Flows on the Solid Torus Asymptotic to the Boundary*

A. J. Schwartz

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104

Received October 21, 1966

INTRODUCTION

If X is a topological space and T denotes the real numbers, then by a *flow* we mean a continuous map $\phi: X \times T \to X$ such that $\phi(x, 0) = x$ and $\phi(x, s + t) = \phi(\phi(x, s), t)$. We shall denote $\phi(x, t)$ by x_t . If X is a differentiable manifold and V is a vector field on X, then V is said to generate ϕ where $V_x(f) = d/dt[f(x_t)]_{t=0}$ for every differentiable function, f.

In [4], Seifert raised the question: Does there exist a flow on S^3 which contains no closed, that is, periodic orbit? He showed that if V_o is a vector field on S^3 which generates a flow whose orbits are the fibers of the Hopf fibration and V is sufficiently close to V_o , in the C^o sense, then the flow generated by V must contain at least one closed orbit. Since S^3 is the union of two solid tori whose intersection is a two-dimensional torus, it is of interest to study flows on a solid torus, $K = D^2 \times S^1$, where $D^2 = \{z \mid z \text{ complex}, \mid z \mid \leq 1\}$. If it is possible to construct such a flow on S^3 .

Considering K, one might think that if the flow were such that the restriction to the boundary was the irrational flow, then a closed orbit, encircling the "hole" (that is, a closed orbit not contractible to a point) would exist in the interior of K. However, in [1] Fuller has constructed a flow on K whose only closed orbits are null homotopic.

In this paper, we shall approach the problem from a somewhat different standpoint. We consider a flow on K such that every interior orbit approaches the boundary as $t \to \infty$, and show that the boundary of K must contain a closed orbit. Thus if the boundary of K contains no closed orbit, the interior of K is not completely unstable.

We shall not assume that ϕ is generated by a vector field. We will make

^{*} This research was supported by the National Science Foundation, N.S.F. Grant No. 06962.

considerable use of the covering of K by \tilde{K} a simply connected, noncompact cylinder.

1. PRELIMINARY DEFINITIONS AND PROPOSITIONS

1.1. DEFINITION. Let $p: \tilde{X} \to X$ be a covering of X by \tilde{X} with projection p. If $\tilde{\phi}: \tilde{X} \times T \to \tilde{X}$ and $\phi: X \times T \to X$ are flows such that $p(x_t) = [p(x)]_t$, $\tilde{\phi}$ is said to cover ϕ .

As a consequence of the covering homotopy property we have the following proposition:

1.2. PROPOSITION. If $p: \tilde{X} \to X$ is a covering of X by \tilde{X} and $\phi: X \times T \to X$ is a flow, there exists a unique flow $\tilde{\phi}: \tilde{X} \times T \to \tilde{X}$ which covers ϕ .

1.3. NOTATION. D^2 will denote the unit disc, $\{z \mid z \text{ complex}, |z| \leq 1\}$, S^1 the unit circle, $\{z \mid |z| = 1\}$, and T^+ the positive real numbers. We also use the notation

 $K = D^2 \times S^1$ and $\tilde{K} = D^2 \times T$.

The covering $p: \tilde{K} \to K$ is defined by $p(d, t) = (d, e^{2\pi i t})$. We denote

 $L = S^1 \times S^1 =$ boundary of K

and

$$ilde{L}=S^1 imes T= ext{boundary} ext{ of } ilde{\mathcal{K}}.$$

We shall also use p to denote the restriction of p to \tilde{L} .

We shall consider a flow $\phi: K \times T \to K$ and its covering $\tilde{\phi}: \tilde{K} \times T \to \tilde{K}$. Finally, if (d, t) is in \tilde{K} and l is an integer we denote

$$(d, t) + l = (d, t + l).$$

Since

$$p[(x+l)_t] = [p(x+l)]_t = [p(x)]_t = p(x_t) = p(x_t+l)$$

and $(x + l)_t = x_t + l$ for t = 0, it follows from the uniqueness of covering paths that

1.4. $(x + l)_t = (x_t + l)$ for x in \hat{K} , t real, and l an integer.

