TOTAL RADIANCES AND EQUIVALENT WIDTHS OF ISOLATED LINES WITH COMBINED DOPPLER AND COLLISION BROADENED PROFILES*

H. Y. YAMADA

Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan 48107

(Received 18 October 1967)

Abstract—Analytical expressions for total radiances and equivalent widths of isolated spectral lines with combined Doppler and collision broadened profiles are presented for isothermal paths.

WHEN a spectral line is broadened by contributions from both the Doppler effect and Lorentz collision damping, the absorption coefficient, k, at frequency v can be expressed by:⁽¹⁾

$$k(v, a) = k_0 \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2}}{a^2 + (\omega - y)^2} dy$$
(1)

where $k_0 = (\ln 2)^{1/2} S/\gamma_D$, $a = (\ln 2)^{1/2} (\gamma_L/\gamma_D)$, $\omega = (\ln 2)^{1/2} (\nu - \nu_0)/\gamma_D$, S is the line strength, γ_L is the Lorentz half-width at half-maximum intensity, γ_D is the Doppler half-width at half-maximum intensity, and ν_0 is the line center frequency. The absorption coefficient [equation (1)] is not a simple function compared to those for Lorentz and Doppler lines which lead to explicit expressions for the equivalent widths⁺ in terms of known functions:^(2,3)

$$W_L = 2\pi\gamma_L f(\mathbf{x}_L) \tag{2}$$

where $x_L = SX/(2\pi\gamma_L)$, X is the optical depth, and $f(x_L) = x_L e^{-x_L} [I_0(x_L) + I_1(x_L)]$;

$$W_D = (\pi/\ln 2)^{1/2} \gamma_D g(x_D)$$
(3)

where

$$x_D = (\ln 2/\pi)^{1/2} S X/\gamma_D$$
 and $g(x_D) = \sum_{n=0}^{\infty} \frac{(-1)^n x_D^{n+1}}{(n+1)!(n+1)^{1/2}}$.

The subscripts L and D refer to Lorentz and Doppler, respectively. The subscript V will refer to lines with combined Doppler and collision broadened profiles, which are referred to as Voigt lines since the subject was originally discussed by VOIGT.⁽¹⁾ For isothermal

^{*} This work was supported by the Advanced Research Projects Agency, Dept. of Defense, Washington, D.C., under Contract DAHC15-67-0062.

[†] Equivalent width, W, is defined as: $W \equiv \int_0^\infty \alpha(v) dv$, where $\alpha(v)$ is the absorptance.

lines, the total radiance $N = N_{v_0}^*(T)W$, where $N_{v_0}^*(T)$ is the Planck function of temperature T and line center frequency v_0 , and the Planck function is assumed to be invariant over the spectral interval occupied by a single line, so the analysis can be made in terms of W only.

Curves of growth for Voigt lines, i.e. plots of $\log_{10}\{N_V/[2\gamma_D N_{v_0}^*/(\ln 2)^{1/2}]\}$ versus $\log_{10}(10.6x_D)$, for various values of *a* have been obtained by VAN DER HELD⁽⁴⁾ and PENNER and KAVANAGH.⁽⁵⁾ The ordinate can also be expressed as $\log_{10}\{W_V/[2\gamma_D/(\ln 2)^{1/2}]\}$. Equations (2) and (3) can be expressed in terms of *a* and x_D and in forms which can readily be compared with the curves of growth:

$$W'_{L} = W_{L} / [2\gamma_{D} / (\ln 2)^{1/2}] = \pi a f \{ x_{D} / [2\sqrt{(\pi)a}] \}$$
(4)

$$W'_D = W_D / [2\gamma_D / (\ln 2)^{1/2}] = [\sqrt{(\pi)/2}]g(x_D).$$
 (5)

Similarly, we define

$$W'_V = W_V / [2\gamma_D / (\ln 2)^{1/2}].$$
(6)

Figures 1-7 are plots of equations (4) and (5) on the Voigt curves of growth^(4,5) for $a = 5 \times 10^{-4}$, 5×10^{-3} , 5×10^{-2} , 5×10^{-1} , 1, 2, and 10. These figures, plots of $\log_{10} W'_L$, $\log_{10} W'_D$, $\log_{10} W'_V$ against $\log_{10}(10.6x_D)$, show that W'_V can be represented by W'_D at some distance below the intersection point $(x_{D,I})$ of the W'_D and W'_L curves and by W'_L at some distance above $x_{D,I}$. For a > 0.2 there is no intersection point but a merging of the two curves into one; in this case the Lorentz and Voigt curves are identical over the entire range of optical depths.

