2n ntm _ sf sf
= 47c n§=0 (ke) m§=0 (-1) uzn_m(nl)um(nl) (6.1)

and equation (3.38)

m ym-J

i
g + 1 :
u (T)l ZZ (m-j)! Di),i(gs)Pi(nl) (6.2)

j=0

where D{) i in (6.2) is given by (3.35) for the Dirichlet problem and (4.25) for the
Neumann problem.

The series in (6.1) was terminated at n=10 for the 2:1 and 5:1 spheroids
and at n=9 for the 10:1 spheroid. Thus the cross section values included terms
up to and including (kc)20 and (kc)l'8 respectively. The back'and forward scattering
results were also obtained for smaller values of n so as to reveal the manner in

which the inclusion of higher order terms improves the Rayleigh approximation.
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Figures 6-1 and 6-2 present the back scattering (n1 =1) cross sections of soft
and hard spheroids respectively. The cross section values are normalized with re-
spect to the geometric optics value

2 2
4 9 (*g's -1)

%) = —/ =7¢ —s . (6.3)
a ‘-;‘2

S

The number associated with each curve indicates the value of n at which equation
(6.1) was terminated. The Rayleigh curve (the curve obtained by terminating (6.1)
at the first nonvanishing power of ke¢) is denoted by n=0 for the soft spheroid and
by n=2 for the hard spheroid. The exact result shown in Figures 6-1 and 6-2 was
computed from the prolate spheroidal function series (Senior, 1966). Also included
in each figure is the maximum value of ka (= kc'g's) for which the series in (6.1) con-
verges, i.e. the radius of convergence, as estimated by Darling and Senior (1965).
The present low frequency calculations have no precedent except in the case of the
10:1 hard.spheroid where similar calculations (though not as extensive) were re-
ported by Sleator (1964).

Figures 6-3 and 6-4 present the forward scattering (n 1= -1) cross sections of
the same spheroids. The cross section values are normalized with respect to the
limiting form of the bistatic geometric optics value

o = 7Ta2 = 7r02’g‘2 . (6.4)
g.o. S

As before, the number associated with each curve designates the value of n at which

the series in equation (6.1) was terminated. No exact results were available for
comparison in this case.
Figures 6-5 through 6-9 present polar diagrams of the bistatic cross sections

of the same spheroids. Since the polar diagram is symmetric for nose-on incidence,
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which is the only case considered, each figure includes data for both hard and soft
spheroids. The back and forward scattered cross sections lie on the heavy vertical
line bisecting the figure with the back scattering (61 =0) value on the upper part and
the forward scattering (01 =7) value on the lower. The values of the cross section
are normalized with respect to the geometric optics cross section, viz.,

-2
o 4a2r2 2
Gg.o. = 471b a [a (1+n1)+b (1—n1)]

(6.5)
2.2 \2
5 E(E2-1)

= 47c 5

(258- 1+n1)

with il = cos 61 .
As noted previously, the values presented for the 2:1 and 5:1 spheroids were ob-
tained after terminating the series in (6.1) at n=10 while for the 10:1 spheroid the
series was terminated at n=9.

Similar calculations have been carried out by Spence and Granger (1951) for
hard spheroids though the values of ES and ke were different from those employed
here. In the few cases where comparison was possible (kc=1, a/b =5, 10), good

agreement was obtained.
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FIG. 6-1a: BACK SCATTERING CROSS SECTION OF SOFT, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-1b: BACK SCATTERING CROSS SECTION OF SOFT, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-1c: BACK SCATTERING CROSS SECTION OF SOFT, 10:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.

49




THE

UNIVERSITY OF MICHIGAN
7133-5-T

T T TTT

B Ul O =J00 W=

T TT]

7rb4/ a2

T

.01

T T T T]

.005

exact

maxka = 1.59
SS = 1,1547006

] ] ] ] ] ] L

FIG. 6-2a

.2 .4 .6 .8 1.0 1.2 1.4 1.6
ka

: BACK SCATTERING CROSS SECTION OF HARD, 2:1
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FIG. 6-2b: BACK SCATTERING CROSS SECTION OF HARD, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.

ol



— THE UNIVERSITY OF MICHIGAN

7rb4/a2

7133-5-T
2
11
IO F
8
JF
.6 L
DL
4t
ST
21
d
N
»
5
r
maxka = 3,28
Es = 1,0050378
01
B
-
.05
.02 | 1 1 | | | 1 1 1

v .2 4 .6 .8 1.0 1.2 1.4 1.6 1.8
ka
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FIG. 6-3a: FORWARD SCATTERING CROSS SECTION OF SOFT, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-3b: FORWARD SCATTERING CROSS SECTION OF SOFT, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-3c: FORWARD SCATTERING CROSS SECTION OF SOFT, 10:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6.4a: FORWARD SCATTERING CROSS SECTION OF HARD, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-5: BISTATIC CROSS SECTION OF 2:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE.
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FIG. 6-6: BISTATIC CROSS SECTION OF 5:1 PROLATE SPHEROID FOR
NOSE-ON INCIDENCE.
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FIG. 6-7: BISTATIC CROSS SECTION OF 5:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE.
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Hard Soft

FIG. 6-8: BISTATIC CROSS SECTION OF 10:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE.
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APPENDIX A

Cike(et
THE REGULARITY OF THE FUNCTION w(p) = e X&)

(p)

In this appendix we offer a proof that the function w(p) in (2.14) is regular

at infinity in the sense of Kellogg, that is

<
lim |rw(p)\<oo and lim r2§u—)(‘p—) <, Osbsm
or ogpger.
r— o r—
(A.1)

The proof is based on an expansion theorem (Wilcox, 1956) which guarantees that

the field scattered by the prolate spheroid may be written in the form

[0.0)

ikr £ (6,9
u(p) = Z i — . r>a (A.2)

r n
n=0 r

where the series is uniformly and absolutely convergent for all r,0,§ provided
r >a, a being the radius of the smallest sphere completely enclosing the prolate
spheroid.

