Flows on the Solid Torus Asymptotic to the Boundary*

A. J. Schwartz
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104

Received October 21, 1966

Introduction

If X is a topological space and T denotes the real numbers, then by a flow we mean a continuous map $\phi: X \times T \rightarrow X$ such that $\phi(x, 0)=x$ and $\phi(x, s+t)=\phi(\phi(x, s), t)$. We shall denote $\phi(x, t)$ by x_{t}. If X is a differentiable manifold and V is a vector field on X, then V is said to generate ϕ where $V_{x}(f)=d / d t\left[f\left(x_{t}\right)\right]_{t=0}$ for every differentiable function, f.

In [4], Seifert raised the question: Does there exist a flow on S^{3} which contains no closed, that is, periodic orbit? He showed that if V_{o} is a vector field on S^{3} which generates a flow whose orbits are the fibers of the Hopf fibration and V is sufficiently close to V_{o}, in the C^{o} sense, then the flow generated by V must contain at least one closed orbit. Since S^{3} is the union of two solid tori whose intersection is a two-dimensional torus, it is of interest to study flows on a solid torus, $K=D^{2} \times S^{1}$, where $D^{2}=\{z \mid z$ complex, $|z| \leqslant 1\}$. If it is possible to construct such a flow on K with no closed orbit, then it is possible to construct such a flow on S^{3}.

Considering K, one might think that if the flow were such that the restriction to the boundary was the irrational flow, then a closed orbit, encircling the "hole" (that is, a closed orbit not contractible to a point) would exist in the interior of K. However, in [1] Fuller has constructed a flow on K whose only closed orbits are null homotopic.

In this paper, we shall approach the problem from a somewhat different standpoint. We consider a flow on K such that every interior orbit approaches the boundary as $t \rightarrow \infty$, and show that the boundary of K must contain a closed orbit. Thus if the boundary of K contains no closed orbit, the interior of K is not completely unstable.

We shall not assume that ϕ is generated by a vector field. We will make

[^0]considerable use of the covering of K by \hat{K} a simply connected, noncompact cylinder.

1. Preliminary Definitions and Propositions

1.1. Definition. Let $p: \tilde{X} \rightarrow X$ be a covering of X by \tilde{X} with projection p. If $\tilde{\phi}: \tilde{X} \times T \rightarrow \tilde{X}$ and $\phi: X \times T \rightarrow X$ are flows such that $p\left(x_{t}\right)=[p(x)]_{t}$, $\tilde{\phi}$ is said to cover ϕ.

As a consequence of the covering homotopy property we have the following proposition:
1.2. Proposition. If $p: \tilde{X} \rightarrow X$ is a covering of X by \tilde{X} and $\phi: X \times T \rightarrow X$ is a flow, there exists a unique flow $\dot{\phi}: \tilde{X} \times T \rightarrow \tilde{X}$ which covers ϕ.
1.3. Notation. D^{2} will denote the unit disc, $\{z \mid z$ complex, $|z| \leqslant 1\}, S^{1}$ the unit circle, $\left\{\boldsymbol{z}||\boldsymbol{z}|=1\}\right.$, and T^{+}the positive real numbers. We also use the notation

$$
K=D^{2} \times S^{1} \quad \text { and } \quad \tilde{K}=D^{2} \times T
$$

The covering $p: \widetilde{K} \rightarrow K$ is defined by $p(d, t)=\left(d, e^{2 \pi i t}\right)$. We denote

$$
L=S^{1} \times S^{1}=\text { boundary of } K
$$

and

$$
\tilde{L}=S^{1} \times T=\text { boundary of } \tilde{K}
$$

We shall also use p to denote the restriction of p to \tilde{L}.
We shall consider a flow $\phi: K \times T \rightarrow K$ and its covering $\bar{\phi}: \tilde{K} \times T \rightarrow \tilde{K}$. Finally, if (d, t) is in \overparen{K} and l is an integer we denote

$$
(d, t)+l=(d, t+l)
$$

Since

$$
p\left[(x+l)_{t}\right]=[p(x+l)]_{t}=[p(x)]_{t}=p\left(x_{t}\right)=p\left(x_{t}+l\right)
$$

and $(x+l)_{t}=x_{t}+l$ for $t=0$, it follows from the uniqueness of covering paths that
1.4. $(x+l)_{t}=\left(x_{t}+l\right)$ for x in \tilde{K}, t real, and l an integer.