It follows from the continuity of $\tilde{\phi}$ and the compactness of $\tilde{K}' = D^2 \times [-1, 1]$ that there exists a function $\Delta' : T^+ \times T^+ \to T^+$ such that if

x and y are in $\tilde{K}', \epsilon > 0, t > 0$, and dist $(x, y) < \Delta'(\epsilon, t)$, then dist $(x_s, y_s) < \epsilon$ for $|s| \leq t$. Applying 1.4, we have

1.5. There exists a function $\Delta : T^+ \times T^+ \to T^+$ such that if x and y are in $\tilde{K}, \epsilon > 0, t > 0$, and $dist(x, y) < \Delta(\epsilon, t)$, then $dist(x_s, y_s) < \epsilon$ for $|s| \leq t$. (Note: we assume that $K = D^2 \times S^1$ and $\tilde{K} = D^2 \times T$ are equipped with their product metrics.)

We now introduce some concepts from topological dynamics.

1.5. DEFINITION. If x is a point of K or \vec{K} , by the omega limit set of x, Ω_x , we mean $\bigcap_{t \in T} \operatorname{cl}\{x_s \mid s \ge t\}$; where $\operatorname{cl}\{\ldots\}$ denotes the closure of $\{\ldots\}$.

It is easy to verify that

$$\Omega_x = \{ y \in \vec{K} \mid x_{t(k)} \to y \quad \text{for some} \quad t(k) \to \infty \}.$$
(1.6)

1.7. DEFINITION. A compact set $M \subset \tilde{K}$ is called *minimal* where M is nonempty invariant (i.e., $M_t = M$ for all t in T), and contains no such proper subset.

By an application of Zorn's lemma one sees that

1.8. Every compact invariant set contains a minimal set.

1.9. DEFINITION. x_T is called a *closed orbit* where x_T is compact. Thus

1.10. x_T is a closed orbit if and only if $x_h = x$ for some $h \neq 0$. Note that a fixed point, $x_T = \{x\}$ is a closed orbit.

1.11. DEFINITION. Consider a flow in L or \tilde{L} . We say a closed orbit is bounding in L or \tilde{L} if its complement has two components, at least one of which is bounded.

As a consequence of the Brouwer fixed-point theorem we have

1.11. Every bounding orbit in \tilde{L} contains a fixed point in the bounded component of its complement.

Note that by invariance of domain, L or \tilde{L} must be an invariant set in K or \tilde{K} .

We shall make use of a somewhat generalized version of the Poincaré-Bendixson theory. As a rule, Poincaré-Bendixson theorems are proved for flows in the plane or the two-dimensional sphere, S^2 , generated by continuous vector fields (see, for example, [2]). However, the only use made of the vector field is in the construction of transversal line segments. Whitney has shown, [6], that transversal line segments may be constructed at any regular point (i.e., nonfixed point) of a two-dimensional flow. Thus we have 1.12. THEOREM (Poincaré-Bendixson). Given a flow on S^2 , and a point x in S^2 then

(a) $\Omega_x = x_T$ if x_T is closed. On the other hand, if x_T is not closed we have

(b) $\Omega_x = \gamma$ = boundary of C, where C is an open two cell containing x and a fixed point. Moreover, if S² contains finitely fixed points $c_1, ..., c_n$ then

(c) Ω_x is either a closed orbit or Ω_x is the union of some of the fixed points and orbits $y_T^1, ..., y_T^m$ satisfying $y_t^j \to c_k$ as $t \to -\infty$ and $y_t^j \to c_l$ as $t \to +\infty$, for some k and l.

Now, consider a flow on \tilde{L} without fixed points. We may embed \tilde{L} in S^2 so that $S^2 - \tilde{L} = \{(0, 0, -1), (0, 0, +1)\}$. We state that (0, 0, -1) and (0, 0, +1) are fixed points and thereby extend the flow to S^2 . If x is in \tilde{L} and Ω_x contains no fixed point, then Ω_x is a closed orbit, nonbounding in \tilde{L} . On the other hand, if Ω_x contains one fixed point, (0, 0, 1), $S^2 - \Omega_x$ must contain the other. If, in addition, Ω_x were to contain a regular orbit y_T , then $y_T \cup \{(0, 0, 1)\}$ would separate S^2 into two regions, each containing a fixed point, which is impossible. Thus we have

1.13. If \tilde{L} contains no fixed point, then every omega limit set is either a nonbounding orbit or empty.

We may reformulate this by introducing the following definitions:

1.14. NOTATION. For (d, t) in \tilde{K} , denote $\pi(d, t) = t$.

1.15. DEFINITION. Let x be in K, $p(\tilde{x}) = x$. If $\pi(\tilde{x}_t) \to +\infty$ $(-\infty)$ as $t \to +\infty$ we say $x_t \to \infty(-\infty)$ as well as $\tilde{x}_t \to \infty(-\infty)$. Thus, we have as a corollary to 1.13,

1.16. If \tilde{L} contains no closed orbit, and x is in \tilde{L} then either $x_t \to +\infty$ or $x_t \to -\infty$.

It will take a good deal more effort to show that all orbits tend, in some sense uniformly, to the same limit.

