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INTRODUCTION

If X is a topological space and T denotes the real numbers, then by a flow
we mean a continuous map ¢ : X X T — X such that ¢(x,0) = x and
&(x, s + 1) = P(d(x, s), t). We shall denote ¢(x, £) by x, . If X is a differentiable
manifold and V is a vector field on X, then V is said to generate ¢ where
VA f) = dldt] f(x)];—o for every differentiable function, f.

In [4], Seifert raised the question: Does there exist a flow on §® which
contains no closed, that is, periodic orbit? He showed that if V, is a vector
field on S® which generates a flow whose orbits are the fibers of the Hopf
fibration and V is sufficiently close to ¥,, in the C° sense, then the flow
generated by 7 must contain at least one closed orbit. Since 53 is the union
of two solid tori whose intersection is a two-dimensional torus, it is of
interest to study flows on a solid torus, K = D? x S, where D? = {2z | 2
complex, | 2| < 1}. If it is possible to construct such a flow on K with no
closed orbit, then it is possible to construct such a flow on S3.

Considering K, one might think that if the flow were such that the
restriction to the boundary was the irrational flow, then a closed orbit,
encircling the ‘“hole” (that is, a closed orbit not contractible to a point)
would exist in the interior of K. However, in [I] Fuller has constructed
a flow on K whose only closed orbits are null homotopic.

In this paper, we shall approach the problem from a somewhat different
standpoint. We consider a flow on K such that every interior orbit approaches
the boundary as # — o0, and show that the boundary of K must contain a
closed orbit. Thus if the boundary of K contains no closed orbit, the interior
of K is not completely unstable.

We shall not assume that ¢ is generated by a vector field. We will make
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FLOWS ON THE SOLID TORUS ASYMPTOTIC 315

considerable use of the covering of K by K a simply connected, noncompact
cylinder.

1. PRELIMINARY DEFINITIONS AND PROPOSITIONS

1.1. DeriNrTIoN.  Let p : X — X be a covering of X by X with projection
p.Ifd: X x T— Xandé: X x T — X are flows such that p(x,) = [p(x)];,
& is said to cover ¢.

As a consequence of the covering homotopy property we have the following
proposition:

1.2. ProposiTION. If p:X— X is a covering of X by X and
é: X X T— X is a flow, there exists a unique flow : X x T — X which
covers ¢.

1.3. NotarioN. D? will denote the unit disc, {z | z complex, | 2 | < 1}, St
the unit circle, {z| | z| = 1}, and T the positive real numbers. We also
use the notation

K=D*xS8 ad K=D*xT.
The covering p: K — K is defined by p(d, ) = (d, e2"*). We denote
L = 8§' x S! = boundary of K
and
L = 8! x T = boundary of K.

We shall also use p to denote the restriction of p to L.
We shall consider a flowé : K x T — K and its coveringd : K x T — K.
Finally, if (d, t) is in K and [ is an integer we denote
dty+1=(4zt+1).

Since
plix + Di] = [p(x + D] = [p(x)]e = p(xs) = p(x; + 1)

and (x + [); = x; 4+ [ for t = 0, it follows from the uniqueness of covering
paths that

1.4, (x + 1), = (x, + I) for x in K, ¢ real, and / an integer.
It follows from the continuity of ¢ and the compactness of K' =
D? x [—1, 1] that there exists a function 4’ : T+ X T+ — T+ such that if
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xandyarein K’,e > 0,¢ > 0, and dist(x, y) << 4'(¢, t), then dist(x, , v,) < e
for | s | < t. Applying 1.4, we have

1.5. There exists a function 4 : T+ x T+ — T such that if x and y are in
K, e > 0,t >0, and dist(x, y) < 4(e, 2), then dist(x, , y,) < e for |s| < t.
(Note: we assume that K = D? x S'and K = D? x T are equipped with
their product metrics.)

We now introduce some concepts from topological dynamics.

1.5. DerFINITION. If % is a point of K or K, by the omega limit set of x,
£, , we mean N,pcl{x, |s > t}; where cl{...} denotes the closure of {...}.
It is easy to verify that

Q, ={yeK|xp —y for some t(k) — oo}. (1.6)

1.7. DEFINITION. A compact set M C K is called minimal where M is
nonempty invariant (i.e., M, == M for all ¢ in T), and contains no such
proper subset.

