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If X is a topological space and T denotes the real numbers, then by a flow 
we mean a continuous map 4 : X x T + X such that 4(x, 0) = x and 
4(x, s + t) = #(#(x, s), t). We shall denote+(x, t) by xt . If Xis a differentiable 
manifold and Y is a vector field on X, then V is said to generate 4 where 

V,(f) = 4w(xtllt=cl f or every differentiable function, f. 
In [A, Seifert raised the question: Does there exist a flow on Ss which 

contains no closed, that is, periodic orbit ? He showed that if V, is a vector 
field on S8 which generates a flow whose orbits are the fibers of the Hopf 
fibration and V is sufficiently close to V, , in the Co sense, then the flow 
generated by V must contain at least one closed orbit. Since S3 is the union 
of two solid tori whose intersection is a two-dimensional torus, it is of 
interest to study flows on a solid torus, K = D2 x S1, where D2 = {z 1 z 

complex, 1 z 1 < l}. If it is possible to construct such a flow on K with no 
closed orbit, then it is possible to construct such a flow on S3. 

Considering K, one might think that if the ilow were such that the 
restriction to the boundary was the irrational flow, then a closed orbit, 
encircling the “hole” (that is, a closed orbit not contractible to a point) 
would exist in the interior of K. However, in [I] Fuller has constructed 
a flow on K whose only closed orbits are null homotopic. 

In this paper, we shall approach the problem from a somewhat different 
standpoint. We consider a flow on K such that every interior orbit approaches 
the boundary as t + co, and show that the boundary of K must contain a 
closed orbit. Thus if the boundary of K contains no closed orbit, the interior 
of K is not completely unstable. 

We shall not assume that 4 is generated by a vector field. We will make 
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considerable use of the covering of K by l? a simply connected, noncompact 
cylinder. 

1. PRELIMINARY DEFINITIONS AND PROPOSITIONS 

1.1. DEFINITION. Let p : X -+ X be a covering of X by X with projection 
p.If$:X x T-+Xand4:X x T -+ X are flows such that p(xl) = [~(cv)]~ , 
4 is said to cover +. 

As a consequence of the covering homotopy property we have the following 
proposition: 

1.2. PROPOSITION. If p :8-t X is a covering of X by 2 and 
4 : X x T + X is a jaw, there exists a unique jlow C$ : 8 x T ---f R which 
covers 4. 

1.3. NOTATION. D2 will denote the unit disc, (z ] x complex, 1 .s 1 < l}, 5” 
the unit circle, {z 1 1 z I = l}, and T+ the positive real numbers. We also 
use the notation 

K = D2 x S and I? = D” x T. 

The covering p : R --+ K is defined by P(d, t) = (d, earit). We denote 

L = Sr x Sr = boundary of K 

and 

e = S x T = boundary of R. 

We shall also use p to denote the restriction of p to f;. 
We shall consider a flow CJ : K x T -+ K and its covering4 : R x T + kf 

Finally, if (d, t) is in a and 1 is an integer we denote 

Since 

(4 t) + l = (4 t + 4. 

P[(X + m = Mx + Olt = [PWI, = PW = P(xt + 0 

and (x + Q = xt + 1 for t = 0, it follows from the uniqueness of covering 
paths that 

1.4. (x + Z)$ = (xt + 1) for x in R, t real, and 1 an integer. 
It follows from the continuity of 4 and the compactness of l? = 

Da x [-1, l] that there exists a function d’ : Tf x T+ ---f T+ such that if 
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x andy are in J?‘, E > 0, t > 0, and dist(x, y) < d’(~, t), then dist(x, , yJ < E 
for 1 s 1 < t. Applying 1.4, we have 

1.5. There exists a function d : T-t x T+ + T+- such that if x and y are in 
R, l > 0, t > 0, and dist(x, y) < d(~, t), then dist(x, , ys) < E for 1 s 1 ,< t. 
(Note: we assume that K = D2 x S and I? = D2 x T are equipped with 
their product metrics.) 

We now introduce some concepts from topological dynamics, 

1.5. DEFINITION. If x is a point of K or I?, by the omega limit set of x, 
sz 5, we mean r\toT~l{~s 1 s > t}; where cl{...} denotes the closure of (...>. 

It is easy to verify that 

J&x = {Y E R I %(?d -+ Y for some t(k) -+ co}. (14 

1.7. DEFINITION. A compact set M C R is called minimal where M is 
nonempty invariant (i.e., M, = M for all t in T), and contains no such 
proper subset. 