From (A.2) it is clear that us(p) satisfies the first of conditions (A.1) but
not the second and, consequently, is not regular at infinity. The function w(p), how-

ever, which by (2.14) and (A.2) may be written

o)
_3 _ + f (9:¢)
olp) = e ik(cE-rTen) 1 Zl— (A.3)
r n=0 rrl

can be shown to satisfy the Kellogg conditions. The proof is as follows:

The variables £ and n are related to the spheroidal coordinates by the

equations 1

2 2
E= — [\[r2+20rcose+c + r2—20rcose+c] )

2
n= 5% |:\[r2+20rcose+02 - \[1"2—20rcose+c ]

The factor c¢(£%rn) appearing in the exponential of (A.3) can now be written
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e [ Z: R A )
c(Etn) = \r"t2crcosf+c” = r 1T 2cos6(c/r)+(c/r)” , (A.4)
and, if r is large,
e(ETn) =rtccosf+0(1/r), r—o. (A.5)

We can then write for the first Kellogg condition

lim | I'w(p)l‘—‘ lim

r—>o r—>o

®
Fickcos+0(1/r) Z fn(e’ h
© n
n=0

r

Fikccos6

e f
0

<o . (A.6)

To show that the second condition is satisfied we need the derivative of w(p)

with respect to r

2 £ (o, )
aw(p) =e-ik c(Si’n)—Ij{Ek[l_ V 1*cos6(c/r) #3] n ’
)

or 1*t2cos6(c/r)+(c/r 70 oL
- (a+1)f (6, )
n
—Z o . (A.7)
n=0 r
For r large
L =1F cose(c/r)+0(1/r2) , I (A.8)

,/1 t2cos6(c/r)+(c/r)

so that for the bracketed expression in (A.7) we can write

+
L. 1T cos6(c/r) = =1- [1i'cos6(c/ra D;cos 6(c/r)+0(1/r2)—_]
1*2cos8(c/r)+(c/r)
= O(l/rz) . (A.9)
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Employing (A.5) and (A.9) in (A.7) we have that

2 uip) £ ike cos 0+ 0(1/1) f , £46.9
lim |r" 2R = gim |eT 0o(1) _—
or nt+1
r—>w r—>00 n=0 r
®
g CN)) _.
-E _n } =|e+1kcosef <w, (A.10)
n 0
n=0 r

which shows that the second Kellogg condition holds also.

66



THE UNIVERSITY OF MICHIGAN
7133-5-T

APPENDIX B
THE SURFACE INTEGRAL FOR THE DIRICHLET PROBLEM

In this appendix we evaluate the surface integral of (3.4). Repeating the ex-

pression,
+1 2T

Cp) = -ole,- 1| an | afutp )56 ey, ) (8.1)
S
-1 0

From equations (3.2) and (3.3),
-ike(E Tn) -ike(cos® & n+sind \152—1 \fl-nz cos f)
o s~ o 0’s o'’s

and from (2.21), with §S <§1,

w(ps) = - (B.2)

(n+m):

(B.3)

where, above, we used the Wronskian relation

m mo..|_ -m. m m ., .m._. (-1)™ (n+m)!
w[Qe), PP = 2@ - e Pe) = el =R
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Substituting (B.2) and (B. 3) in the integral (B.1), we have

-ikcE ® n

m
s Q (£.)
E E ! 1
IS(pl) __& o e _(20+1) §n+m;' P (n ) nm

n=0 m=0 Qn ('g‘s)
+1 2 N 2 2
-1kc(§ cos 0 +1)n om T -ikesin® \/gs-l \/1'” cos f
.\ dne (n) dfe cos m(¢-¢1).
-1 0

(B.5)

The functions involved in the integrands are continuous in the intervals of integration
and the only assumption we made in interchanging integration and summation is the
uniformity of convergence of the series (cf. Whittaker and Watson, 1952, p. 78).

We now use the expansion (Magnus and Oberhettinger, 1949, p. 155)

©
ikocos _ .m
e = z i eme(kp)cosm¢ . (B.6)

m=0

Utilizing (B.6) in (B.5), with kp = -ke sinG0 \}Ei—l Jl -n2 , results in

-1kc§ W

Q(E)
o) = - > > > e (e (2n+1):n+m;: n ) 2L
7=0 1=0 m=0 Q (§)
n s
+1 2m
-ike(& cos® T1)n
dne S © an(n)J£ kesin® Ez-l \jl-n2> dﬂcosm(¢-¢1)cos£¢.
-1 0
(B.7)

The integration with respect to  can be simply performed, while to integrate with

respect to n we use the relation (Morse and Feshbach, 1953, p. 1325),
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T
i -m|2
due ZCOSVCOoS i m(COS/.t)J (zsinvsinu)sinu = i* m,/?ﬂ PEI(COSV)Jm_l/(Z) .
2

0
(B.8)
In this expression we let

N = COS M

zcosv = -ke(E cosf T1)
S 0

}2
zsinv = kesinf (& -1
oV’s

so that
& cosH Ly
S 0

2
2 _ + : = - —p—
z -Em(ss cosGO{I > cosSV =~ g Tcost

We can then write

+1
-ike(E cos6 T1)n
dn e s 0 PII:l(n)Jm<kcsin90\/(§z-l)(l-n2)>

-1

- o7 o ’g‘scoseo‘fl
B —_— +
j;(isfcoseo) P §Si'cos 90 Jn+1/2 E<c(Ss_cos 60)], (B.9)

Performing the @ integration in (B.7) and using (B.9), we obtain

-ik
. i c‘§s W n ) Qm(§ )
I(pl) = - Z em( -)™(2n +1)( o)t P (nl) ~ cosm$?51
n=0 m=0 Qn (ES)

cosG H
CS _cose +1/ kc(§ Teosd ):]\/;C(E _cose) ’ (B.10)
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where, above, we used the relation (Magnus and Oberhettinger, 1949, p. 63)

n+m m(

P M%) = (-1) x), -1&<xg1. (B.11)