By an application of Zorn’s lemma one sees that

1.8. Every compact invariant set contains a minimal set.

1.9. DEFINITION, «7 is called a closed orbit where x7 is compact. Thus

1.10. x;is a closed orbit if and only if x;, = & for some & 7= 0.
Note that a fixed point, xr = {x} is a closed orbit.

1.11. DeriNiTION. Consider a flow in L or L. We say a closed orbit is
bounding in L or L if its complement has two components, at least one of
which is bounded.

As a consequence of the Brouwer fixed-point theorem we have

1.11. Every bounding orbit in L contains a fixed point in the bounded
component of its complement.

Note that by invariance of domain, L or L must be an invariant set in K
or K.

We shall make use of a somewhat generalized version of the Poincaré-
Bendixson theory. As a rule, Poincaré-Bendixson theorems are proved for
flows in the plane or the two-dimensional sphere, S2, generated by continuous
vector fields (see, for example, [2]). However, the only use made of the vector
field is in the construction of transversal line segments. Whitney has shown,
[6], that transversal line segments may be constructed at any regular point
(i-e., nonfixed point) of a two-dimensional flow. Thus we have
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1.12. TurorREM (Poincaré-Bendixson). Given a flow on S%, and a point x
in S? then

(a) 8, = xpif xr is closed. On the other hand, if x1 is not closed we have

(b) 2, = y = boundary of C, where C is an open two cell containing
x and a fixed point. Moreover, if S* contains finitely fixed points c, ,..., ¢, then

(c) 2, is either a closed orbit or 82, is the union of some of the fixed points
and orbits y ..., Y7 satisfying v, — c,ast — —oo and y, — ¢, as t — +0,
for some k and 1.

Now, consider a flow on L without fixed points. We may embed L in S2
so that 82 — I = {(0,0, —1), (0,0, 4-1)}. We state that (0,0, —1) and
(0,0, +1) are fixed points and thereby extend the flow to S2. If x is in L
and £, contains no fixed point, then Q, is a closed orbit, nonbounding in L.
On the other hand, if £, contains one fixed point, (0, 0, 1), % — £, must
contain the other. If, in addition, £, were to contain a regular orbit yr,
then yr UL {(0, 0, 1)} would separate S? into two regions, each containing a
fixed point, which is impossible. Thus we have

1.13. If L contains no fixed point, then every omega limit set is either a
nonbounding orbit or empty.
We may reformulate this by introducing the following definitions:

1.14. NotarioN. For (4, t) in K, denote n(d, t) = t.

1.15. DeFiNITION. Let x be in K, p(%) = ». If #(&) — +00 (—o0) as
t— 400 we say x, — oo(—o0) as well as &, — oo(—o0). Thus, we have
as a corollary to 1.13,

1.16. If L contains no closed orbit, and x is in L then either x;, — +0 or
x, — —0.

It will take a good deal more effort to show that all orbits tend, in some
sense uniformly, to the same limit.

2. THE Benavior or THE FLow oN L

In [5], Siegel showed that if L contains no compact orbit, it must contain
a cross-section, I, that is, a simple closed curve, nowhere tangent to the
field generating ¢, which intersects every orbit.

If I" were covered by a closed curve " in L. It would be easy to show that
every orbit tended to +- o0 or every orbit tended to —oo. Although we may
construct a covering p* : L* — L so that I" is covered by a closed curve I'*,
it may not be possible to extend p* to a covering of K.
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The difficulty to be avoided is exemplified by the following system in
the plane:

dx

7 cos 2my,
dy .

a‘t“ = 8in 277'_’)’.

Here all orbits tend to —oo except y = 2wk, &k = 0, +1, +2,..., which
tend to +oo. The orbits y = 27k serve as examples of the following concept:

2.1. DEFINITION. x7 is called a separatrix where x, — + co(—o0) and
there exists y(k) — x such that for each %, y(k); - — co(+40).

Our immediate aim is to show that separatrices in L are closed orbits.

As a consequence of 1.13 we have the following lemma:

2.2. Lemma. If L contains at least one orbit &y, such that &, — oo or
&, — —00, but no fixed point, then L contains no closed orbit.