When the Lorentz and Doppler curves do intersect, in the region about $x_{D,I}$, W'_V is slightly higher than either W'_L or W'_D . Note that the smaller the value of a, the larger the value of $x_{D,I}$. For example, for $a = 5 \times 10^{-4}$, $x_{D,I} \sim 10^4$ and for $a = 5 \times 10^{-2}$, $x_{D,I} \sim 5 \times 10^2$.

Above $x_{D,I}$ the curve for W'_V can be approximated by:

$$W'_{\nu} = W'_{L} \left[1 + \frac{3}{8} \frac{\pi^{1/2}}{ax_{D}} + \frac{45}{128} \frac{\pi}{(ax_{D})^{2}} + \frac{6615}{3072} \frac{\pi^{3/2}}{(ax_{D})^{3}} \right].$$
(7)

Equation (7) was obtained by using an approximate expression⁽⁶⁾ for k(v, a), valid for a < 0.1, and applying the conditions valid for strong lines. It is similar to an expression obtained by PLASS and FIVEL.⁽⁷⁾ For $x_D \ge x_{D,I}$, $ax_D \ge 1$, and $\{\frac{3}{8}[\sqrt{(\pi)/ax_D}]\} \le 1$ so that equation (7) reduces to $W'_V = W'_L$. Below $x_{D,I}$ an empirical fit to W'_V was made:

$$W'_{V} = W'_{D} \left(1 + \frac{\sqrt{a x_{D}}}{2\pi^{n/2}} \right)$$
(8)

where *n* is specified by the order of magnitude of $a: a \sim 10^{-n+1}$. For example, for $a = 5 \times 10^{-4} \sim 10^{-3}$, n = 4. For $x_D \ll x_{D,I}$, $(\sqrt{ax_{D/2}\pi^{n/2}}) \ll 1$ so that equation (8) reduces to $W'_V = W'_D$.

Comparisons of values obtained with equations (7) and (8) and those obtained by VAN DER HELD⁽⁴⁾ and read from the curves of PENNER and KAVANAGH⁽⁵⁾ are given in Table 1. Equations (7) and (8) yield values which agree fairly well with those of van der Held. For $a = 5 \times 10^{-1}$ the values obtained with equation (4) were consistently smaller than those of van der Held. Except for one point, values of W'_{ν} obtained with equation (4) agreed with values read off the graph⁽⁵⁾ to within 10 per cent.

A more detailed presentation of these results is given in Ref. 8.

FIG. 1. Curves of growth for $a = 5 \times 10^{-4}$.

,

FIG. 3. Curves of growth for $a = 5 \times 10^{-2}$.

FIG. 5. Curves of growth for a = 1.

FIG. 6. Curves of growth for a = 2.

~

FIG. 7. Curves of growth for a = 10.