It follows from the continuity of δ and the compactness of $\tilde{K}^{\prime}=$ $D^{2} \times[-1,1]$ that there exists a function $\Delta^{\prime}: T^{+} \times T^{+} \rightarrow T^{+}$such that if
x and y are in $\tilde{K}^{\prime}, \epsilon>0, t>0$, and $\operatorname{dist}(x, y)<\Delta^{\prime}(\epsilon, t)$, then $\operatorname{dist}\left(x_{s}, y_{s}\right)<\epsilon$ for $|s| \leqslant t$. Applying 1.4, we have
1.5. There exists a function $\Delta: T^{+} \times T^{+} \rightarrow T^{+}$such that if x and y are in $\widetilde{K}, \epsilon>0, t>0$, and $\operatorname{dist}(x, y)<\Delta(\epsilon, t)$, then $\operatorname{dist}\left(x_{s}, y_{s}\right)<\epsilon$ for $|s| \leqslant t$. (Note: we assume that $K=D^{2} \times S^{1}$ and $K=D^{2} \times T$ are equipped with their product metrics.)

We now introduce some concepts from topological dynamics.
1.5. Definition. If x is a point of K or \tilde{K}, by the omega limit set of x, Ω_{x}, we mean $\cap_{t \in T} \operatorname{cl}\left\{x_{s} \mid s \geqslant t\right\}$; where $\operatorname{cl}\{\ldots\}$ denotes the closure of $\{\ldots\}$.

It is easy to verify that

$$
\begin{equation*}
\Omega_{x}=\left\{y \in \tilde{K} \mid x_{t(k)} \rightarrow y \quad \text { for some } \quad t(k) \rightarrow \infty\right\} \tag{1.6}
\end{equation*}
$$

1.7. Definition. A compact set $M \subset \tilde{K}$ is called minimal where M is nonempty invariant (i.e., $M_{t}=M$ for all t in T), and contains no such proper subset.

By an application of Zorn's lemma one sees that
1.8. Every compact invariant set contains a minimal set.
1.9. Definition. x_{T} is called a closed orbit where x_{T} is compact. Thus
1.10. x_{T} is a closed orbit if and only if $x_{h}=x$ for some $h \neq 0$.

Note that a fixed point, $x_{T}=\{x\}$ is a closed orbit.
1.11. Definition. Consider a flow in L or \tilde{L}. We say a closed orbit is bounding in L or \tilde{L} if its complement has two components, at least one of which is bounded.

As a consequencc of the Brouwer fixed-point theorem we have
1.11. Every bounding orbit in \tilde{L} contains a fixed point in the bounded component of its complement.

Note that by invariance of domain, L or \tilde{L} must be an invariant set in K or K.

We shall make use of a somewhat generalized version of the PoincaréBendixson theory. As a rule, Poincaré-Bendixson theorems are proved for flows in the plane or the two-dimensional sphere, S^{2}, generated by continuous vector fields (see, for example, [2]). However, the only use made of the vector field is in the construction of transversal line segments. Whitney has shown, [6], that transversal line segments may be constructed at any regular point (i.e., nonfixed point) of a two-dimensional flow. Thus we have
1.12. Theorem (Poincaré-Bendixson). Given a flow on S^{2}, and a point x in S^{2} then
(a) $\Omega_{x}=x_{T}$ if x_{T} is closed. On the other hand, if x_{T} is not closed we have
(b) $\Omega_{x}=\gamma=$ boundary of C, where C is an open two cell containing x and a fixed point. Moreover, if S^{2} contains finitely fixed points c_{1}, \ldots, c_{n} then
(c) Ω_{x} is either a closed orbit or Ω_{x} is the union of some of the fixed points and orbits $y_{T}^{1}, \ldots, y_{T}^{m}$ satisfying $y_{t}^{j} \rightarrow c_{l k}$ as $t \rightarrow-\infty$ and $y_{t}^{j} \rightarrow c_{l}$ as $t \rightarrow+\infty$, for some k and l.