2. The Behavior of the Flow on L

In [5], Siegel showed that if L contains no compact orbit, it must contain a cross-section, Γ , that is, a simple closed curve, nowhere tangent to the field generating ϕ , which intersects every orbit.

If Γ were covered by a closed curve $\tilde{\Gamma}$ in \tilde{L} . It would be easy to show that every orbit tended to $+\infty$ or every orbit tended to $-\infty$. Although we may construct a covering $p^*: L^* \to L$ so that Γ is covered by a closed curve Γ^* , it may not be possible to extend p^* to a covering of K.

SCHWARTZ

The difficulty to be avoided is exemplified by the following system in the plane:

$$\frac{dx}{dt} = \cos 2\pi y,$$
$$\frac{dy}{dt} = \sin 2\pi y.$$

Here all orbits tend to $-\infty$ except $y = 2\pi k$, k = 0, +1, +2,..., which tend to $+\infty$. The orbits $y = 2\pi k$ serve as examples of the following concept:

2.1. DEFINITION. x_T is called a *separatrix* where $x_t \to +\infty(-\infty)$ and there exists $y(k) \to x$ such that for each k, $y(k)_t \to -\infty(+\infty)$.

Our immediate aim is to show that separatrices in L are closed orbits.

As a consequence of 1.13 we have the following lemma:

2.2. LEMMA. If \tilde{L} contains at least one orbit \tilde{x}_T , such that $\tilde{x}_t \to \infty$ or $\tilde{x}_t \to -\infty$, but no fixed point, then \tilde{L} contains no closed orbit.

Proof. If \tilde{L} contains a closed orbit, γ , it must be nonbounding. If we embed \tilde{L} in S^2 as before, γ separates (0, 0, 1) and (0, 0, -1). We may select \tilde{x} in $p^{-1}(x)$ so that \tilde{x} is in the same component of $S^2 - \gamma$ as (0, 0, -1). Thus $\tilde{x}_t \nleftrightarrow (0, 0, 1)$, which is to say, $x_t \nleftrightarrow \infty$. Similarly $x_t \not\to -\infty$, which proves the lemma.

Our next lemma limits the amount of time an orbit may remain in a compact portion of \tilde{L} .

2.3. LEMMA. If \tilde{L} contains no closed orbit, there exists a function $M: T^+ \to T^+$ such that diam $(y_{[0,M(t)]}) > t$ for all y in \tilde{L} and t > 0.

Proof. Suppose, on the contrary, for some $t_o > 0$ and $\{y(k) | k = 1, 2, ...\} \subset \tilde{L}$ we have diam $\{y(k)_{[0,k]}\} \leq t_o$. According to 1.4 we may assume $\{y(k)\} \subset S^1 \times [0, 1]$ and by choosing a subsequence, if necessary, we may assume $y(k) \rightarrow \tilde{y}$.

If diam $\bar{y}_{[0,\infty)} \leq 2t_o$ then $\Omega_{\bar{y}}$ must be a closed orbit, contrary to hypothesis. If diam $\bar{y}_{[0,\infty)} > 2t_o$, then dist $(\bar{y}, \bar{y}_h) > t_o$ for some h, dist $(y(k), y(k)_h) > t_o$ for sufficiently large k, and for k > h we have diam $(y(k)_{[0,k]}) \geq diam(y(k)_{[0,k]}) > t_o$ contradicting the supposition. The lemma is proved.

The next lemma, in a sense, limits the "speed" of any orbit.

2.4. LEMMA. There exists a positive number F such that for any x in L, (i) $|\pi(x_s) - \pi(x)| \leq 1$ if s in [0, F], and t

(ii) $|\pi(x_t) - \pi(x)| \leq \frac{t}{F} + 1$ for $t \geq 0$.