We now expand the Bessel function in (B. 10) according to (Magnus and Ober-
hettinger, 1949, p. 16),

[0.8)
- 1on2d
J (2 =(z/2)mZ——(15@— , |argz| <« (B.12)

= ' M(m+L2+1)

to get
. @ @© n . n+24
S _ -1kc§s _E ] k n (n-m)! 1kc(§si”cos90
I (pl) =-e 5 €m(—1) (2n+1) atm) | 5
£=0 n=0 m-=0 '
+ m
m £ cos60_1 1 m Qn (51)
'Pn £ +cose 3 Pn(nl) m cosm¢1
S 2 (n+2+= ) Q (§)
n s
2| n-2/
-ikcé o
_ s V7 (n (n-24-m)!
= e = é Z 22041 ta St i
n=0 =0
l: 1kc(§ tcos0 ):l <§ cos9 t1 > .
|- p
n-2t §Sfcos90 l'.f"(n—£+§)
(§ )
24
'Pizf(ﬁ)—%l__— cosmp, .

n-2£(§s)

This last expression may be written as follows:
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-ikec€ 00 M .
IS(PI) = -e S'jzﬁ 2_, (-ike™ (g Tcoso )M z : Z :6 (24+1) (ﬁ+m;'
M:O £=0 m=0 m
€ cosf T1
Pm S 0
fz<gfcose QXE,)
S 0 P ( )_IL__l_ COSm¢ (B.13)

M(M-I) (ML M+£ 3> U} Q (g) 1 '

where in the above series in k the only nonzero contributions to the coefficients are
made by terms for which M+£ is an even integer.
We have then written the surface integral (B.1) as a power series in ke of

the form
Q0
-ike€
M
Is(p1)=e S E (-ike) I1sv1(p1) (B.14)
M=0

where I]S\/I(pl) is given by

£
1 (pl) = Z A ’m(ES)P;n(nl)Qfl('s’l)cosmﬁil , (B.15)
=0 m=0
with £ cosh T1
M po( s 0
(8 Tcosh ) 2\ £ fcosf |
Fee T =S O (94+1) (£-m)! s 0
m oM+l (2+m)! (M-z>, P<M+.0_+ §>Qm(g %
m 2/ 2 2/ 1 s
(gs) =\/ M+4 even

(B.16)
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APPENDIX C _,
]
EVALUATION OF THE INTEGRAL cf(é‘,‘él, ES)Qr(E)dS .
. _

S

® §1 ©
‘ ‘ 0. TN TRV .
S d§ Ct(E,El,gs)Qr(S) = g d€ Qt(El)Pt(g)Qr(E) + d€ Pt('s'l)Qt(E)Qr(E)

£ £ 5
Y/ (00)
Pl )
ol dEQf(El)Qf(E)Ql(E). (C.1)
Ir
Q)

ES

From Legendre's associated equation we have that

Y/
dQ_(£) 2
d 2 r { £ .
2 a-eh—% }E(m)-——-l_é:z] Ql® =0

Jj
dq, (§) 2
d 2, __t 1 Loy
& ':(1-5 ) o ]+ [t(tﬂ) - 1_52] Qt(s) =0

£ £
Multiplying the first of these equations by Qt(&’) and the second by Qr(S) and sub-

tracting the second from the first we obtain the following:

£ Y
dQ_(€) dQ, (§)
L. d 2 r Loy d _ 2 t
Qt('s') & El-g )__d'é :, -Qr(g) & El €7) & :]

# [dr+ 1) - e+ 1) ] @ 0Q 8 = 0

Integrating this expression we have that
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€10 | 2 El,oo .4 er(g)
dEQ(E)Q €) = D -wsD) Qt('é)d [(1 £ & J

5.5 ss,gl
aq, (£)
d 2
Q) = |- g)——&g—ﬂ

dQ () dQ (E)
-1 2 r £ 2
r(r+1)-t(t+1) {} (EN1-8) =% dg

-Q (A)1-8) —— }
d§

Q (8)
L [ [(r JZ+1)Q£ (g)-(r+1)(r+£)Qi_1(§ﬂ

T Wr+l)-tt+1) | 2r+1
Q(g) Sp®
" Tl [(t L+ 1)Qt+1(§) (t+1)(t+f)Qt 1@1 ‘ ; r#t#0. (C.2)
s’ 1

Similarly,

T, N @i, e’
dEpt(g)Qr(g): r(r+1)-t(t+1) ij © d§ Qr(g) d& ]E

3

S

S

y/
P, (§)
1 4
= |: ¢ (r—l+1)Qr+1(§)—(r+1)(r+1)Qf,_1('§Z|

©or(r+1)-t(t+1) | 2r+1
Qi(&) s . 1
-5 [, @ - wroeor! )] R LY

S

Substituting (C.2) and (C.3) in (C.1), we obtain
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1 AR 2 [a. 9906
dEC(8, £, £ JQUE) = mgi—ms (8] ”E)(“ 3
;

L dR(E) L GQE) DA
8 5 } G -1)E><g) . - Qg ,g. ]

S
B(£,) , [a  d9.) aq (&)
D 36 1)@(5) ) -QL(E)) ) ]

QI(E ) (Es) aq(s_ 3 dQ (&)

yi /
Q,(,) dP(S) dP ()
_ t'°1 2 k2 T Y. t'°s

S
Pl sl Q£
£ 51 2 4 £'51 ¢ (&4
P Er) - ttrD) {gl-l)Qr(gl) G, }' Her 1) -ttr 1)
P ) dQ
2 tgs £ Qt gs)
20— gle ) —
Q(ﬁs) S
2 4 ‘
_ ) ) Pﬁ(g)th@l)
r(r+1)-t(t+1) t °1 d§1 gl