By an application of Zorn’s lemma one sees that 

1.8. Every compact invariant set contains a minimal set. 

1.9. DEFINITION. xr is called a closed orbit where xT is compact. Thus 

1.10. xr is a closed orbit if and only if x, = x for some h f 0. 
Note that a fixed point, xr = {x} is a closed orbit. 

1.11. DEFINITION. Consider a flow in L or z. We say a closed orbit is 
bounding in L or f: if its complement has two components, at least one of 
which is bounded. 

As a consequence of the Brouwer fixed-point theorem we have 

1 .l 1. Every bounding orbit in e contains a fixed point in the bounded 
component of its complement. 

Note that by invariance of domain, L or f; must be an invariant set in K 
or R. 

We shall make use of a somewhat generalized version of the Poincare- 
Bendixson theory. As a rule, Poincare-Bendixson theorems are proved for 
flows in the plane or the two-dimensional sphere, S2, generated by continuous 
vector fields (see, for example, [2]). However, the only use made of the vector 
field is in the construction of transversal line segments. Whitney has shown, 
[6], that transversal line segments may be constructed at any regular point 
(i.e., nonfixed point) of a two-dimensional flow. Thus we have 
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1.12. THEOREM (PoincarbBendixson). Given a flow on S2, and a point x 
in S2 then 

(a) 52, = xT if xT is closed. On the other hand, if xT is not closed we have 

(b) 52, = y  = boundary of C, w ere h C is an open two cell containing 
x and a fixed point. Moreover, if S2 contains jinitely jixed points c1 ,..., c, then 

(c) 9, is either a closed orbit OY Qz is the union of some of the Jixed points 
and orbits yk ,..., yy  satisfying y{ +clcast+ --co andyi+clas t-+ fco, 
for some k and 1. 

Now, consider a flow on z without fixed points. We may embed fl in S2 
so that S2 -z = ((0, 0, -1) (0, 0, +l)}. We state that (0, 0, -1) and 
(0, 0, $1) are fixed points and thereby extend the flow to S2. If x is in e 
and Sz, contains no fixed point, then Q, is a closed orbit, nonbounding in e. 
On the other hand, if Q, contains one fixed point, (0, 0, l), S2 - !& must 
contain the other. If, in addition, Qz were to contain a regular orbit yr, 
then yr u ((0, 0, I)} would separate S2 into two regions, each containing a 
fixed point, which is impossible. Thus we have 

1.13. If L contains no fixed point, then every omega limit set is either a 
nonbounding orbit or empty. 

We may reformulate this by introducing the following definitions: 

1.14. NOTATION. For (d, t) in Z?, denote r(d, t) = t. 

1.15. DEFINITION. Let x be in K, p(2) = x. If n(&) -+ + co (-co) as 
t --+ +co we say xt ---f co( --co) as well as f, -+ co( -co). Thus, we have 
as a corollary to 1.13, 

1.16. If e contains no closed orbit, and x is in E then either xt + +oo or 
Xt -+ -03. 

It will take a good deal more effort to show that all orbits tend, in some 
sense uniformly, to the same limit. 

2. THE BEHAVIOR OF THE FLOW ON L 

In [5], Siegel showed that if L contains no compact orbit, it must contain 
a cross-section, r, that is, a simple closed curve, nowhere tangent to the 
field generating 4, which intersects every orbit. 

If r were covered by a closed curve f in z. It would be easy to show that 
every orbit tended to + co or every orbit tended to -co. Although we may 
construct a covering p* : L* -+ L so that r is covered by a closed curve P, 
it may not be possible to extend p* to a covering of K. 
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The difficulty to be avoided is exemplified by the following system in 
the plane: 

dx 
2 = cos 27Ty, 

dY z = sin 277~. 

Here all orbits tend to ---co except y = 27rk, k = 0, $1, +2,..., which 
tend to + 00. The orbits y = 2nk serve as examples of the following concept: 

2.1. DEFINITION. xr is called a separatrix where xt + +co( --a)) and 
there exists y(k) -+ x such that for each k, y(k), + - co( 3-w). 

Our immediate aim is to show that separatrices in L are closed orbits. 
As a consequence of 1.13 we have the following lemma: 

2.2. LEMMA. If E contains at least one orbit &, such that & + co OY 

Zt + -co, but no JLixed point, then f; contains no closed orbit. 