318

Proof. Let

$$F_x = \inf\{t \ge 0 \mid |\pi(x_t) - \pi(x)| = 1\}$$

and

 $F = \inf\{F_x \mid x \text{ in } \tilde{L}\}.$

Clearly, F satisfies (i). That F > 0 follows from the continuity of $\tilde{\phi}$, the compactness of $\tilde{K}' = D^2 \times [-1, 1]$, and 1.4. Now, if N is an integer such that

$$0 \leqslant (N-1)F \leqslant t \leqslant NF,$$

we have

$$egin{aligned} |\pi(x_t) - \pi(x)| \leqslant \sum_{k=0}^{N-2} |\pi(x_{kF}) - \pi(x_{(k+1)F})| + |\pi(x_t) - \pi(x_{(N-1)F})| \ &\leqslant N \leqslant rac{t}{F} + 1. \end{aligned}$$

We now come to the key theorem of this section.

2.5. THEOREM. If L contains no fixed point, every separatrix is a closed orbit in L.

Proof. (See Figure 1). Let x_T be a separatrix. Let us say $x_t \to +\infty$. Suppose x_T is not closed in L. Let $x = p(\tilde{x})$. We may assume $\pi(\tilde{x}) = 0$. (See 1.14).

Let

$$t(k) = \sup\{t \mid \pi(\tilde{x}_t) = k\}$$

and

 $y(k) = \tilde{x}_{t(k)} - k.$ (See 1.3).

Thus $\{y(k) | k = 1, 2,...\}$ is an infinite subset of $\Pi_o = \{\xi \in \tilde{L} | \pi(\xi) = 0\} \subset \tilde{L}$. Moreover,

$$y(k)_t > 0$$
 for $t > 0$,
 $y(k)_t \to +\infty$,
 $p(y(k)_T) = x_T$ for all k .

We choose

$$r(k) = \inf\{t \ge 0 \mid \pi(y(k)_t) = 1\}$$

thus

$$0 < \pi(y(k)_t) < 1$$
 for $0 < t < r(k)$

so that

$$0 < F \leqslant r(k) \leqslant M(1), \tag{2.6}$$

where F is defined in 2.4 and M(1) is defined in 2.3. Note $x_t \rightarrow +\infty$ implies \tilde{L} contains no closed orbit according to 2.2.

Fig. 1.

Now by taking a subsequence, if necessary, we may assume that $y(k) \rightarrow \bar{y}$. Moreover, if we suitably coordinatize a neighborhood U, of Π_o near \bar{y} by $\theta: U \rightarrow T$, we may assume (again taking a subsequence if necessary)

$$\theta(y(1)) > \theta(y(2)) > \cdots > \theta(y(k)) > \cdots.$$

Now, $y(k)_{[0,\infty)} \cup y(k+2)_{[0,\infty)}$ separates $S^1 \times [0,\infty)$ into two components, C_k and D_k , with y(k+1) in C_k .

By supposition, we may assume there is a point w(k) in Π_o satisfying

- (i) $w(k)_t \to -\infty$,
- (ii) w(k) is in C_k ,
- (iii) for some s > 0, $\pi(w(k)_s) > 1$, and $w(k)_s$ is in C_k .

We may satisfy (iii) by choosing s > 0 such that $\pi(y(k+1)_s) > 1$ and choosing w(k) sufficiently close to y(k+1).

320

Let

$$s(k) = \sup\{s \mid \pi(w(k)_s) = 1, w(k)_s \in C_k\}$$

and

$$u(k) = w(k)_{s(k)}.$$

Since
$$u(k)$$
 is in $w(k)_T$, $u(k)_t \to -\infty$. We may set

$$v(k) = \inf\{v > 0 \mid \pi(u(k)) = 0\}.$$

Now $u(k)_{(0,v(k))}$ cannot cross $y(k)_{[0,\infty)}$ or $y(k+2)_{[0,\infty)}$, thus,

$$u(k)_{(0,v(k))} \subset C_k$$

and

$$\theta(y(k)) > \theta(u(k)_{v(k)}) > \theta(y(k+2)). \tag{2.7}$$

According to 2.4 and 2.3,

$$0 < F \leq v(k) \leq M(1).$$

Next we suitably coordinatize $V = \Pi_1 - \{y(1)_{r(1)}\}$, where $\Pi_1 = \{\xi \in \tilde{L} \mid \pi(\xi) = 1\}$, by $\psi : V \to T$. We have

$$\psi(y(k)_{r(k)}) > \psi(u(k)) > \psi(y(k+2)_{r(k+2)})$$
(2.9)