2 J} J J/
E2-DerE) Qe are ) dQ(E)
+ 8 tl';s{Ql(E)tsPl(E) }
S

r(r+1)-t(t+1) Qt(g) t s d'g‘s
S
{ 1 Jj
_ Qr(El) C(t+a)! (_1)1+ Qt(El) . Qr(gs) C(t+2): (_1)1
r(r+1)-t(t+1) (t-2) rir+1)-t(t+1) £ (t-2)
Qt(ss)
(cont'd)
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, ),
_ (-1) ) Q
T or(r+1)-t(t+1)  (t-2) fz

Q

Q.(§)
s 1 £ . r#t

Also,

0"
£ i
S Ct(‘s',El,Es)Qr(S)d’é =0 for L>t
§

S

4
since Ct =0 for £ >t.
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APPENDIX D
DERIVATION OF RELATION (3.21)

In this appendix we give a proof of the statement of equation (3.21), that is

(E )= ()" M’l(s ), Lr,t<M. (D.1)
The choice of sign is determined by the sign chosen in (2.18).

The proof follows an inductive argument. First we show that (D.1) is true
for M = 0 and then that if it is true for any M it is true for M+1.

Since r=t=0 when M =0, equation (D.1) is certainly true for M =0.
Assume next that it is true for M. We can then integrate (3.19) and, following the
same procedure as we did there, end up with the recurrence relations (3.26a, b, c).
We are interested mainly in (3. 26a) since for r =t equation (D.1) is obviously true.
Repeating here (3.26a) and subsequently employing it in (D.1) which is assumed to
hold for M, we obtain

M+1,£ 2 r(r-1) M i T Ht-£) M, 1
r t (5 )= r(r+1)-t(t+1) [Zr 1 r 1, t(gs) 2t-1 Dr,t 1(§s)
+ (E+1)(E+L+1) M, 4 € )- (r+1)r+£+1) M ] (g )|
- 2t+3 r,t+1 s 2r+3 r+-1 t
a 2 r(rl)(+)r+t1M£(§)
T or(r+1)-tt+1) | 2r-1 t,r—l 1
t(t-£)  + r+t-1 M ] + (t+1)t+L+1) r+t+l M ]
+ Tot- 1( 1 (g) 2+3 (T t+1, (gs)
(r+1)r+e+1) o rHt+l M, 4
T ares M) tri-l(gs]
(cont'd)
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_ 4+ I 2 t(t!l)MI _r(rl)M!Z
=1 tt+1)-r(r+1) [2’5 1 t—l r(gs) 2r-1 t r-l(gs)

+ (r+1)(r+4 +1) (g . (t+1)(t+4+1) pM 1 )
- 2r+3 tr+1 s 2t+3 t+1 r-s

+1. 4
T pMH (D.2)

+ s
=(-1) t, (E ) .

So (D.1) is true for M+1 if it is true for M. Since it is true for M=0, it is true

forall M (M=0,1,2,...).
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APPENDIX E
DERIVATION OF EQUATIONS (3.24a,b)

In order to arrive at equations (3.24a, b), we start with (3. 22) and (3.23)

which we repeat here

M+l M+l t
\'4 r(r-1) M i
IM+1( L %—/ Z—-'r(r+1) t(t+1)|:2r 1 r—l,t(gs)
Ht-£) M J/ + (t+1)(t+2+1) M, 4L
+9to1 D, 188 = T 2t+3 r, w18
Q (€)
(r+1)(r+£+1) r°s {
9713 r+1 t(§][: 7 Q (E )- Q ('g' ZlPt(nl)cole
Q (E )
(E.1)
MH M, _t
' ' M+1, 4 g
1‘1;[+1(p1) =>J . Er’ (5 )Q (€ )Pt(nl)cos£¢1 . (E.2)
t=0 r=0 £=0

When r#t, a comparison of these two equations gives (3.24a). When r=t, we re-
write the above equations as follows.

Equation (E.1):

M+l M+, t
' r{r-4) M,!
Tyge1(Py) =2 %4 % %—' T [21«-1 D1, %)
- Ht-4£) o 4 (E+1)E+e+1) M, L
+79t-1 Pr,t- EJF Tot+3 r,t+1(gs)
(r+1)(r+!l+1) Ml ] {
5r+3 D1 ¢ z\ Q&))P (n))cos Lf)
M+l M+, t
1 r{ir-£) M,/{
-2 7 2; };r(r+1)-t(t+1) I:Zr—l Dr—l,t(gs)

(cont'd)
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_Ht-4) M, + (G+HI(E+L4+1) M, 2
+ 2t-1 Dr,t-l(gs)' 2t+3 Dr,t+1(§s)

Qle )

(r+1)r+£+1) _M,4 r’s A i
- 2r+3 Dl‘l'l,t(gSﬂ Q‘e(g ) t(gl)Pt(nl)COSf¢1 . (E3)
t s

Equation (E. 2):

M+1

t
v _ M+1,4 £ V]

A comparison of (E. 3) and (E. 4) gives

M+

M+, L, | -2 Hr-4) ML ,. . _ Ht-2) M2
Et,t (SS)_ZOL r(r+1)-t(t+1)|:2r-1 Dr—l,t(gs)+ 2t-1 Dr,t—l(gs)

!
(r+1)r+2+1) M, 1 (gﬂ Qr(gs)
s

(€ )- D
2r+3 rtl,t Y.
Qt(ss)
(E.5)

+ (t+1(E+L+1)

M, £
2t+3  Dr,t+l

Using (3.24a), the above expression can be written

M+1 £
CQhE)
B e ) = - I ghAe) (E.6)

t, t - yi r,t
r=0 Qt(E S)

which is equation (3.24b).