Proof. If L contains a closed orbit, y, it must be nonbounding. If we
embed L in S2 as before, y separates (0, 0, 1) and (0, 0, —1). We may select
& in p~Y(x) so that % is in the same component of S2 — y as (0, 0, —1). Thus
%, » (0,0, 1), which is to say, ¥, » c0. Similarly x, - — oo, which proves
the lemma.

Our next lemma limits the amount of time an orbit may remain in a compact
portion of L.

2.3. Lemma. If L contains no closed orbit, there exists a function
M : T+ — T+ such that diam(ygo pp;) > t for ally in L and t > 0.

Proof. Suppose,on the contrary, for some ¢, > 0 and {y(k)| k=1, 2,...} CL
we have diam{y(k)o )} <?,. According to 1.4 we may assume {y(k)} C
St x [0, 1] and by choosing a subsequence, if necessary, we may assume
(k) — 3.

If diam o,y < 2¢, then £, must be a closed orbit, contrary to hypothesis.

If diam $9, ;) > 2¢, , then dist(§, ) > ¢, for some A, dist(y(k), y(R)s) > 1,
for sufficiently large %, and for % >4 we have diam(y(R)y ) =
diam(y(k);e.a)) > ¢, contradicting the supposition. The lemma is proved.

The next lemma, in a sense, limits the ‘‘speed” of any orbit.

2.4. LemMA. There exists a positive number F such that for any x in L,
(i) | m(x)) — m(x)| < 1if s in [0, F], and

(i) | m(x,) — (%) < ?t— 4+ 1fort>0.
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Proof. Let
F, — inf{t > 0| n{x) — n(x)| = 1}
and
F = inf{F, | x in L}.
Clearly, F satisfies (i). That F > 0 follows from the continuity of ¢, the

compactness of K’ = D? x [—1, 1], and 1.4. Now, if N is an integer such
that

0 < (N — 1)F <t < NF,

we have
N—2
[ () — ()| < Z | 7(xer) — m(Xgesnyp)| + | 7(x) — m(2(n_y)F)]
k=0

We now come to the key theorem of this section.

2.5. THEoREM. If L contains no fixed point, every separatrix is a closed
orbit in L.

Proof. (See Figure 1). Let x; be a separatrix. Let us say x, - 0.
Suppose %7 is not closed in L. Let x = p(£). We may assume =(%) = 0.
(See 1.14).

Let

t(k) = sup{t | n(¥,) = k}
and
y(k) = Fypy — k. (See 1.3).

Thus {y(k)| k£ = 1, 2,...} is an infinite subset of IT, = {¢ e L | n(¢) = 0} C L.
Moreover,

y(k), >0 for ¢t >0,
y(k); — +o0,
p(y(R)r) = xr  forall k.
We choose
r(k) = inf{t > 0 | n(y(k)) = 1}
thus

0 < n(y(k)) <1 for 0<t<rk)
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so that
0 <F <r(k) < M, (2.6)

where F is defined in 2.4 and M(1) is defined in 2.3. Note x, — -+ o implies
L contains no closed orbit according to 2.2.

I,=o

—
@

e

_—

1

—

k
Y+ 2)hm)

Fic. 1.

Now by taking a subsequence, if necessary, we may assume that y(k) — 7.
Moreover, if we suitably coordinatize a neighborhood U, of IT, near 7 by
6: U — T, we may assume (again taking a subsequence if necessary)

Ax(1)) > 0(x(2)) > -+ > b(y(k)) > -~
Now, ¥(R)rg,«) U (kR + 2)[0,) separates ST X [0, 00) into two components,
Cy and D, , with y(k + 1) in C,.
By supposition, we may assume there is a point (k) in I, satisfying
(i) w(k); > —oo,
(i) =(k) is in C;,
(iii) for some s > 0, =(w(k),) > 1, and w(k), is in C; .

We may satisfy (iii) by choosing s > 0 such that #(y(% + 1),) > 1 and
choosing w(k) sufficiently close to y(k + 1).
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Let
s(k) = sup{s | m(w(k),) = 1, w(k), € Cy}

and
uk) = w(k)sq) -
Since (k) is in w(R)r, u(k); > —o0. We may set
o(k) = inf{v > 0 | =(u(k)) = 0}.
Now u(k)(,»(0 cannot cross y(k)ig,«) or ¥(k + 2o, » thus,

u(R) (0,001 C Cr
and

0(y(k)) > O(u(R)ow) > Hy(k + 2)). (2.7)
According to 2.4 and 2.3,
0 < F < o(k) < M(1).
Next we suitably coordinatize V = II; — {¥(1),q}, where II, =
{¢el|n(¢) =1}, by y: V — T. We have
HYR)rw) > (k) > $(y(k + 2)rirsn) (2.9)

so that, according to (2.9) and (2.6),

lim ¥R = lim ) = 77,
where
7= }ng r(k) = F.