Now, consider a flow on \tilde{L} without fixed points. We may embed \tilde{L} in S^{2} so that $S^{2}-\tilde{L}=\{(0,0,-1),(0,0,+1)\}$. We state that $(0,0,-1)$ and $(0,0,+1)$ are fixed points and thereby extend the flow to S^{2}. If x is in \tilde{L} and Ω_{x} contains no fixed point, then Ω_{x} is a closed orbit, nonbounding in \tilde{L}. On the other hand, if Ω_{x} contains one fixed point, $(0,0,1), S^{2}-\Omega_{x}$ must contain the other. If, in addition, Ω_{x} were to contain a regular orbit y_{T}, then $y_{T} \cup\{(0,0,1)\}$ would separate S^{2} into two regions, each containing a fixed point, which is impossible. Thus we have
1.13. If \tilde{L} contains no fixed point, then every omega limit set is either a nonbounding orbit or empty.

We may reformulate this by introducing the following definitions:
1.14. Notation. For (d, t) in \tilde{K}, denote $\pi(d, t)=t$.
1.15. Definition. Let x be in $K, p(\tilde{x})=x$. If $\pi\left(\tilde{x}_{t}\right) \rightarrow+\infty(-\infty)$ as $t \rightarrow+\infty$ we say $x_{t} \rightarrow \infty(-\infty)$ as well as $\tilde{x}_{t} \rightarrow \infty(-\infty)$. Thus, we have as a corollary to 1.13 ,
1.16. If \tilde{L} contains no closed orbit, and x is in \tilde{L} then either $x_{t} \rightarrow+\infty$ or $x_{t} \rightarrow-\infty$.

It will take a good deal more effort to show that all orbits tend, in some sense uniformly, to the same limit.

2. The Behavior of the Flow on L

In [5], Siegel showed that if L contains no compact orbit, it must contain a cross-section, Γ, that is, a simple closed curve, nowhere tangent to the field generating ϕ, which intersects every orbit.

If Γ were covered by a closed curve $\tilde{\Gamma}$ in \tilde{L}. It would be easy to show that every orbit tended to $+\infty$ or every orbit tended to $-\infty$. Although we may construct a covering $p^{*}: L^{*} \rightarrow L$ so that Γ is covered by a closed curve Γ^{*}, it may not be possible to extend p^{*} to a covering of K.

The difficulty to be avoided is exemplified by the following system in the plane:

$$
\begin{aligned}
& \frac{d x}{d t}=\cos 2 \pi y \\
& \frac{d y}{d t}=\sin 2 \pi y
\end{aligned}
$$

Here all orbits tend to $-\infty$ except $y=2 \pi k, k=0,+1,+2, \ldots$, which tend to $+\infty$. The orbits $y=2 \pi k$ serve as examples of the following concept:
2.1. Definition. x_{T} is called a separatrix where $x_{t} \rightarrow+\infty(-\infty)$ and there exists $y(k) \rightarrow x$ such that for each $k, y(k)_{t} \rightarrow-\infty(+\infty)$.

Our immediate aim is to show that separatrices in L are closed orbits.
As a consequence of 1.13 we have the following lemma:
2.2. Lemma. If \tilde{L} contains at least one orbit \tilde{x}_{T}, such that $\tilde{x}_{t} \rightarrow \infty$ or $\tilde{x}_{t} \rightarrow-\infty$, but no fixed point, then \tilde{L} contains no closed orbit.

Proof. If \tilde{L} contains a closed orbit, γ, it must be nonbounding. If we embed \tilde{L} in S^{2} as before, γ separates $(0,0,1)$ and $(0,0,-1)$. We may select \tilde{x} in $p^{-1}(x)$ so that \tilde{x} is in the same component of $S^{2}-\gamma$ as $(0,0,-1)$. Thus $\tilde{x}_{t} \nrightarrow(0,0,1)$, which is to say, $x_{t} \nrightarrow \infty$. Similarly $x_{t} \nrightarrow-\infty$, which proves the lemma.

Our next lemma limits the amount of time an orbit may remain in a compact portion of \tilde{L}.
2.3. Lemma. If \tilde{L} contains no closed orbit, there exists a function $M: T^{+} \rightarrow T^{+}$such that $\operatorname{diam}\left(y_{[0, M(t)]}\right)>t$ for all y in \tilde{L} and $t>0$.

Proof. Suppose, on the contrary, for some $t_{o}>0$ and $\{y(k) \mid k=1,2, \ldots\} \subset \tilde{L}$ we have $\operatorname{diam}\left\{y(k)_{[0, k]}\right\} \leqslant t_{o}$. According to 1.4 we may assume $\{y(k)\} \subset$ $S^{1} \times[0,1]$ and by choosing a subsequence, if necessary, we may assume $y(k) \rightarrow \bar{y}$.