79




THE UNIVERSITY OF MICHIGAN

7133-5-T

APPENDIX F
THE SURFACE INTEGRAL FOR THE NEUMANN PROBLEM

The integral to be evaluated in this appendix is that of equation (4. 6)

+
i , -ikc'g's 1 27 o ou (ps)
I = - - 1 CT]
(p)) = -cl&_-1)e dn |\ dfe (pl,p ) 3 (F.1)
-1 0
By equation (3.3)
Bul(ps) 53\/1 —n? i
— taing 8o
. ike coseon sinf g2_1 cos f§ u(ps)

S

£ 1—n2 -ikc|cos B & n+sinf \/Sz— 1\’1-712 cos@
. . s o’s ol’s
= -ike|cosf n+sinf —F====— cosf|e .
o} o /‘52 1
S

Substituting the above expression together with the appropriate part (£ <& 1) of
(2.22) in (F.1) we have

- kcE
_ dke ~ (n-m)! m
Is(pl)— (S -1e :_>_ E (-1)"e (2n+1)|:( T (nl)Q][1 ()

+1

P (g )! -ike|& cos® T1|n

~[Pm<§>- . Q <sa dn P (n) e [S ° ]

n S n n
Q (s ) B

27

dp

0

E\/l n -1kcsm0 'g‘ l\jl -n cosf
coseon+sin0 ‘/_—

X COS m(¢—¢1) . (F.‘2)
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Using (B.4) for the Wronskian and the expansion (B. 6) with
ko = -ke sineo\/'g'z—l 1- nz , we can write for equation (F.2)

1kc§ Q ()
5 5(p.) = ike 1 (n-m)! m n 1
T 4r Z_IZU;)A -i) €£€m<2n+1) (n+m)! Pn (nl) m
n= Q_ (&)
n s
+1
-ick(Z cos® T1)n
.cosm¢lg anIim(n)JlQ(csinGO Ez—l\/l-nz e s 0
-1

2m ,g_ ’1
-\ dp cosf n+sind cos¢ cosfcosmf . (F.3)
0

/ 2
gs
To perform the integration with respect to §§ we employ the identify
cosfPcosif = % cos(£+1)f+ cos(£- 1)@

the result being

ikeE > & Q™)
e °I’p)= —‘;—ZZE (0™ (2 1) (B Py ) B L cosmp
Q, (S )
+
-ike(§ cos @ fl)n —_—
dne S ° nP:l(n)Jch sineo\f'g'z-l \/1'112)
-1
£ sin Q)
1;‘—7= ZZ( )™ (20+1) §n+m;, PPn,) 2 cosmg,
-1 n= Q e )'
+1 . +
-ike(€ cos® T1)n
g dne s 0 ] -2 P 2 d +l@csm6 \/5 -1\/1 n)
-1

(cont'd)
81




THE UNIVERSITY OF MICHIGAN
7133-5-T

©® n m
o & sin6 ' Q_(§))
ike s 0 E : (_i)m+l(2 +1) :n+m;' p ( ) It:l 1
Qn('s's)'

cos mf )

+1

-ike(€ cos6 t1)n _
s 3 _m , Jz /'_2>
dne 1-n Pn(n)Jm_1@08m60 ‘g‘s 1J1-n ).
-l (F.4)

To perform the integration with respect to n we employ the following recurrence

relations (Magnus and Oberhettinger, 1949, p. 62)

(2n+1)nP;n(n)=(n-m+l)P (n)+(n+m)P (n) mgn, n=0,1,... (F.5)

(2n+1) |1-n2 PP = P ) - PP (), msm, n=0,1,2,... (F.6)
(2n+1) 1—n2 P;n(n) (n-m+1)n- m+2)P (n) (n-m- 1)(n+m)Pm11(n)
mgn, n=0,1,... (F.7)

Substitution of these expressions in (F.4) and a simple rearrangement of the terms
leads to
® n m

e | o Q (&)
o sIS(pl) = %(QCOSOOZ Zem('i)m {%ET% Pn'l( 1) "
n:

m=0 (E )!

(&)
(n-m+1)! n+1
army © n+1("1) ™ (g ).} oy

n+1 S

-ike(§ cos@ '_"l)n
s 0 m . \[2_ \[_ 2>
dne Pn (n)Jm écsmeo Es 1,1-n

+1

-1
(cont'd)
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. © n-1 m
_|..i_15£ 'g'ssm@o ZZ( .)m+1 (n-m+1)! P2 (n.) Qn+l(§1)
2 [.2 - (n+m+1)! "ok )

s n+l s

o +
: Q_.(E) -ike(§ cos® Ti)
{n-m-1). P ( )___n—l 1 } cos m¢1 g dne S ° Pm+1(n)

n
-1

m
( ,)m-l (n-m+1)! m( )Qn-l(gl)
o (n+m-1)! “n-1'"M (& )

n-1"s

+1

m .
(n-m+1)! m ( )Qn_l_l(’él) o\ —1kc('§scos601‘1)n
“(a+m-1) oM T m osmp, | e

Q€. 2

n+l s

m-1 ) 2 2
. Pn (n)Jm_1 Q(csmeo\/'g‘s—l \fl—n > .

To perform the integration with respect to n we employ (B.9) in Appendix B, the

result being

. [00) n
s 5p) = om0 > e ->“\/_2—7 3,1 (2P™E)
€ SUCRA S 0L m=06m“1 z “ntly, 7 n B
m

| () , Qir &)
. {(n—m). Pm (nl) n-1"1 +(n-m+1). Pm (nl)._il_} cosm¢1

(n+m-1)! "n-1 m . (n+m)! “ntl m .\,
Q _4(€) Qn+1(§s)

(cont'd)
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m m
Jemy )Qn+1(§1) (-m-1)t g )Q 0
(n+m+1)! "o+l 1 m e ) (n+m-1)! "n-1'M (E ) 1

n+1 s
£ (09}
+ikc ind S Pml
= sinf 2, n-2-=0 - (-1) J +1/2( z) 1))

m
, Q. (E) : Qyq(Ey)
. {n-m+1). Pm (n ) n-1"1 (n-m+1). P ( )-_D'L_} cosm¢1’