Proof. If J? contains a closed orbit, y, it must be nonbounding. If we 
embed e in S2 as before, y separates (0, 0, 1) and (0, 0, - 1). We may select 
i in p-l(x) so that x” is in the same component of S2 - y as (0, 0, -1). Thus 
f, + (0, 0, I), which is to say, xt ++ co. Similarly xt + -co, which proves 
the lemma. 

Our next lemma limits the amount of time an orbit may remain in a compact 
portion of L. 

2.3. LEMMA. If z contains no closed orbit, there exists a function 

M : T+ --f T+ such that diam(yL,,,(,),) > t for ally in e and t > 0. 

Proof. Suppose,on the contrary,for some t, > 0 and (y(k)1 k = 1,2,...} CL 
we have diam{y(k),,,,,} < t, . According to 1.4 we may assume {y(k)} C 

S x [0, l] and by choosing a subsequence, if necessary, we may assume 

y(k) - 9. 
If diam&,,,) < 2t, then Qn, must be a closed orbit, contrary to hypothesis. 
If diam j$,,,) > 2t, , then dist(9, bin) > t, for some h, dist(y(k), y(k)h) > t, 

for sufficiently large k, and for k > h we have diam(y(k)l,,,$ > 
diam(y(k),,,,,) > t, contradicting the supposition. The lemma is proved. 

The next lemma, in a sense, limits the “speed” of any orbit. 

2.4. LEMMA. There exists a positive number F such that for any x in fi, 

(i) ( n(x,) - V(X)\ < 1 ifs in [O,F], and 

(ii) 1 7r(xt) - T(X)\ < $- + 1 for t 3 0. 
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Proof. Let 

and 

F, = inf{t 3 0 1 1 n(q) - rr(x)] = l} 

F = inf{F= 1 x inL}. 

Clearly, F satisfies (i). That F > 0 follows from the continuity of 8, the 
compactness of I?’ = D2 x [- 1, 11, and 1.4. Now, if N is an integer such 
that 

we have 

O<(N-l)F<t<NF, 

N-2 

I 4%) - 4x)I < C I 4%~) - 4%+1v)I + I 4%) - ~X(N-I)F)I 
k=O 

We now come to the key theorem of this section. 

2.5. THEOREM. If L contains no fixed point, every separatrix is a closed 
orbit in L. 

Proof. (See Figure 1). Let xT be a separatrix. Let us say xt + +co. 
Suppose xT is not closed in L. Let x = p(Z). We may assume ~(2) = 0. 
(See 1.14). 

Let 

and 

t(k) = sup{t ]7&) = k} 

Y(k) = C(k) - k. (See 1.3). 

Thus {y(K)] k = 1, 2,...} is an infinite subset of II0 = {f E e I ~(5) = 0} Cl. 
Moreover, 

YWt > 0 for t > 0, 

YWt - +a% 

P(YW) = XT for all K. 

We choose 

thus 

r(k) = inf{t > 0 I r(y(k),) = l} 

0 < 4YWJ < 1 for 0 < t < r(K) 
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so that 

0 <F < r(k) < M(l), (2.6) 

where F is defined in 2.4 and M( 1) is defined in 2.3. Note xt --f + co implies 
E contains no closed orbit according to 2.2. 

FIG. 1 

Now by taking a subsequence, if necessary, we may assume that y(k) -+ y. 
Moreover, if we suitably coordinatize a neighborhood U, of l7, near 7 by 
0 : U -+ T, we may assume (again taking a subsequence if necessary) 

B(y(1)) > B(y(2)) > a** > 8(y(K)) > ***. 

Now, ~(k)[~,,) u y(k + 2),,,,) separates S1 x [0, co) into two components, 
C, and D, , with y(K + 1) in C, . 

By supposition, we may assume there is a point w(K) in Ii’, satisfying 

(9 ~(4~ - -ah 
(ii) w(K) is in C, , 

(iii) for some s > 0, rr(w(K),) > 1, and w(k), is in C, . 

We may satisfy (iii) by choosing s > 0 such that rr(y(R + l)J > 1 and 
choosing w(k) sufficiently close to y(k + 1). 
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Let 

and 

s(k) = sup{s I +qg,) = 1, 44 E CA 

Since u(k) is in w(k)=, u(k), --f --co. We may set 

w(k) = inf{v > 0 1 r(u(k)) = O}. 

Now u(k)(o,v(k)) cannot cross y(k)[,,,,) or y(k + 2)1,,,) , thus, 

W(o,vw C G 
and 

OW) > +44td > YY@ + 2)). 