If diam $\bar{y}_{[0, \infty)} \leqslant 2 t_{0}$ then $\Omega_{\bar{y}}$ must be a closed orbit, contrary to hypothesis.
If $\operatorname{diam} \bar{y}_{(0, \infty)}>2 t_{o}$, then $\operatorname{dist}\left(\bar{y}, \bar{y}_{h}\right)>t_{o}$ for some $h, \operatorname{dist}\left(y(k), y(k)_{h}\right)>t_{o}$ for sufficiently large k, and for $k>h$ we have $\operatorname{diam}\left(y(k)_{[0, k]}\right) \geqslant$ $\operatorname{diam}\left(y(k)_{[0 . h]}\right)>t_{o}$ contradicting the supposition. The lemma is proved.

The next lemma, in a sense, limits the "speed" of any orbit.
2.4. Lemma. There exists a positive number F such that for any x in \tilde{L},
(i) $\left|\pi\left(x_{s}\right)-\pi(x)\right| \leqslant 1$ if s in $[0, F]$, and
(ii) $\left|\pi\left(x_{t}\right)-\pi(x)\right| \leqslant \frac{t}{F}+1$ for $t \geqslant 0$.

Proof. Let

$$
F_{x}=\inf \left\{t \geqslant 0| | \pi\left(x_{t}\right)-\pi(x) \mid=1\right\}
$$

and

$$
F=\inf \left\{F_{x} \mid x \text { in } \tilde{L}\right\}
$$

Clearly, F satisfies (i). That $F>0$ follows from the continuity of $\tilde{\phi}$, the compactness of $\tilde{K}^{\prime}=D^{2} \times[-1,1]$, and 1.4. Now, if N is an integer such that

$$
0 \leqslant(N-1) F \leqslant t \leqslant N F
$$

we have

$$
\begin{aligned}
\left|\pi\left(x_{t}\right)-\pi(x)\right| & \leqslant \sum_{k=0}^{N-2}\left|\pi\left(x_{k F}\right)-\pi\left(x_{(k+1) F}\right)\right|+\left|\pi\left(x_{t}\right)-\pi\left(x_{(N-1) F}\right)\right| \\
& \leqslant N \leqslant \frac{t}{F}+1
\end{aligned}
$$

We now come to the key theorem of this section.
2.5. Theorem. If L contains no fixed point, every separatrix is a closed orbit in L.

Proof. (See Figure 1). Let x_{T} be a separatrix. Let us say $x_{t} \rightarrow+\infty$. Suppose x_{T} is not closed in L. Let $x=p(\tilde{x})$. We may assume $\pi(\tilde{x})=0$. (See 1.14).

Let

$$
t(k)=\sup \left\{t \mid \pi\left(\tilde{x}_{t}\right)=k\right\}
$$

and

$$
y(k)=\tilde{x}_{t(k)}-k . \quad(\text { See } 1.3)
$$

Thus $\{y(k) \mid k=1,2, \ldots\}$ is an infinite subset of $\Pi_{o}=\{\xi \in \tilde{L} \mid \pi(\xi)=0\} \subset \tilde{L}$. Moreover,

$$
\begin{aligned}
& y(k)_{t}>0 \\
& y(k)_{t} \rightarrow+\infty, \\
& p\left(y(k)_{T}\right)=x_{T}
\end{aligned} \quad \text { for all } \quad t>0,
$$

We choose

$$
r(k)=\inf \left\{t \geqslant 0 \mid \pi\left(y(k)_{t}\right)=1\right\}
$$

thus

$$
0<\pi\left(y(k)_{t}\right)<1 \quad \text { for } \quad 0<t<r(k)
$$

so that

$$
\begin{equation*}
0<F \leqslant r(k) \leqslant M(1) \tag{2.6}
\end{equation*}
$$

where F is defined in 2.4 and $M(1)$ is defined in 2.3. Note $x_{t} \rightarrow+\infty$ implies \tilde{L} contains no closed orbit according to 2.2 .

Fig. 1.