(n+m-1)! "n-1""1 “(n+m-1)! T n+l L}

Qn l(gs)' n+1(§s)
(F.8)
where
z = ke(§ tcos6 ) (F.9)
s 0
§Scos9 1
2 (F.10)

B = § +cosb
S 0

Equation (F.8) is now put in the following form

ikcI;'
_ ike it [27 (n (n-m+1)
e °r'(p ) cos 6 {E E ‘/ +3/2(Z)P 18

Q(E)
P() L

cos m¢1

Q (8)‘

(0 0] n m
Q (§.)
(n-m)! _m n 1
e ()" (Z)P (B)_-, P (n)———
ZZ 1/ (n+m-1) Q:l(gs),

X cos m¢1
(cont'd)
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: g <
ike . s n-1 |27 m+l . (n-m)!
i SmeoF:{Z— Z( ! 'z 1/( 221 ) Fm):
s =

Q (§1)
'Pn( n,) cosm¢1
Q ('s' )

® n

Q (’s’ )
ol 27 yp+l gy (n-m)!
_;m;(-l) J— ot 3o ZP L (B) (a+m)! Fn ( Q (g " cosm¢}
© nt2
e {——~ ntl |27 (n (n-m+2)!
4 smO {Z Z -i) /_ ot 3/2(z)Pn+ N v v

Q ('s' )
‘P n ;) cosm¢1
Q (E )!
® n
- (-i)“'l\[27 (P g 2ol g, ) cosmﬁ}
n=1 m=1 1/ (n+m-2): Q, (§ )!
(F.11)
Substitution of the relations (Magnus and Oberhettinger, 1949, p. 16)
1/(2) 21;:1 +1/(Z) +1/(Z) (F.12)
2 +1
To3pl? = 5 +1/2<z> Ty 2) (F.13)

in (F.11) and a regrouping of the terms leads to
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ikcE L
_ _ke 27 ,02n+1 (n-m)!
e °1(p )-—— cosO {Z Z;em(—l) 52 (atm) n+1/(Z)
Q, (£,
-En+m)P L(B)-(n- m+1)P (B]P (n ) cosm{é1
Q, e i
® _n m
: Q, ()
+ )% 2n+1)8 P™B)T (nm)P 1
; mZOem( i) (2n+1)8 n(B) n+1/( z)! (ot m). (n )Q (g ' cos mf,
ke 2m n(2n+1) (n- m)t
- s1n9 r—r—l/—'{z Z( ) 97 n+1/( )(n+m)|
m
Q (§) -
\imﬂ(BHPn:l(B:IP (n,) — L cosm¢1
Q ('s's)'
m
Q (§,)
ZZ( )" (2n+1) §n+m;, Ly (2" |1- g2 PR(AIP (n,) :
n=1 m-=1 Q e )'
2n+1 2)!
o Sy st
n=l ms=
m
pnom) (B P (n )—ﬂ-gcosm;b (F.14)
(@+m-2) © Q (g ) 1 :

This expression can be simplified using the properties of the Legendre functions

mentioned above. After simplifying and collecting terms in Jn +1 (z) and its deriv-
2

ative, we have
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‘ @ n
ikc§
e I( ) - ‘/jz—ﬁ-{zoj Zoe (-)™(20+1) 2n+m;' n+1/2(z)'

Q (E )
[Bcose + smOj,P B)P X D cosm¢
vg - Q, (E )
® _n ,
ke |27 E A0 2n+l (n-m)! m
"2 \/—Z_{an mzoem(-l) 2z (n+m)! Jn+1/2(z) E:oseo(n+m)Pn_1(B)

};' —
—cosGo(n—m+1)PII:_1(B)-sin90 §S—1 J1-32 P;m(ﬁ)

3 g
. 53 P;n“(;s) -(a+m)n-m+1)sing_ == P;n'l@
,/'és-l i}gs- 1

m

Q
-Pm(n) n | cosm¢}. (F.15)
n 1" m 1
Qn('g's)'

n N

+sinf

But by (F. 10)

g f1-6°

Beos6 + f-T sinf =1. (F.16)
-1
s

Moreover, from the definition of 8 and the recurrence relations (Magnus and Ober-

hettinger, 1949, p. 62)

1

m+1 m m
(B) = |:-(n -m)BP_(B)-(n+m)P (Ba s (F.17)
{1 _ 32 n n-1
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Pl s — L1 @P%)-Pm (Bz',
n (0+m) "1 _BZ n nt+l

we have that
p)
3 \/1-/3
cos6 (n+m)P " (B)-cos6 (n-m+1)P" (B)-sing — PY(g)
o) n-1 0 nt+l o) n
Es-l
Es m+1 Es m-1
+ sinf BP, (B)-(a+m)n-m+1)sing -===pBP = (B)
o1 m °fgZ-1 ®
+(§ tcosO )
- T [(n m+ )P (@) 3£ PPE) - (ot m)P™ uﬂ

S

Substituting (F.16) and (F.19) in (F.15) we have

1kc‘g'
e °I'p )--‘“FZ (-1)*(2n +1>§“+m;, w12 PLB)

Q (El)
Pn( n,) cosm§l51
Q ('g' )
©_ n
(+1)(§ Tcosf )
_ke |27 " 2n+1 (n-m)!
\/—‘ZO:ZO: 2z (n+m)! n+1/(z) 2
§,-1
m
Q (§.)
- 1
- [<n—m+1>1>$d(ﬁ> i ESPZI(B)—(n+m)P:_1(Bz,P:1(n1) Q;(g ~ cosm
n s

(F.18)

(F.19)

(F.20)
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According to equation (B.12),

QL £ 2+n
27r (-1) z
‘/ (z) = J; E :
ot =0 22y, r‘(n+z+-‘;i)

(03] 1, 24+n
21r = 1T Z( 1) (2£+n+§)z
+1/2 Z 20+n

=0 2y P+ %)

Substituting these expressions in (F.20) and using the formula

we obtain

ikc€

) |
n
e *rp) =7 5 _;_ 1: e (-1)° il(j?;(l) 5 [2(0-20)+1]

(n-2£-m)!
' (a-20+m) Tn- 21(B)P

@® El 2| n-24 0
ke Z AN z (n-2£-m)!
_ﬁ z T—J . em(_l) n+1 [2(11 20)+1 (n-22+m)!