(Note that the uniqueness of the limit of {y(k),q)} implies the uniqueness
of the limit of {r(k)}.) Furthermore, from (2.7) and (2.8) it follows that

wR)o) = T = I
where
7 = lim o(k) > F.

Thus F; is a closed orbit in L. But, according 2.2, this contradicts the
hypothesis. The theorem is proved.
As a corollary to 2.5 we have

2.10. CoroLLARY. If L contains no closed orbit, all orbits tend to o0
or all orbits tend to —co.
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Proof. If L contains no closed orbit, a fortiori L contains no closed orbit.
Thus, according to 1.16, L = AU B where 4 = {x|x,— o} and
B = {x | , — —oo}. But according to 2.5, 4 and B are closed. Since A N B
is empty and L is connected, L = 4 or L. = B, which was to be shown.

Having established that all orbits tend to the same limit, we now show that
they tend to this limit ‘‘uniformly”.

2.11. TueoreM. If L contains no closed orbit, there exists a function
p: T+ — T+ such that for any x in L,
) — ) >t x> p(t). 2.12)

Proof. Let us assume x, — oo for all xin L. For each xinL and 7 > 0, let
Ayr) = inf{t = 0] n(x,) — w(x) =71}
and let
A(r) = sup{d(r)| xinL}.
The finiteness of 4(r) follows from the continuity of §, and 1.4.
Recall that, according to 2.4 (i), if
F, = inf{t > 0| n(x) — () = 1},
then
F = inf{F,| xin L} > 0.
Now set C = A(2 + A(1)/F). We assert that
w(x,) — m(x) > 1 if t=C. (2.13)

Suppose 7(x;) — m(x) < 1 for some ¢, >> C. Then for some u in [0, C] C [0, ¢,]
we have

n(e) — () = 2 + 2D
and for some v >> £, we have

w(x,) — m(x) = 1.

Now let
% = sup {uin [0, o]| n(x,) — =(x) = 2 + é}l)
so that

a(xy) — w(x) <2 + %1) if #a<s<uw, (2.14)
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and

(%) — m(x,) = 1 + —41(4,—1) .

Thus, according to 2.4 (ii), v — # > A(1). But by the definition of 4,

n(x) > mlse) + 1 = () + ) 4.3

for some s in [, v], which contradicts (2.14). Thus (2.13) is proved.
Applying (2.13) we have, for any positive integer N and ¢t > NC,

N-1
m(x;) — m(x) = (%) — 7(¥y-pc) + Z m(xkc) — T(X@-vc) = N.
k=1
Thus p(?) = (¢ + 1) C satisfies (2.12).
Having established that every orbit tends to +oo(—co) uniformly, in
the sense of (2.12), on L, we turn to a consideration of the flow on K.

3. Proor OF THE MAIN THEOREM

3.1. TueoreM. Let ¢ be a flow on K = D? X S! such that Q,CL =
St x St = boundary of K for each x in K. Then L contains a closed orbit.

In order to prove the theorem, we establish a series of lemmas. The first
two lemmas extend the conclusions of 2.10 and 2.11 from L to K.

3.2. Lemma. If Q. CL for each x in K and L contains no closed orbit, then
each orbit in K tends to 400 or each orbit tends to — co.

Proof. Let 4:T+ x T+— T+ be as in 1.5 and & = 4(1/10, p(1)).
Since 2, CL for each x in K, there exists a function ¢ : K — T+ such that
if » is in K and s > o(x) then dist(x,,L) << 5. Since the metrics on
K = D? x 8 and K = D? x T are product metrics we have for x in K,
and S(x) = o(p(x)),

dist(x, , L) <8 for s> S(x)

Now for any positive integer 7, and x in K we have, setting S = S(x)
and R = p(1) (where p is defined in 2.11),

n—-1

P, = m(xg4ng) — m(xs) = Z (X541 esDR) — T(Xs1%R)>
k=0
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but

Oy = m(*s1gerr) — 7(%522R)

= m(%s+rnr) — 7(¥r) + 7(VR) — (¥ + 7(¥¥) — n(%s.28),
where y* may be chosen in L so that

dist(y*, x542r) <8 < 1/10
and thus
dist(y » ¥sinr) < 1/10.