Now by taking a subsequence, if necessary, we may assume that $y(k) \rightarrow \bar{y}$. Moreover, if we suitably coordinatize a neighborhood U, of Π_{o} near \bar{y} by $\theta: U \rightarrow T$, we may assume (again taking a subsequence if necessary)

$$
\theta(y(1))>\theta(y(2))>\cdots>\theta(y(k))>\cdots
$$

Now, $y(k)_{[0, \infty)} \cup y(k+2)_{[0, \infty)}$ separates $S^{1} \times[0, \infty)$ into two components, C_{k} and D_{k}, with $y(k+1)$ in C_{k}.

By supposition, we may assume there is a point $w(k)$ in Π_{o} satisfying
(i) $w(k)_{t} \rightarrow-\infty$,
(ii) $w(k)$ is in C_{k},
(iii) for some $s>0, \pi\left(w(k)_{s}\right)>1$, and $w(k)_{s}$ is in C_{k}.

We may satisfy (iii) by choosing $s>0$ such that $\pi\left(y(k+1)_{s}\right)>1$ and choosing w(k) sufficiently close to $y(k+1)$.

Let

$$
s(k)=\sup \left\{s \mid \pi\left(w(k)_{s}\right)=1, w(k)_{s} \in C_{k}\right\}
$$

and

$$
u(k)=w(k)_{s(k)}
$$

Since $u(k)$ is in $w(k)_{T}, u(k)_{t} \rightarrow-\infty$. We may set

$$
v(k)=\inf \{v>0 \mid \pi(u(k))=0\} .
$$

Now $u(k)_{(0, v(k))}$ cannot cross $y(k)_{[0, \infty)}$ or $y(k+2)_{[0, \infty)}$, thus,

$$
u(k)_{(0, v(k))} \subset C_{k}
$$

and

$$
\begin{equation*}
\theta(y(k))>\theta\left(u(k)_{v(k)}\right)>\theta(y(k+2)) \tag{2.7}
\end{equation*}
$$

According to 2.4 and 2.3,

$$
0<F \leqslant v(k) \leqslant M(1)
$$

Next we suitably coordinatize $V=\Pi_{1}-\left\{y(1)_{r(1)}\right\}$, where $\Pi_{1}=$ $\{\xi \in \tilde{L} \mid \pi(\xi)=1\}$, by $\psi: V \rightarrow T$. We have

$$
\begin{equation*}
\psi\left(y(k)_{r(k)}\right)>\psi(u(k))>\psi\left(y(k+2)_{r(k+2)}\right) \tag{2.9}
\end{equation*}
$$

so that, according to (2.9) and (2.6),

$$
\lim _{k \rightarrow \infty} y(k)_{r(k)}=\lim _{k \rightarrow \infty} u(k)=\bar{y}_{\bar{r}}
$$

where

$$
\bar{r}=\lim _{k \rightarrow \infty} r(k) \geqslant F
$$

(Note that the uniqueness of the limit of $\left\{y(k)_{r(k)}\right\}$ implies the uniqueness of the limit of $\{r(k)\}$.) Furthermore, from (2.7) and (2.8) it follows that

$$
u(k)_{v(k)} \rightarrow \bar{y}_{\bar{r}+\bar{v}}=\bar{y},
$$

where

$$
\bar{v}=\lim _{k \rightarrow \infty} v(k) \geqslant F
$$

Thus \bar{y}_{T} is a closed orbit in \tilde{L}. But, according 2.2, this contradicts the hypothesis. The theorem is proved.

As a corollary to 2.5 we have
2.10. Corollary. If L contains no closed orbit, all orbits tend to $+\infty$ or all orbits tend to $-\infty$.

Proof. If L contains no closed orbit, a fortiori \tilde{L} contains no closed orbit. Thus, according to $1.16, \tilde{L}=A \cup B$ where $A=\left\{x \mid x_{t} \rightarrow \infty\right\}$ and $B=\left\{x \mid x_{t} \rightarrow-\infty\right\}$. But according to $2.5, A$ and B are closed. Since $A \cap B$ is empty and \tilde{L} is connected, $\tilde{L}=A$ or $\tilde{L}=B$, which was to be shown.