(* 1)(& tcosh )
0

211

2 En 20-m+1)P _%1(5)

S

Q. {€.)

- m m m n-2£>1

+E Py g lf)-(n- z“m)Pn-zz-ﬁBﬂ Poafny) —g —— cosmf, .
Qn 2}3(5 S)’
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A simple inspection o this expression reveals that it is zero for n=0. We

can therefore write

[0
-ikc&
Is(pl) =e Z(-ikc)ML;I(pl) (F.21)
M=1
where
G i
s, v _=Vm .4 M-1 N 20+1 (£-m)!
LiP) = M2 (Es_coseo) ; ﬁ'em (Mi)v F<M—+l+§> (£+m)!
2 /° 2 2
m ('l')(é'si'coseo) m m
+(2M+1)P(B)+ — ) [(l-m+1)P£+1(B);ESP£ (B
ES-
m
Q, (§,)
-(1+m)P;n1(B):'} P;n(nl) L 1 cosmf. , M+L even , (F.22a)
- e ) !
Ql S
p,)=0, M+£ odd, (F.22b)
Iytep) =0

where above we have substituted (F.9) for z and we have rearranged the series.
Equation (F.22a) can be further simplified by taking into consideration (F.10) for

B and the relation (F.5). In this way we can write

M {

S _ M,m m m

IM(pl) = Z ZAz (gs)Plz (nl)Qf (Sl)cos m¢1 (F.23)
£=0 m=0

where
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(E cosB) M-1

+
2M1

(£-m)! 1
e

cosG 1 ) ’g’scose 1
+ [o)
MP ’g‘ +cose - 2 1 E('g' cose I)P <§ tcosH >

S

m Escoseofl
_(1+m)(§s'l'cos00)P£_1 m ] s M+{ even , (F.24)
s~ 0

(gs) =0, M+{ odd . (F.25)

£ ) = ¢ _|1 =2 (20+1)
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APPENDIX G
@ i
THE INTEGRAL S dgKf(‘r;, Sl,’s' )Q_(§)
g S T
S

According to the results of Appendix C,

(0] 3 (03]
1
2, 2.4 ‘ 2, 4
S dgxf@,sl,ssmr(s)—Qt(g-l)g d§Pt(§)Qr(§)+Pt(El)§ & Q,(OQ(®)
gS gs E1

(gs)' > J) J
Q (E ) d's‘Qt(E)Qr(‘s’)
Q (& )' £

S

Q) ) y
= Mern-ween &Y PL(EQE,) -G (E )P, £(&q)"

PE)
(52~ 1)|B}(£ )Q}(€ )" - Q€ )P (Es):, + = - Y

P (§ )! Q (§ ) 9
r(r+1)- t(t+1)(E 1

[aliepale ) -al palie, ] +
- Q&)

fafe el r-ale e (ss)]

|t s r’s

2 i
(§,-1)Q (§,)
_ 1 r-l . £ . AL yi .

l)Q (5;-' ) [ Q (E )!
Q, (8 )P(E ) - P(‘s‘ )Q(E )]
r+1) t(t+1) t st s Q (g )

(cont'd)
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£ £
_ (-1) (t+4) 2 (-1) (t+2)!
= Dt D -0 YT e WD (oo
1 1]
e
L
Q)

Ji

Q(E )

W 1 (t+4)! r°s_/ £ _r#t

=0 DR D) tod) { r Qt‘gl"%%} P gey G
Q (&)’

S

Also

Q@
2 ! .
S Kt(s,sl,gs)Qr(g)dE =0 if 1>t (G.2)
§

S
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APPENDIX H m
REDEFINITION OF Qn

The original definition of leln(u) as given by (2. 26) is

)" Ca+m+1)r(L/2) (Jiz-l)mlz C1+m+2 ntm+1 3 _L)

nH T2 0 2 ’n+§;u2

m
Q (u)=
n 2 F(n+‘2‘) gt 2t

lu]>1, |arglu-D]<7.

(H.1)

Hobson (1953, pp 233-234) has shown that if

2
z=pu+tfu-1, (H.2)
then the function
1
\1()='(‘&];)_2'-' F .];+ + +1.n+§.-1_
H mmtl 271\ W nTmTL 27 2) "

|z]|>1, |argu-1))<7 (H.3)

satisfies the associated Legendre equation. Using this expression we can define a

new function Qrim(u) which holds for |z|>1 or equivalently |u]|> 0, which is iden-
tical to Ql;m(u) givea by (H.1) in their common domain of definition, |u|>1. To do
this it is sufficient to compare (H.1) and (H. 3) for large values of |u|. The result-

ing relation between the two functions is

m Mo+m+1)(1/2)
F(n+-§-)

Q= (-1"2 u(p) (H.4)

or
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1
—m
m . ,.mmCn+m+1)r(1/2) (ﬁ 1) ( 3 1
Qn(u)—(—l) 2 3 —) +m, n+m+1; n+2, 2
F(n+-2-) z

|z]>1, |arg(u-1)|<7.  (H.5)

Letting u =1i§, £ >0, we have z = i<§+ \/§2+1>, and

2, ..m/2
-2 Formu)ra/y D

in-i-l F'(n+§) Q__I_ ,§2+ 1)1'\+m+1
1 3 1
X F<+m, n+m+1;n+<; - >,
2 1\2 2 i§+ ]€2+1>2

E>0 . (H.6)

Qf(i«s) =

Using the relation (Magnus and Oberhettinger, 1949, p. 8)

