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1. 

The Euler-Darboux Equation 

L&J] = g - g - p g = 0, 

where p is a real parameter, is a classic example of a linear hyperbolic equation 
of the second order with a singular line. The presence of this line poses certain 
questions that are beyond the scope of the standard theory. This can be seen 
by examining its Riemann function. For this purpose it is more convenient 
to work with the self-adjoint equation 

M,[w] = Y”L,[Y-‘Lw] = ag - ag + +; l) w = 0, (1.2) 

which is obtained from (1.1) by the substitution 

w = YW. (1.3) 

Its Riemann function is a solution R = R(r, , t, ; I, t) which reduces to 
unity on the two characteristics t - t ,, = &(r - rO) which pass through the 
pole of the Riemann function, (Y,, , u t ). This was determined by Darboux 
[3] who showed that 

R = (1 - ~)‘“F(/.L, CL; 1; a), 
(Y - Yo)2 - (t - to)2 

lJ = (Y + r(J2 - (tqp. (1.4) 

Now (T is infinite on the two characteristics t - t, = +(r + rO) which are 
the reflections of the characteristics through the pole in the singular line. 

1 The research of Albert Heins was sponsored by the Air Force Office of Scientific 
Research, Office of Aerospace Research, United States Air Force, under AFOSR, 
Grant No. 374-65. 
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The Riemann function is determined uniquely in any sufficiently small 
neighborhood of the pole, and so the fact that (1.4) satisfies (1.2) and reduces 
to unity on t - t, = &(r - r,), where u = 0, guarantees that (1.4) is the 
Riemann function of (1.2) in / t - t, 1 < Y + r,, if, for instance, Y,, > 0 
and Y  > 0. But it cannot be expected that (1.4) holds when 1 t - t,, 1 > Y  + Y,, ; 
in fact, the Riemann function is then not defined at all. 

This behavior of the Riemann function is immaterial when a solution of 
(1.2) is determined by Cauchy data on a line Y  = c where, say, c > 0. For 
then (1.2) can be solved in r > 0 by Riemann’s method. (In general, the 
solution becomes infinite on the singular line and cannot be continued 
beyond it). But there are situations in which a continuation of the Riemann 
function into / t - t, / > r + Y,, is required. An instance of this is found 
in the theory of the diffraction of transient waves by a wedge [S]. Following 
Sommerfeld’s original approach to the diffraction of harmonic wave trains, 
this diffraction problem can be reduced to the construction of many-valued 
solutions of the two-dimensional wave equation 

(1.5) 

that are, considered as functions of the polar coordinates Y  and 0(X = Y  cos 8, 
Y = Y  sin 8), periodic in 6’ with period 20r where 01 is the exterior angle of 
the wedge. When such a solution is expanded as a Fourier series in 0, a 
typical term is U = U(Y, t) cos(h8 + p), where /3 is an arbitrary constant and 
X is an integral multiple of r/ 01. Hence u satisfies the equation 

(1.6) 

which reduces to (1.2) if one puts II = Y-~/~w, h = p - 4. The basic problem 
is then the initial value problem, where u and au/at are given for t = 0, Y  > 0. 
These data must be supplemented by a regularity condition at Y  = 0, which 
corresponds to the edge condition in the diffraction problem. The problem 
must therefore be considered as a singular mixed boundary value problem. 
For t < Y, the solution can be obtained by Riemann’s method, using 
Darboux’s Riemann function (1.4). This gives nothing new, as the same 
result can be deduced by the method of descent from the classical solution 
of the initial value problem for (1.5). The key to the solution is therefore 
precisely the continuation of the Riemann function into the domain r > 0, 
/ t - to ] > Y  + Y, . In [.5], such a continuation was proposed, and was 
shown to lead to the known Green’s function of the wedge. However, the 
argument by which it was derived is invalid, as will be explained below. 
The same continuation was obtained by Copson [I], by means of integral 
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transforms, without explicit reference to the singular mixed boundary value 
problem. 