Having established that all orbits tend to the same limit, we now show that they tend to this limit "uniformly".
2.11. Theorem. If L contains no closed orbit, there exists a function $\rho: T^{+} \rightarrow T^{+}$such that for any x in \tilde{L},

$$
\begin{equation*}
\left|\pi\left(x_{s}\right)-\pi(x)\right| \geqslant t \quad \text { if } \quad x \geqslant \rho(t) \tag{2.12}
\end{equation*}
$$

Proof. Let us assume $x_{t} \rightarrow \infty$ for all x in \tilde{L}. For each x in \mathscr{L} and $r>0$, let

$$
A_{x}(r)=\inf \left\{t \geqslant 0 \mid \pi\left(x_{t}\right)-\pi(x)=r\right\}
$$

and let

$$
A(r)=\sup \left\{A_{x}(r) \mid x \text { in } \tilde{L}\right\}
$$

The finiteness of $A(r)$ follows from the continuity of $\bar{\phi}$, and 1.4.
Recall that, according to 2.4 (i), if

$$
F_{x}=\inf \left\{t \geqslant 0| | \pi\left(x_{t}\right)-\pi(x) \mid=1\right\}
$$

then

$$
F=\inf \left\{F_{x} \mid x \operatorname{in} \tilde{L}\right\}>0
$$

Now set $C=A(2+A(1) / F)$. We assert that

$$
\begin{equation*}
\pi\left(x_{t}\right)-\pi(x) \geqslant 1 \quad \text { if } \quad t \geqslant C . \tag{2.13}
\end{equation*}
$$

Suppose $\pi\left(x_{t}\right)-\pi(x)<1$ for some $t_{o} \geqslant C$. Then for some u in $[0, C] \subset\left[0, t_{o}\right]$ we have

$$
\pi\left(x_{u}\right)-\pi(x)=2+\frac{A(1)}{F},
$$

and for some $v>t_{o}$ we have

$$
\pi\left(x_{v}\right)-\pi(x)=1
$$

Now let

$$
\bar{u}=\sup \left\{u \text { in }[0, v] \left\lvert\, \pi\left(x_{u}\right)-\pi(x)=2+\frac{A(1)}{F}\right.\right\}
$$

so that

$$
\begin{equation*}
\pi\left(x_{s}\right)-\pi(x)<2+\frac{A(1)}{F} \quad \text { if } \quad \tilde{u}<s \leqslant v \tag{2.14}
\end{equation*}
$$

and

$$
\pi\left(x_{\bar{u}}\right)-\pi\left(x_{v}\right)=1+\frac{A(1)}{F}
$$

Thus, according to 2.4 (ii), $v-\bar{u} \geqslant A(1)$. But by the definition of A,

$$
\pi\left(x_{s}\right) \geqslant \pi\left(x_{\bar{u}}\right)+1=\pi(x)+\frac{A(1)}{F}+3
$$

for some s in $[\bar{u}, v]$, which contradicts (2.14). Thus (2.13) is proved.
Applying (2.13) we have, for any positive integer N and $t \geqslant N C$,

$$
\pi\left(x_{t}\right)-\pi(x)=\pi\left(x_{t}\right)-\pi\left(x_{(N-1) C}\right)+\sum_{k=1}^{N-1} \pi\left(x_{k C}\right)-\pi\left(x_{(k-1) C}\right) \geqslant N
$$

Thus $\rho(t)=(t+1) C$ satisfies (2.12).
Having established that every orbit tends to $+\infty(-\infty)$ uniformly, in the sense of (2.12), on L, we turn to a consideration of the flow on K.

3. Proof of the Main Theorem

3.1. Theorem. Let ϕ be a flow on $K=D^{2} \times S^{1}$ such that $\Omega_{x} \subset L=$ $S^{1} \times S^{1}=$ boundary of K for each x in K. Then L contains a closed orbit.
In order to prove the theorem, we establish a series of lemmas. The first two lemmas extend the conclusions of 2.10 and 2.11 from \tilde{L} to \vec{K}.
3.2. Lemma. If $\Omega_{x} \subset L$ for each x in K and L contains no closed orbit, then each orbit in K tends to $+\infty$ or each orbit tends to $-\infty$.