Fl(a, bie;z) = (1- Z)c—a—b 2F1(c -a,c-b;c;z)

we can write

1 1. 3 1
+ - c— — -—  m——
2F1<2+m n+tm+1; n+2, 2> < > 2 16 m+l, = 9 -m; n+2, 2

(H.7)
Letting z = i@+ \/§2+ 1> and substituting in (H. 6) we obtain

(2™ [ln+m+1)r(1/2) (g2 1)/ 2

nt+l 3 2
" ) [@Jr g2+1>2+1] s /__—§2+1>n—3m+1
1 3 1
.2F1< m+1,3- m;n+-2';—(—§+ ,—-2—-6 +1)2>, £§>20 (H.3) |
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which holds at £ = 0 also since (n-m+1)+(-;-—m)—(n+g) = -2m <0 for
m=0,1,2,... (Magnus and Oberhettinger, 1949, p. 7).
Equation (H. 8) can be rewritten to read
1

m 2 —-2-m
(-1) rn+m+1)r(1/2) (E°+1)
in+1 m

2 l"(n+g) <§+ \/?:i)n'mﬂ

Q:l(iE) =

1 3 1
*+ F G—m+1,——m;n+—;-——————> , £€20.
271 2 2 @+ Fz—'g +1>2

(H.9)
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APPENDIX I _
THE FAR FIELD FOR THE DISC

In this appendix we give the first six terms in the far field expansion for the
disc for both Dirichlet and Neumann boundary conditions with the incident wave at
normal incidence.

The far field in both cases is given by (5.25). This expansion involves the
coefficients AIVI(O) given by (5.23) and (5.24) which contain the Legendre functions
of the second kind and their first derivatives with respect to i§ S evaluated at & §= 0.
Their values are determined as follows.

From equation (5.5),

1 l"(n+1)l'”(1L

Q (i§) = < B i} >
n in+1 F(n+-2-) @+ f_rg 1 >u+1 o™ 2 @_Jr [“)2
€20 (I.1)
Letting §=0, we have
_ 1 r@+1)r(1/2) 1 .3
Qn(O) = o 3 2F1( n+l, 2,n+2,-1). (1.2)
i F’(n+§)
Now,
(9
1.3 Ir (‘” >
F (n+1, ;nto;-1) = (1.3)
2075 oI+l F( +1>r,(2+9
Then (I.2) becomes
_ Tn!
Qn(O) = (1.4)

(21)™" E’(LZ‘H)JZ

* See, for example, Handbook of Mathematical Functions, National Bureau of
Standards, Applied Math. Series No. 55, p. 557 (June 1964).
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Or, we can write
_ __m(2n)! _
Q2n(0) = —-——-———(Zi)zn_l_l " R n=0,1,... (1.5)
_ 7(2n+1)! _
Q2n+1(0) n+1 5 » 0= 0,1,... (I1.6)
[F(n+ )j'

Turning now to the derivative of Qn’ denote by Q;I(O) the derivative of Qn(i‘g') with
respect to i§ evaluated at £€=0. From (I.1)

Q' (0) = 'i F(n+1)r(1/2) {( +1) F(n+1,§;n+— -1)
a i o+ )

2(n+1) 3.5
+ = T3 2Fl( n+2, 2,n+2, 1& . (1.7)

Employing (I.3), (I.4) and the relation

- -1 1
2F1(a,b;a-b;—1) =2 aﬁ (b-1) F‘(a-b+2)[ 1 3 1
F(Ea)l"(g +§a—b)

1
11 1 !
F(—+—a)f"(1+-a-b)]
2 2 2 (1.8)

which can be found in the same reference and page as (I.3), equation (I.7) becomes

l 1 9

Q!(0) = iln+1)Q (0)- nt ] . (1.9)
.n n+1 n 1

i ( +1)P( +1) F( >F<§+-2-

Finally, with the help of (I.5) and (I.6), we obtain for (I.9),
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Q! (0) = ™ (2n): n=0,1,
2n n 1 2
(-4) [P(n+§):|
\ _ _m(2n+1)! _
Q2n+1() —omtl n=0,1,... .
(2i) n'n'

We now employ equation (5.26) and write:

For the Dirichlet Case

sf 2
sf 4
u (pl) == Po(nl)
Vs
st _ 2 8 4
Uy (p) = -5 Pz("1)+<ﬂ3 - 97r> Pony)

sty ___4 16, 4
ug (p,) = - o2 Pn)-{-=3+ 2> P (n,)
T T 37

sf 2 32
u, (p)) = goor Pyn )+ ( +105 Pyln;)+ 5
sf
u_ (p,) = )+< >P (n,)
5 \Py 2 Pn, o2/ 2
+(ﬁ _ 80
7r6 971

Substituting these results in (5.25) we obtain

32
or

e

508

20257
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(1.10)

(1.11)

4
P (nl)

2> P (n;)
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ikc§ 1

qu(pl) = E-é'-'—

{2 P (n1)+1kci2P( e 2[—-—P (n,)
1

4 16, 4
)P( ‘J+1kc ‘:9 P2(n1)+<- il 2>P0(n1]
T 37
Y 8 8
[525 Pyny 3+105 >P (n )+< 3 757>P(”1:]
+ ke’ [_'4_5 P(n)+ (‘ —1% + 22 2> Polny)
525 97 567

+<64 208 >P( ]+o(k c;-} (L.12)
T Tr 2025

For the Neumann Case

uif(pl) =0

ulS f(pl) =0

wip) = - = Py(n))

ugf(Pl) =0

wp) = o= Pyln )+ o= P (n))
w(p)) = - ;‘;—2 P, (n,)

and
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ikc‘é'1
sf, .« e 222 44 2 8
u(py) = ) {k ¢ 35 Pyln)-ke [75% P(n)+ 755 Pl(nlﬂ
6 6
- ik505 4 P (n,)+0O(k c} . (1.13)
2 °1'M
277

The results given by (I.12) and (I, 13) are in complete agreement with those obtained
‘by Senior (1960).
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