In the present paper, we shall discuss the following singular mixed 
boundary value problem for the Euler-Darboux equation (1 .I): Given v and 
vt (partial derivatives will sometimes be denoted by subscripts) for t = 0, 
r > 0, find a solution of the equation in Y > 0, t > 0 such that v, and vt 
remain bounded as r ---f 0. It will be assumed that ~1 > +. The case TV < 4 
can be reduced to this by means of the well-known relation 

qp-p%] = Y-Ll-u[v], 

but will not be considered here. The solution of the problem will be effected 
by a generalization of Riemann’s method. Its relation to the classical Poisson 
representation of the solutions of the Euler-Darboux equation, and to another 
integral representation due to Volterra, has also been recently investigated 
by us, and will be published at a later date. 

A useful guide to the general case is the case p = +. For v is then an 
axisymmetric solution of the two-dimensional wave equation (1.Q and can 
be derived by the method of descent from the solution of the initial value 
problem for this equation. Let us suppose, for simplicity, that the initial 
conditions are 

V(T, 0) = 0, vt(y, 0) = g(y). U-7) 

The solution of the initial value problem for the wave equation is then (see 
e-g. 171, P. 50) 

v(rll 7 43) = & 1s (q _ g(r) 
(X - X,)2 - (y - y,)2}1/2 dX dY, (1.8) 

where r,, = (Xo2 + Yo2)l12, and the integral is taken over the circle 
(X - X,)z + (Y - Y0)2 < to2. It is known that (1.8) satisfies the wave 
equation and the initial conditions (1.7) if g(r), as a function of X and Y, 
has first-order derivatives which satisfy Lipschitz conditions. This will 
be the case if and only if g’(r) exists, satisfies a Lipschits condition, and 
g’(0) = 0. Now (1.8) can be written as 

v(yo 3 4,) = ,; WY, , 6, ; I) g(r) dy, (1.9) 

where 

K(r, , t, ; Y) = ; j” (t,,2 - ro2 - y2 + ~YY, cos c?)-l12 d0 (1.10) 
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and the integral is taken over the subinterval of (0, n) in which 

Let us put 

to2 - to2 - Y2 + 2rr, cos 8 > 0. 

5 = to2 - (r - roj2 
4mo 

(1.11) 

Then 

wo , t, ; r) = :;; ($j,. J (5 + ; cos l9 - ;j-,, de. (1.12) 

If t, < 1 Y  - y. 1, then 5 < 0, so that the interval of integration is empty, 
and hence K=O. If IY-Y~I <t,<r+r,, then O<[<l, so that 
one can put cos 0 = 1 - 252 where 0 < z < 1. Then (I. 12) becomes 

K =&($ri2j; .+/2(1 - z)-l/2(1 - 5.4-l/2 dz 

=;($j1”F(;,f;1;5j. 

- If, finally, t, > r + y. , then 5 > 1, and one can put cos 0 = 1 
obtain 

K =$-)“‘j; +/2(1 - +""(5 - 4-m &J 

1 Y l/2 
=2 ro 

- (-j {-“2F (; , ; ; 1; t-l). 

Hence 

v(Yo,to) =ff~~-JJF(;,f; 1 ; 

and 

v(yo , to) = ; f:-‘” (+),, [-1’2F (; , ; ; 1; 1-l) g(r) dr 

+ ; f;;; (+jLi2J’ (; ,; ; 1; 5) g(r) dy, to 2 ro - 

(1.13) 

.2z to 

(1.14) 

(1.16) 

Now w = Y~/~v satisfies M,,,[w] = 0, and w = 0, wt = G2g(r) when t = 0. 



464 FRIEDLANDER AND HEINS 

The Riemann representation of the solution of this initial value problem is 

where, by (1.4), 

R(r, , t, ; r, 0) = (1 - us)““F(+ , & ; 1; uo), 

This is, of course, identical with (1.15). For ua = [/([ - l), and so, by a 
well-known property of the hypergeometric series, 

“(&;l;[) =(1 -5)-“aF(;,;;l;&j =R(u,,t,;r,O). 