so that, according to (2.9) and (2.6),

$$\lim_{k\to\infty} y(k)_{r(k)} = \lim_{k\to\infty} u(k) = \bar{y}_{\bar{r}},$$

where

$$\bar{r} = \lim_{k \to \infty} r(k) \geqslant F.$$

(Note that the uniqueness of the limit of $\{y(k)_{r(k)}\}$ implies the uniqueness of the limit of $\{r(k)\}$.) Furthermore, from (2.7) and (2.8) it follows that

$$u(k)_{v(k)} \to \bar{y}_{\bar{r}+\bar{v}} = \bar{y},$$

where

$$\bar{v} = \lim_{k \to \infty} v(k) \geqslant F.$$

Thus \bar{y}_T is a closed orbit in \tilde{L} . But, according 2.2, this contradicts the hypothesis. The theorem is proved.

As a corollary to 2.5 we have

2.10. COROLLARY. If L contains no closed orbit, all orbits tend to $+\infty$ or all orbits tend to $-\infty$.

SCHWARTZ

Proof. If L contains no closed orbit, a fortiori \tilde{L} contains no closed orbit. Thus, according to 1.16, $\tilde{L} = A \cup B$ where $A = \{x \mid x_t \to \infty\}$ and $B = \{x \mid x_t \to -\infty\}$. But according to 2.5, A and B are closed. Since $A \cap B$ is empty and \tilde{L} is connected, $\tilde{L} = A$ or $\tilde{L} = B$, which was to be shown.

Having established that all orbits tend to the same limit, we now show that they tend to this limit "uniformly".

2.11. THEOREM. If L contains no closed orbit, there exists a function $\rho: T^+ \rightarrow T^+$ such that for any x in \tilde{L} ,

$$|\pi(x_s) - \pi(x)| \ge t$$
 if $x \ge \rho(t)$. (2.12)

Proof. Let us assume $x_t \to \infty$ for all $x \text{ in } \tilde{L}$. For each $x \text{ in } \tilde{L}$ and r > 0, let

$$A_x(r) = \inf\{t \ge 0 \mid \pi(x_t) - \pi(x) = r\}$$

and let

$$A(r) = \sup\{A_x(r) \mid x \text{ in } \tilde{L}\}.$$

The finiteness of A(r) follows from the continuity of ϕ , and 1.4.

Recall that, according to 2.4 (i), if

$$F_x = \inf\{t \ge 0 \mid |\pi(x_t) - \pi(x)| = 1\},$$

then

$$F = \inf\{F_x \mid x \inf \tilde{L}\} > 0.$$

Now set C = A(2 + A(1)/F). We assert that

$$\pi(x_t) - \pi(x) \ge 1 \quad \text{if} \quad t \ge C. \tag{2.13}$$

Suppose $\pi(x_i) - \pi(x) < 1$ for some $t_o \ge C$. Then for some u in $[0, C] \subset [0, t_o]$ we have

$$\pi(x_u) - \pi(x) = 2 + \frac{A(1)}{F}$$
,

and for some $v > t_o$ we have

$$\pi(x_v) - \pi(x) = 1.$$

Now let

$$\bar{u} = \sup \left\{ u \text{ in } [0, v] | \pi(x_u) - \pi(x) = 2 + \frac{A(1)}{F} \right\}$$

so that

$$\pi(x_s) - \pi(x) < 2 + \frac{A(1)}{F}$$
 if $\overline{u} < s \leqslant v$, (2.14)

and

$$\pi(x_{\bar{u}}) - \pi(x_v) = 1 + \frac{A(1)}{F}$$

Thus, according to 2.4 (ii), $v - \bar{u} \ge A(1)$. But by the definition of A,

$$\pi(x_s) \geq \pi(x_{\bar{u}})+1 = \pi(x) + \frac{A(1)}{F} + 3$$

for some s in $[\bar{u}, v]$, which contradicts (2.14). Thus (2.13) is proved.

Applying (2.13) we have, for any positive integer N and $t \ge NC$,

$$\pi(x_t) - \pi(x) = \pi(x_t) - \pi(x_{(N-1)C}) + \sum_{k=1}^{N-1} \pi(x_{kC}) - \pi(x_{(k-1)C}) \ge N.$$

Thus $\rho(t) = (t+1) C$ satisfies (2.12).