Proof. Let $\Delta: T^{\dagger} \times T^{\prime} \rightarrow T^{\text {' }}$ be as in 1.5 and $\delta=\Delta(1 / 10, \rho(1))$. Since $\Omega_{x} \subset L$ for each x in K, there exists a function $\sigma: K \rightarrow T^{+}$such that if x is in K and $s \geqslant \sigma(x)$ then $\operatorname{dist}\left(x_{3}, L\right)<\delta$. Since the metrics on $K=D^{2} \times S^{1}$ and $\tilde{K}=D^{2} \times T$ are product metrics we have for x in \tilde{K}, and $S(x)=\sigma(p(x))$,

$$
\operatorname{dist}\left(x_{s}, \tilde{L}\right)<\delta \quad \text { for } \quad s \geqslant S(x)
$$

Now for any positive integer n, and x in \tilde{K} we have, setting $S=S(x)$ and $R=\rho(1)$ (where ρ is defined in 2.11),

$$
P_{n}=\pi\left(x_{S+n R}\right)-\pi\left(x_{S}\right)=\sum_{k=0}^{n-1} \pi\left(x_{S+\left(x_{1+1}\right) R}\right)-\pi\left(x_{S+k R}\right)
$$

but

$$
\begin{aligned}
& Q_{k}=\pi\left(x_{S+(k+1) R}\right)-\pi\left(x_{S+k R}\right) \\
&=\pi\left(x_{S+(k+1) R}\right)-\pi\left(y_{R}^{k}\right)+\pi\left(y_{R}^{k}\right)-\pi\left(y^{k}\right)+\pi\left(y^{k}\right)-\pi\left(x_{S+k R}\right)
\end{aligned}
$$

where y^{k} may be chosen in \tilde{L} so that

$$
\operatorname{dist}\left(y^{k}, x_{S+k R}\right)<\delta \leqslant 1 / 10
$$

and thus

$$
\operatorname{dist}\left(y_{R}^{k}, x_{S+(k+1) R}\right)<1 / 10
$$

Since y^{k} is in $\tilde{L}, \pi\left(y_{R}^{k}\right)-\pi\left(y^{k}\right) \geqslant 1$. Therefore $Q_{k} \geqslant 8 / 10$ and $P_{n} \geqslant 8 / 10 n$, and the conclusion of the lemma follows.

In proving 2.11, we used the fact that every orbit in L tended to the same limit, $+\infty$ or $-\infty$, that \tilde{L} was the product of a compact set, S^{1}, and T, and that the flow on \tilde{L} covered a flow on $L=S^{1} \times S^{1}$. As a factor of \tilde{L}, we used no property of S^{1} other than its compactness. Therefore the proof of 2.11 may be repeated to obtain
3.3. Lemma. If L contains no closed orbit, and $\Omega_{x} \subset L$ for each x in K; then there exists a function, $\omega: T^{+} \rightarrow T^{+}$, such that for each x in \hat{K},

$$
\begin{equation*}
\left|\pi\left(x_{s}\right)-\pi(x)\right| \geqslant t \quad \text { if } \quad s \geqslant \omega(t) \tag{3.4}
\end{equation*}
$$

Assuming $x_{t} \rightarrow+\infty$ for each x in \tilde{K}, we have the following corollary:
3.5. Corollary. If L contains no closed orbit and $\Omega_{x} \subset L$ for each x in K then

$$
\pi\left(x_{\omega(1)}\right)-\pi(x) \geqslant 1 \quad \text { and } \quad \pi\left(x_{-\omega(1)}\right)-\pi(x) \leqslant-1
$$

for each x in K.
Our next aim is to construct a global cross section of \tilde{K}. In [3], Montgomery and Zippin showed that under certain conditions, a flow in Euclidean space has such a cross section. They employed the existence of local cross sections, as proved by Whitney, [6], in their proof. Rather than show that the necessary conditions are present, we shall derive the existence of a global cross section directly. However, the spirit of the derivation owes much to the abovementioned authors.

We first prove
3.6. Lemma. There exists a continuous function $W: \widetilde{K} \rightarrow T$ such that for any x in \tilde{K} and $h>0, W\left(x_{h}\right)-W(x) \geqslant h$.

Proof. Let $w=\omega(1)$. Define $W: \tilde{K} \rightarrow T$ as follows:

$$
W(x)=\int_{0}^{10} \pi\left(x_{s}\right) d s
$$

Then for $h>0$ we have

$$
\begin{aligned}
W\left(x_{h}\right)-W(x) & =\int_{h}^{w+h} \pi\left(x_{s}\right) d s-\int_{0}^{w} \pi\left(x_{s}\right) d s \\
& =\int_{w}^{w+h} \pi\left(x_{s}\right) d s-\int_{0}^{h} \pi\left(x_{s}\right) d s \\
& =\int_{0}^{h}\left(\pi\left(x_{w+s}\right)-\pi\left(x_{s}\right)\right) d s \geqslant h .
\end{aligned}
$$

The continuity of W follows from that of $\tilde{\phi}$. The lemma is proved.
3.7. Notation. $\quad \Sigma=\{x \mid W(x)=0\}$.
3.8. Lemma. (i) Σ is bounded in \tilde{K}. (ii) For each orbit, $x_{T}, \Sigma \cap x_{T}$ consists of one point, $\sigma(x)$. (iii) $\sigma: \tilde{K} \rightarrow \sum$ is continuous.