We can therefore conclude from (1.16) that the continuation of the 
Riemann function into 1 t - t, 1 > r + Y, , which is appropriate for our 
singular mixed boundary value problem, is 

For 5 = 1, both integrals (1.13) and (1.14) are divergent. This corresponds 
to the fact that both R and R become infinite as Z + 1. But it can be shown 
that n-R - log(1 - 2) and TR - log(Z - 1) remain bounded. Thus the 
continuation (1.18) of the Riemann function has the following properties: 

(i) It is a function of Z only 

(ii) It vanishes like C2 as r + 0 

(iii) R/log( 1 - Z) and 8/log(Z - 1) tend to the same limit as Z -+ 1. 

We shall see that by postulating similar properties, an analogous continuation 
of the Riemann function can be constructed in the general case. 

2. 

We begin with a uniqueness theorem. 

THEOREM 1. Let v be a solution of L,[v] = 0, (p > 0), which is of class 
C2 in r > 0. If v = 0, vt = 0 for t = 0, 0 < Y < c, and v, and vt remain 
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boundedasr-+OuniformlyintforO~t~cc,thenv=Oinr>,O,t~0, 

r+t<c. 
It is well known that the uniqueness of the solution of the initial value 

problem can be proved by means of a priori integral estimates of energy 
type ([2], p. 441). Th is method can also be applied to the singular mixed 
boundary value problem. By (1. l), we have 

2v,r%?,[v] = g {ryv,2 + Vt”)} - 2 ; (r%pt) = 0. (2.1) 

Let us integrate this identity over the domain bounded by t = 0, t + r = c, 
t=t,,andbyr=~,whereO<~<candO<t,<c-•(Fig.l).Since 
v = 0 and vt = 0 on t = 0, and dr = -dt on t + r = c, we obtain 

jc-‘” r2qvr2 + v&to dr + j:_, r2qvv2 + vt21t+7 dr 
c 0 

- 2 jr [Y%,.v~]:~;-~ dt = 0. 

FIG. 1. 

It follows from the assumption that v7 and vt remain bounded uniformly 
in t as r + 0, that we can make E + 0, and so 

s 

o-t, 

s 

c 

Y~u[v,~ + vt2]t+ dr = - ryvr - vt]:+r dr < 0, (2.2) 
0 c-to 

for 0 < to < c. Since v E C2 in r > 0, we therefore have vu, = 0, vt = 0 
in the triangle bounded by the axis and by the characteristic t + r = c. 



466 FRIEDLANDER AND HEINS 

Also, since z, = 0 on t = 0, it follows that o = 0 in this triangle This. 
proves the theorem. 

3. 

The elegant argument by which Darboux determined the Riemann 
function of (1.2) can be put into the following form: In terms of the charac- 
teristic variables 

x = 3(y + t), Y = $0 - 4 

the equation becomes 

g$ + p---y;j w = 0. (3.2) 

Since this equation is invariant under the transformation x ---f kc, y -+ ky, 
where K is a constant, it has solutions which are functions of y/x only. For 
our purpose, it is convenient to write these as 

w =F(z), 
X 

z=-. 
X-Y 

A simple calculation then shows that F(z) must satisfy the equation 

z(1 - z)F”(z) + (1 - 2z)F’(z) + /L(/L - l)F(a) = 0, 

which is obtained from Gauss’ equation 

by setting u = /.L, b = 1 - CL, c = 1. But (3.2) is also invariant under the 
transformations 

where 01, fl, y and 6 are constants such that 016 - /3y # 0. Taking (Y = 1, 
/l= --x0, y = 1 and 6 = -ya , where x0 f ya , it follows that (3.2) has the 
solutions 

where 

w = F(Z) (3.3) 

x - x0 
x -Yo z=-.--- (x - XOXY - Yo) = 0 - toI - (y - yoj2 , (3 4) 

Y - x0 = (x0 - YONX -Y) x - x0 4flo 
x -Yo Y -Yo 
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andrO=~o-yo,~o=~o+yo,~ rovided that F(Z) is a solution of 