Since y* is in L, m(y%) — #(y*) > 1. Therefore Q) > 8/10 and P, > 8/10m,
and the conclusion of the lemma follows.

In proving 2.11, we used the fact that every orbit in L tended to the same
limit, 400 or —oo, that I was the product of a compact set, S*, and 7, and
that the flow on £ covered a flow on L = S! X S1. As a factor of L, we used
no property of S? other than its compactness. Therefore the proof-of 2.11
may be repeated to obtain

3.3. LemmA. If L contains no closed orbit, and 2,CL for each x in K;
then there exists a function, w : T+ — T+, such that for each x in K,

In(x) — (@) =t i s> ) (3.4)

Assuming x, — 00 for each x in K, we have the following corollary:

3.5. CoroLLARY. If L contains no closed orbit and Q,CL for each x in K
then

m(¥u@) —m(*) =1 and  w(x_yp) —=(*) < 1

for each x in K.

Our next aim is to construct a global cross section of K. In [3], Montgomery
and Zippin showed that under certain conditions, a flow in Euclidean space
has such a cross section. They employed the existence of local cross sections,
as proved by Whitney, [6], in their proof. Rather than show that the necessary
conditions are present, we shall derive the existence of a global cross section
directly. However, the spirit of the derivation owes much to the above-
mentioned authors.

We first prove

3.6. LEMMA. There exists a continuous function W : K — T such that for
any x in K and b > 0, W(x,) — W(x) > h.
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Proof. Let w = w(l). Define W: K — T as follows:

W) = | ': m{x,) ds.

Then for 2 > 0 we have

W) — W) = [ :“' () ds — [ : () ds,
- :“' n(x) ds — | : () ds,

h
= f (1(%apss) — 7(x,)) ds > h.
0
The continuity of W follows from that of §. The lemma is proved.
3.7. NotatioN. Y = {x| W(x) = 0}.

3.8. LemMa. (i) Y is bounded in K. (ii) For each orbit, xp,Y N xyp
consists of one point, o(x). (iii) o : K — 3 is continuous.

Proof. If R = max{| n(£,) — =(£)| | | t| < w} then | m(x)| << R for x in
Y which implies (i).

From (3.4) it follows that for each x, f(#) = W(x,) is unbounded from
above or below. Thus, since f is continuous, each f(£) = 0 for some ¢ which
implies 3" N x7is not empty. On the other hand, since fis a strictly increasing
function, 3" N x, contains but one point. Thus (ii) is valid.

To prove the continuity of o, we first consider ¢ : K — T defined by
%y = o(x), which is equivalent to W(x,)) = 0. Now, let ¢ > 0 and &
in K be given. We then have

W(Eyeo-a) <0 < W(FEy@-a)-
Thus, for y sufficiently close to #,

Wue-a) <0 < Wlne+a),
so that
&) — e <Py) <$F) + ¢
which establishes the continuity of . Since o(x) = %y, o must be

continuous. This completes the proof of 3.8.

3.9. CoroLLARY. Y has the fixed point property, since Y. is a retract of
{xe K| —R < n(x) < R} under o.

505/4/3-2
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We are now ready to complete the proof of 3.1.

Suppose £2, C L for each x in K and L contains no closed orbit. Let 3" be
as above, let S be an integer greater than 2R 4 1, and let Y =
{x + S|xe€Y}. Thus, for any ¥ in > and y in > we have

m(x) > —R 4+ 2R + 1 > =(y),
so that. > N Y is empty. Now let #: > — 3" be defined by
h(x) = o(x) + S = x4 + S,

where we note that ¢(x) 7= 0. According to 3.9, for some % in 3’ A(%) = %.
Thus, &, = & — §, which implies [ p(%)],(» = p(£), so that p(#)7 is closed.
Since p(£)y = 2, CL, this contradicts our assumption and the theorem
is proved.
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