According to 2.4 and 2.3, 

0 <F < v(k) < M(1). 

(2.7) 

Next we suitably coordinatize V = I7, - { ~(l),u,}, where I7r = 
(5 EL 1 n(f) = l}, by I/ : V -+ T. We have 

#(~(khd > #W)) > vU@ + 2hc+d (2.9) 

so that, according to (2.9) and (2.6), 

where 
f = & r(k) > F. -+ 

(Note that the uniqueness of the limit of {y(k)T(L)} implies the uniqueness 
of the limit of {r(k)}.) Furthermore, from (2.7) and (2.8) it follows that 

where 

Thus j$ is a closed orbit in e. But, according 2.2, this contradicts the 
hypothesis. The theorem is proved. 

As a corollary to 2.5 we have 

2.10. COROLLARY. If L contains no closed orbit, all orbits tend to +co 
or all orbits tend to -a. 
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Proof. If L contains no closed orbit, a fortioriL contains no closed orbit. 
Thus, according to 1.16, z = A u B where A = {x / xt ---f co} and 
B = (x 1 xt -+ -cc}. But according to 2.5, A and B are closed. Since A n B 
is empty and L is connected, E = A ore = B, which was to be shown. 

Having established that all orbits tend to the same limit, we now show that 
they tend to this limit “uniformly”. 

2.11. THEOREM. I f  L contains no closed orbit, there exists a function 
p : T+ -+ T+ such that for any x in L, 

1 I - 7(x)1 > t if x b p(t). (2.12) 

Proof. Let us assume xt ---f co for all x inc. For each x ine and I > 0, let 

A,(r) = inf{t 3 0 / ?r(xJ - z-(x) = r) 

and let 

A(r) = sup{A,(r)l x inE}. 

The finiteness of A(r) follows from the continuity of $, and 1.4. 
Recall that, according to 2.4 (i), if 

F, = inf{t > 0 1 ( n(xt) - 7(x)1 = l}, 

then 

F = inf{F% I x infi} > 0. 

Now set C = A(2 + A(l)/F). We assert that 

7r(xt) - 77(x) > 1 if t 3 c. (2.13) 

Suppose 11(x~) - V(X) < 1 for some t, > C. Then for some u in [0, C] C [0, to] 
we have 

7r(Xr) - 77(X) = 2 + y , 

and for some v > t, we have 

Tr(x,) - P(X) = 1. 

Now let 

C=sup uin[O,v]]+SU,-+x)=2+$9/ 
! 

so that 

4x,) - 7r(x) < 2 + +$ if fi < s < 0, (2.14) 
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41) 7r(xfi) - T&J = 1 + 7 * 

Thus, according to 2.4 (ii), v - zi >, A(1). But by the definition of A, 

for some s in [ti, v], which contradicts (2.14). Thus (2.13) is proved. 
Applying (2.13) we have, for any positive integer N and t 3 NC, 

N-l 
+g - +> = 4x*) - “(X(N-1)C) + k;l 4XkC) - “hk-ld 3 iv- 

Thus p(t) = (t + 1) C satisfies (2.12). 
Having established that every orbit tends to +co( - co) uniformly, in 

the sense of (2.12), on L, we turn to a consideration of the flow on K. 

3. PROOF OF THE MAIN THEOREM 

3.1. THEOREM. Let 4 be a J&W on K = D2 x S such that Qz CL = 
S1 x S = boundary of Kfor each x in K. Then L contains a closed orbit. 

In order to prove the theorem, we establish a series of lemmas. The first 
two lemmas extend the conclusions of 2.10 and 2.11 from f; to Z?. 

3.2. LEMMA. If Sz, CL for each x in K and L contains no closed orbit, then 
each orbit in K tends to + 03 or each orbit tends to - co. 

Proof. Let d : T+ x T+ + T+ be as in 1.5 and 8 = 4(1/10, p(l)). 
Since !& CL for each x in K, there exists a function u : K -+ T+ such that 
if x is in K and s > u(x) then dist(x, , L) < 6. Since the metrics on 
K = D2 x S and Z? = D2 x T are product metrics we have for x in K, 
and s(x) = +W), 

dist(x, , L) < 6 for s > S(x). 