Z(1 - Z)F”(Z) + (1 - 2Z)F’(Z) + /.+ - l)F(Z) = 0. (3.5) 

Now the Riemann function of (3.2) with the pole (x0, yo) is the solution 
which reduces to unity when x = x0 and when y = y. , that is to say when 
Z = 0. Hence 

R =F(p, 1 -& 1;Z). (3.6) 

This is also the Riemann function of M,(w] = 0, with the pole (y. , to). 
It follows from the relation 

F(a, b; c; z) = (1 - z)-aF (a, c - b; c; &), (3.7) 

and from 2 = u/(u - l), that (3.6) is equivalent to Darboux’ result (1.4). 
When p is a positive integer, R is a polynomial in Z of degree p - 1. It is, 

in fact, the Legendre polynomial of order p - 1 with argument 1 - 22. 
In that case, R is constant on the characteristics 1 t - to j = r + y. , and 
we define its continuation R simply by setting R = 0. We shall refer to this 
as the exceptional case. 

When p is not a positive integer, the behavior of R near 1 t - to 1 = r + y. , 
where Z = 1, can be inferred from the continuation formula ([q, p. 110) 

r(a + b) 
F(a, b; a + b; a> = r(a) r(b) i 

1 
F(a, b; 1; 1 - z) log G 

+ f. [2#(n + 1) - #(a + 4 - +(b + 41 (s (1 - +I. (3.8) 

Here 1,6 denotes the logarithmic derivative of the Gamma function, and 
(a), = a(a + 1) . . . (a + II - 1). Applied to (3.6), this gives 

sin 7+4 R=- 
77 t F(p,l --;I;1 -Z)logl -z --!- + Wj, (3.9) 

where 

F,(Z) = 5 [2#(n + 1) - +(p + n> - #(I - II- + n)] (px;fi,)l ‘ha (1 - Z)n 
T&=0 

(3.10) 
is a regular function of Z in 1 1 - Z 1 < 1. 

In order to obtain the continuation of R into / t - to 1 > Y + r. , where 
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2 > 1, we observe that (3.5) has, in the neighborhood of 2 == co, the 
solutions 

Wl = z-UF(p, p; 2/L; Z-l), (3.11a) 

i 
Z--IF(l - /L, 1 - /.L; 2 - 2/L; Z-i), 

w2 = Z-l’2[F(: ) 4 ; 1; Z-1) log z + F*(Z)], 
; 1 j’ (3.11b) ) 

where F* is regular at Z = 0~). Now r-“wl is a solution of L,(v] = 0 that 
remains bounded as r -+ 0, except when / t - t, 1 = 1 r - r. I. But +“wa 
behaves like r1--2u as r -+ 0 (or like log r when p = &), and since we are 
assuming that ,u > 4, this solution must be rejected. Hence we are led to 
assume a continuation of the Riemann function that is of the form 

R = CZ-“F(pL, TV; 2t~; Z-l), (3.12) 

where C is a constant. By (3.8), we then have 

R = C f(2p) Z-u 
m412 i 

F(/.L /AL’ 1. 1 - Z-l) log A’ 
’ ’ ’ Z-l 

+ 2 2 [$+ + 1) - $(I” + 41 [$jq’ (1 - ;)J. (3.13) 
7=0 

Following the case TV. = +, we now choose C so that R/log(l - Z) and 
R/log(Z - 1) tend to the same limit as Z + 1. This gives 

c = [WI2 sin*p 412 

___ ___ = 22~++ + l/2) Ql - /L) ’ m4 Tr 
(3.14) 

where the second form follows from the duplication formula for the Gamma 
function. (This value of C also gives R = 0 in the exceptional case). By (3.7), 

F(P,~;l;l-Z-l)=Z”F(P,l-P;l;l-Z). 