Having established that every orbit tends to $+\infty(-\infty)$ uniformly, in the sense of (2.12), on L, we turn to a consideration of the flow on K.

3. PROOF OF THE MAIN THEOREM

3.1. THEOREM. Let ϕ be a flow on $K = D^2 \times S^1$ such that $\Omega_x \subset L = S^1 \times S^1 =$ boundary of K for each x in K. Then L contains a closed orbit.

In order to prove the theorem, we establish a series of lemmas. The first two lemmas extend the conclusions of 2.10 and 2.11 from \tilde{L} to \tilde{K} .

3.2. LEMMA. If $\Omega_x \subset L$ for each x in K and L contains no closed orbit, then each orbit in K tends to $+\infty$ or each orbit tends to $-\infty$.

Proof. Let $\Delta: T^+ \times T^+ \to T^+$ be as in 1.5 and $\delta = \Delta(1/10, \rho(1))$. Since $\Omega_x \subset L$ for each x in K, there exists a function $\sigma: K \to T^+$ such that if x is in K and $s \ge \sigma(x)$ then $\operatorname{dist}(x_s, L) < \delta$. Since the metrics on $K = D^2 \times S^1$ and $\tilde{K} = D^2 \times T$ are product metrics we have for x in \tilde{K} , and $S(x) = \sigma(p(x))$,

$$\operatorname{dist}(x_s, \tilde{L}) < \delta$$
 for $s \ge S(x)$.

Now for any positive integer *n*, and *x* in \tilde{K} we have, setting S = S(x) and $R = \rho(1)$ (where ρ is defined in 2.11),

$$P_n = \pi(x_{S+nR}) - \pi(x_S) = \sum_{k=0}^{n-1} \pi(x_{S+(k+1)R}) - \pi(x_{S+kR}),$$

but

$$\begin{aligned} Q_k &= \pi(x_{S+(k+1)R}) - \pi(x_{S+kR}) \\ &= \pi(x_{S+(k+1)R}) - \pi(y_R^k) + \pi(y_R^k) - \pi(y^k) + \pi(y^k) - \pi(x_{S+kR}), \end{aligned}$$

where y^k may be chosen in \tilde{L} so that

$$\operatorname{dist}(y^k, x_{S+kR}) < \delta \leqslant 1/10$$

and thus

$$dist(y_R^k, x_{S+(k+1)R}) < 1/10.$$

Since y^k is in \tilde{L} , $\pi(y_R^k) - \pi(y^k) \ge 1$. Therefore $Q_k \ge 8/10$ and $P_n \ge 8/10n$, and the conclusion of the lemma follows.

In proving 2.11, we used the fact that every orbit in \tilde{L} tended to the same limit, $+\infty$ or $-\infty$, that \tilde{L} was the product of a compact set, S^1 , and T, and that the flow on \tilde{L} covered a flow on $L = S^1 \times S^1$. As a factor of \tilde{L} , we used no property of S^1 other than its compactness. Therefore the proof of 2.11 may be repeated to obtain

3.3. LEMMA. If L contains no closed orbit, and $\Omega_x \subset L$ for each x in K; then there exists a function, $\omega : T^+ \to T^+$, such that for each x in \tilde{K} ,

$$|\pi(x_s) - \pi(x)| \ge t$$
 if $s \ge \omega(t)$. (3.4)

Assuming $x_t \to +\infty$ for each x in \tilde{K} , we have the following corollary:

3.5. COROLLARY. If L contains no closed orbit and $\Omega_x \subset L$ for each x in K then

$$\pi(x_{\omega(1)}) - \pi(x) \ge 1$$
 and $\pi(x_{-\omega(1)}) - \pi(x) \le -1$

for each x in K.

Our next aim is to construct a global cross section of \tilde{K} . In [3], Montgomery and Zippin showed that under certain conditions, a flow in Euclidean space has such a cross section. They employed the existence of local cross sections, as proved by Whitney, [6], in their proof. Rather than show that the necessary conditions are present, we shall derive the existence of a global cross section directly. However, the spirit of the derivation owes much to the abovementioned authors.

We first prove

3.6. LEMMA. There exists a continuous function $W: \tilde{K} \to T$ such that for any x in \tilde{K} and h > 0, $W(x_h) - W(x) \ge h$.