Now for any positive integer n, and x in R we have, setting S = S(x) 
and R = p( 1) (where p is defined in 2.1 l), 

n-1 

pn = hS+,R) - dxS> = c +S+(k+l)R) - r(xS+kR), 
k=O 
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but 

!2k = +s+(k+l)R) - +s+kR) 
= +k+(k+l)R) - +d) + +id - n(y") + +") - +S+lcR), 

where yk may be chosen inE so that 

dist(y”, +$+kR) < 6 < 1 /lo 

and thus 

dist(yi , xS+(k+dR) < l/lo. 

Since y* is in L, I - +yk) > 1. Therefore Qk > S/l0 and P, 2 8/1On, 
and the conclusion of the lemma follows. 

In proving 2.11, we used the fact that every orbit in E tended to the same 
limit, + co or -00, that e was the product of a compact set, S, and T, and 
that the flow on E covered a flow on L = S x S1. As a factor off;, we used 
no property of S other than its compactness. Therefore the proof of 2.11 
may be repeated to obtain 

3.3. LEMMA. If L contains no closed orbit, and Qn, CL for each x in K; 
then there exists a function, w : T+ -+ T+, such that for each x in I?, 

1 r(x,) - 77(x)1 > t if s 3 w(t). (3.4) 

Assuming xt + +oo for each x in R, we have the following corollary: 

3.5. COROLLARY. If L contains no closed orbit and Q, CL for each x in K 
then 

+wd - 44 3 1 

for each x in K. 

and +L(l)) - n(x) d -1 

Our next aim is to construct a global cross section of R. In [3], Montgomery 
and Zippin showed that under certain conditions, a flow in Euclidean space 
has such a cross section. They employed the existence of local cross sections, 
as proved by Whitney, [6], in their proof. Rather than show that the necessary 
conditions are present, we shall derive the existence of a global cross section 
directly. However, the spirit of the derivation owes much to the above- 
mentioned authors. 

We first prove 

3.6. LEMMA. There exists a continuous function W : I? + T such that for 

any x in I? and h > 0, W(x,) - W(x) > h. 
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Proof. Let w = w(l). Define W : R -+ T as follows: 

W(x) = 1: P(XJ ds. 

Then for h > 0 we have 

W(xA) - W(x) = l:Lh r(x,) ds - $,M r(x,) ds, 

= SW+” n-(x,) ds - ,: a(x,) ds, 
w 

= I 1 (+,+,) - I) ds 3 h. 

The continuity of W follows from that of $. The lemma is proved. 

3.7. NOTATION. C = {x 1 W(x) = O}. 

3.8. LEMMA. (i) C is bounded in I?. (ii) For each orbit, xT, C n xT 
consists of one point, u(x). (iii) u : I? -+ C is continuous. 

Proof. If R = max{l ~(5~) - r(E)1 1 1 t 1 < w} then 1 v(x)1 < R for x in 
C which implies (i). 

From (3.4) it follows that for each x, f(t) = W(x,) is unbounded from 
above or below. Thus, since f  is continuous, each f(t) = 0 for some t which 
implies C n xr is not empty. On the other hand, since f  is a strictly increasing 
function, C n xr contains but one point. Thus (ii) is valid. 

To prove the continuity of u, we first consider # : J?Y --f T defined by 
xllcr) = a(x), which is equivalent to W(xsu) = 0. Now, let E > 0 and 3 
in l? be given. We then have 

WPW-61) < 0 < wf[g(r)+el). 

Thus, for y sufficiently close to 2, 

wYb(a)-d < 0 < WJTsk)+rl), 

so that 

which establishes the continuity of IJJ. Since u(x) = x+) , u must be 
continuous. This completes the proof of 3.8. 

3.9. COROLLARY. C has the fixed point property, since C is a retract of 
{xERI-R<~(x)<R}undera. 

5’=5i4/3-2 
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We are now ready to complete the proof of 3.1. 
Suppose Q, CL for each x in K and L contains no closed orbit. Let C be 

as above, let S be an integer greater than 2R + 1, and let C’ = 
{x + S 1 x E C}. Thus, for any x in z’ and y in C we have 

n(x) > -R + 2R + 1 > n(y), 

so that.2 r\ C’ is empty. Now let h : C’ --+ C’ be defined by 

where we note that I/(X) # 0. According to 3.9, for some 4 in C’ h(4) = 4. 
Thus, 2,~) = 4 - S, which implies [p(E)],(,) = p(4), so that p(2)= is closed. 
Since ~(2)~ = G&;) CL, this contradicts our assumption and the theorem 
is proved. 
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