H. Y. YAMADA

TABLE 1. CALCULATED VALUES OF W'_{ν}

а	$\log_{10}(10.6x_D)$	W'_V calculated				⁰ _o Difference
5×10^{-4}	4.029	2.83	(E8)	2.86	(VDH)	1
	5.029	3.80	(E7)	4.02	(VDH)	6
	6.029	9.60	(E7)	9.67	(VDH)	0.7
5×10^{-3}	2.029	1.68	(E8)	1.67	(VDH)	- 0.6
	3.029	2.42	(E8)	2.40	(VDH)	-0.8
	4.029	3.80	(E7)	3.76	(VDH)	- 1
	5.029	9.60	(E7)	9.59	(VDH)	- 0.1
	6.029	30.0	(E7)	29.8	(VDH)	- 0.7
5×10^{-2}	1.029	0.670	(E8)	0.651	(VDH)	- 3
	1.631	1.41	(E8)	1.41	(VDH)	0
	2.029	1.87	(E8)	1.86	(VDH)	- 0.5
	3.029	3.79	(E7)	3.54	(VDH)	- 7
	4.029	9.60	(E7)	9.51	(VDH)	- 0.9
	5.029	30.0	(E7)	29.8	(VDH)	-0.7
5×10^{-1}	0.827	0.476	(E4)	0.499	(VDH)	5
	1.225	0.977	(E4)	1.066	(VDH)	8
	1.827	2,278	(E4)	2.572	(VDH)	11
	2.225	3.688	(E4)	3.959	(VDH)	7
	1.7	2.0	(E4)	2	(G)	0
	2.5	5.0	(E4)	5	(G)	0
	3.05	9.7	(E4)	10	(G)	3
	3.75	22	(E4)	20	(G)	- 10
	4.55	54	(E4)	50	(G)	-8
	5.1	99	(E4)	100	(G)	1
	5.7	206	(E4)	200	(G)	- 3
1.0	1.55	2	(E4)	2	(G)	0
	2.2	5	(E4)	5	(G)	0
	2.8	10	(E4)	10	(G)	0
	3.4	21	(E4)	20	(G)	- 5
	4.2	51	(E4)	50	(G)	- 2
	4.8	103	(E4)	100	(G)	-3
	5.4	207	(E4)	200	(G)	-4
	6.0	412	(E4)	400	(G)	- 3
1.5	2.1	5	(E4)	5	(G)	0
	2.65	10	(E4)	10	(G)	0
	3.2	20	(E4)	20	(G)	0
	4.0	50	(E4)	50	(G)	0
	4.6	100	(E4)	100	(G)	0
	5.2	199	(E4)	200	(G)	0.5
	5.8	394	(E4)	400	(G)	2
	6.0	504	(E4)	500	(G)	-0.8
2	1.5	2	(E4)	2	(G)	0
	2.0	5	(E4)	5	(G)	0
	2.5	9.8	(E4)	10	(G)	2
	3.05	19	(E4)	20	(G)	5
	3.9	53	(E4)	50	(G)	-6
	4.5	101	(E4)	100	(G)	- 1
	5.05	195	(E4)	200	(G)	2
	5.7	407	(E4)	400	(G)	- 2
	6.0	571	(E4)	600	(G)	- 5
10	1.8	5	(E4)	5	(G)	0
	2.2	11	(E4)	10	(G)	- 10
	2.6	23	(E4)	20	(G)	- 15
	3.2	50	(E4)	50	(G)	0
	3.8	103	(E4)	100	(G)	-3
	4.4	207	(E4)	200	(G)	-4
	5.0	412	(E4)	400	(G)	- 3

E8 = calculated with equation (8). E7 = calculated with equation (7). E4 = calculated with equation (4).

VDH = value taken from van der Held's Table I (Ref. 4).

G = value read from graph (Ref. 5).

REFERENCES

- W. VOIGT, Sitzungsberichte der Akademie, München, p. 602 (1912); F. REICHE, Verhandl. deut. physik. Ges. 15, 3 (1913). See also A. C. G. MITCHELL and M. W. ZEMANSKY, Resonance Radiation and Excited Atoms, Macmillan, New York (1934); S. S. PENNER, Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley, London (1959).
- 2. R. LADENBURG and F. REICHE, Ann. Physik 42, 181 (1911).
- 3. R. LADENBURG, Z. Physik 65, 200 (1930).
- 4. E. F. M. VAN DER HELD, Z. f. Phys. 70, 508 (1931).
- 5. S. S. PENNER and R. W. KAVANAGH, J. opt. Soc. Am. 43, 385 (1953).
- 6. D. G. KENDALL, Z. Astrophys. 16, 308 (1938).
- 7. G. N. PLASS and D. I. FIVEL, Astrophys. J. 117, 225 (1953).
- 8. H. Y. YAMADA, Total Radiances and Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles, BAMIRAC Rept. No. 8416-17-T (1967).

•