324

Proof. Let $w = \omega(1)$. Define $W : \tilde{K} \to T$ as follows:

$$W(x)=\int_0^w\pi(x_s)\,ds$$

Then for h > 0 we have

$$W(x_h) - W(x) = \int_h^{w+h} \pi(x_s) \, ds - \int_0^w \pi(x_s) \, ds,$$
$$= \int_w^{w+h} \pi(x_s) \, ds - \int_0^h \pi(x_s) \, ds,$$
$$= \int_0^h (\pi(x_{w+s}) - \pi(x_s)) \, ds \ge h.$$

The continuity of W follows from that of $\tilde{\phi}$. The lemma is proved.

3.7. NOTATION. $\sum = \{x \mid W(x) = 0\}.$

3.8. LEMMA. (i) \sum is bounded in \tilde{K} . (ii) For each orbit, $x_T, \sum \cap x_T$ consists of one point, $\sigma(x)$. (iii) $\sigma : \tilde{K} \to \sum$ is continuous.

Proof. If $R = \max\{|\pi(\xi_t) - \pi(\xi)| \mid |t| \leq w\}$ then $|\pi(x)| \leq R$ for x in Σ which implies (i).

From (3.4) it follows that for each x, $f(t) = W(x_t)$ is unbounded from above or below. Thus, since f is continuous, each f(t) = 0 for some t which implies $\sum \bigcap x_t$ is not empty. On the other hand, since f is a strictly increasing function, $\sum \bigcap x_t$ contains but one point. Thus (ii) is valid.

To prove the continuity of σ , we first consider $\psi: \tilde{K} \to T$ defined by $x_{\psi(x)} = \sigma(x)$, which is equivalent to $W(x_{\psi(x)}) = 0$. Now, let $\epsilon > 0$ and \bar{x} in \tilde{K} be given. We then have

$$W(\tilde{x}_{[\psi(\bar{x})-\epsilon]}) < 0 < W(\tilde{x}_{[\psi(\bar{x})+\epsilon]}).$$

Thus, for y sufficiently close to \vec{x} ,

$$W(y_{[\psi(\bar{x})-\epsilon]}) < 0 < W(y_{[\psi(\bar{x})+\epsilon]}),$$

so that

$$\psi(\hat{x}) - \epsilon < \psi(y) < \psi(\hat{x}) + \epsilon,$$

which establishes the continuity of ψ . Since $\sigma(x) = x_{\psi(x)}$, σ must be continuous. This completes the proof of 3.8.

3.9. COROLLARY. \sum has the fixed point property, since \sum is a retract of $\{x \in \tilde{K} \mid -R \leq \pi(x) \leq R\}$ under σ .

SCHWARTZ

We are now ready to complete the proof of 3.1.

Suppose $\Omega_x \subset L$ for each x in K and L contains no closed orbit. Let Σ be as above, let S be an integer greater than 2R + 1, and let $\Sigma' = \{x + S \mid x \in \Sigma\}$. Thus, for any x in Σ' and y in Σ we have

$$\pi(x) > -R + 2R + 1 > \pi(y),$$

so that $\sum \cap \sum'$ is empty. Now let $h: \sum' \to \sum'$ be defined by

$$h(x) = \sigma(x) + S = x_{\psi(x)} + S,$$

where we note that $\psi(x) \neq 0$. According to 3.9, for some \hat{x} in $\sum' h(\hat{x}) = \hat{x}$. Thus, $\hat{x}_{\psi(\hat{x})} = \hat{x} - S$, which implies $[p(\hat{x})]_{\psi(\hat{x})} = p(\hat{x})$, so that $p(\hat{x})_T$ is closed. Since $p(\hat{x})_T = \Omega_{p(\hat{x})} \subset L$, this contradicts our assumption and the theorem is proved.

References

- 1. FULLER, F. B., Note on trajectories in a solid torus. Ann. Math. (2) 56 (1952), 438-439.
- 2. HARTMAN, P., "Ordinary Differential Equations." Wiley, New York, 1964, 151–156.
- 3. MONTGOMERY, D. AND ZIPPIN, L., Translation groups of three-space. Am. J. Math. 59 (1937), 121-128.
- SEIFERT, H., Closed integral curves in 3-space and two-dimensional deformations. Proc. Am. Math. Soc. 1 (1950), 287-302.
- SIEGEL, C. L., Note on differential equations on the torus. Ann. Math. (2) 46 (1945), 423-428.
- 6. WHITNEY, H., Regular families of curves. Ann. Math. 34 (1933), 240-270.