Proof. If $R=\max \left\{\left|\pi\left(\xi_{t}\right)-\pi(\xi)\right|| | t \mid \leqslant w\right\}$ then $|\pi(x)| \leqslant R$ for x in Σ which implies (i).

From (3.4) it follows that for each $x, f(t)=W\left(x_{t}\right)$ is unbounded from above or below. Thus, since f is continuous, each $f(t)=0$ for some t which implies $\sum \cap x_{T}$ is not empty. On the other hand, since f is a strictly increasing function, $\sum \cap x_{T}$ contains but one point. Thus (ii) is valid.

To prove the continuity of σ, we first consider $\psi: \widehat{K} \rightarrow T$ defined by $x_{\psi(x)}=\sigma(x)$, which is equivalent to $W\left(x_{\psi(x)}\right)=0$. Now, let $\epsilon>0$ and \bar{x} in \tilde{K} be given. We then have

$$
W\left(\bar{x}_{[\psi(\bar{x}), \epsilon]}\right)<0<W\left(\bar{x}_{[\psi(\bar{x})+\epsilon]}\right) .
$$

Thus, for y sufficiently close to \bar{x},

$$
W\left(y_{[\psi(\bar{x})-\epsilon]}\right)<0<W\left(y_{[\psi(\bar{x})+\epsilon]}\right)
$$

so that

$$
\psi(\bar{x})-\epsilon<\psi(y)<\psi(\bar{x})+\epsilon,
$$

which establishes the continuity of ψ. Since $\sigma(x)=x_{\psi(x)}, \sigma$ must be continuous. This completes the proof of 3.8.
3.9. Corollary. \sum has the fixed point property, since \sum is a retract of $\{x \in \tilde{K} \mid-R \leqslant \pi(x) \leqslant R\}$ under σ.

We are now ready to complete the proof of 3.1.
Suppose $\Omega_{x} \subset L$ for each x in K and L contains no closed orbit. Let \sum be as above, let S be an integer greater than $2 R+1$, and let $\Sigma^{\prime}=$ $\{x+S \mid x \in \Sigma\}$. Thus, for any x in Σ^{\prime} and y in Σ we have

$$
\pi(x)>-R+2 R+1>\pi(y),
$$

so that $\cdot \Sigma \cap \Sigma^{\prime}$ is empty. Now let $h: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ be defined by

$$
h(x)=\sigma(x)+S=x_{\psi(x)}+S
$$

where we note that $\psi(x) \neq 0$. According to 3.9 , for some \hat{x} in $\sum^{\prime} h(\hat{x})=\hat{x}$. Thus, $\hat{x}_{\psi(\hat{x})}=\hat{x}-S$, which implies $[p(\hat{x})]_{\psi(\hat{x})}=p(\hat{x})$, so that $p(\hat{x})_{T}$ is closed. Since $p(\hat{x})_{T}=\Omega_{p(\hat{x})} \subset L$, this contradicts our assumption and the theorem is proved.

References

1. Fuller, F. B., Note on trajectories in a solid torus. Ann. Math. (2) 56 (1952), 438-439.
2. Hartman, P., "Ordinary Differential Equations." Wiley, New York, 1964, 151-156.
3. Montgomery, D. and Zippin, L., Translation groups of three-space. Am. J. Math. 59 (1937), 121-128.
4. Seifert, H., Closed integral curves in 3 -space and two-dimensional deformations. Proc. Am. Math. Soc. 1 (1950), 287-302.
5. Siegel, C. L., Note on differential equations on the torus. Ann. Math. (2) 46 (1945), 423-428.
6. Whitney, H., Regular families of curves. Ann. Math. 34 (1933), 240-270.

[^0]: * This research was supported by the National Science Foundation, N.S.F. Grant No. 06962.