Hence it follows from (3.13) and (3.14) that 

sin flp R=---- 
iT I F(P> 1 -p; 1; 1 -Z)log& +F,(Z)!, (3.15) 

where F2 is Cm, provided that / Z - 1 / < 1. It is evident from (3.9) that 
F,(Z) - F(/L, 1 - /L; 1; 1 - 2) log(Z - 1) is a solution of the hypergeometric 
equation (3.5). One can therefore express R as a linear combination of this 
function and of F(p, 1 - p; 1; 1 - Z), which is a solution since the equation 
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is invariant under Z + 1 - 2. The constant factors can be determined by 
means of (3.13), and one finds that 

Fz - Fl = 7~ cot npF(p, 1 - /L; 1; 1 - Z)]. 

The value (3.14) of the constant C was used by one of the authors in the 
wedge diffraction problem ([5], p. 114, equation 5.3.12), but the argument 
given there to justify this choice is irrelevant. The function equal to 

r112F(p, 1 - TV; 1; 2) cos(r, - ;) 0 (3.16) 

for ] r - r0 1 < t - t, < Y + rO, and equal to zero for t - t,, > r + rO, 
is a solution of the wave equation (1.5) that is discontinuous at the converging 
circular wave front t - t,, = r,, - r. This discontinuity is focused at I = 0, 
and emerges as a logarithmic singularity on t - t, = r + y. . It was argued 
that the coefficient of log 1 1 - 2 ] must be continuous at this front, because 
of certain results on focusing [.5], p. 67). But these do not apply to the 
focusing of many-valued solutions; they do not, for instance, account for 
the factor sin ~t+r. The correct argument is as follows: Suppose that (3.16) 
is continued into t - t, > r + r,, as 

Cr-1’2Z-uF(p, p; 2~; Z-l) COS(/L - 4) 13. (3.17) 

One then has, in the neighborhood of the singularity front, a solution of 
the wave equation which is of the form 

Y-1’2{A(r, t) log I t - to - r - r() 1 + B(Y, t)} co+ - 4) 8, 

where both A and B are discontinuous at t - t, = I + rs . Such a function 
is admissible, say in the sense of the theory of distributions, provided that 
the discontinuities of both r-‘j2A cos(p - +) 0 and Y+~B cos(p - # 0 
satisfy the appropriate transport equations. For a circular front, these imply 
that the discontinuities of A and B must be constant. Now it follows from 
(3.9) and (3.15) that this is the case for the coefficient of the logarithm, A, 
but that B jumps by an amount 

I 

c w&4 sin rp -- ~ 
[q/412 ~ ‘og r ; r, + const* I 

Hence the condition that the continuation of the Riemann function should 
correspond to a weak solution of the wave equation at once leads to the value 
(3.14) of C. The same argument can be applied to M,,[w] = 0, and is in fact 
the essential content of the lemma which will be proved in the next section. 

50514/3-11 
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4. 

An elementary solution of M,[w] = 0 is a distribution G which satisfies 
the equation 

M,[G] = S(Y - ro) 8(t - to) (4.1) 

where 8 denotes the Dirac S-function. Since we are working in Y > 0, G 
must be in the space dual to the space of test functions which are indefinitely 
differentiable, and have compact supports which are contained in Y > 0. 
This will be denoted by 9+. 

In the nonsingular case, the elementary solutions of linear hyperbolic 
second-order equations with two independent variables are functions. 
We will therefore assume that G is a function. Then (4.1) is equivalent to the 
identity 

SI GM&I dy dt = M-0 , to), 4 E a+, (4.2) 
T>O 

since MU is self-adjoint. It is evident that the behavior of G on the singular 
line Y = 0 is irrelevant to the validity of (4.2). However, we may heuristically 
define a Green’s function of our singular mixed boundary value problem to 
be an elementary solution G such that Y--ILG remains bounded almost every- 
where as Y -+ 0. We shall now prove the following: 

LEMMA. The two functions 

and 

O,t>to-)Y-Yo/, 

G(yo , o , 9 t * Y t) = +R, to - 1 Y - Y, 1 > t > to - r. - Y, (4.3) 
ii?, to - Yo - Y > t, 

G*(Y, , to ; Y, t) = G(Y, t; ~0, to) (4.4) 

are Green’s functions of Mu in Y > 0. 
We have already determined R by the condition that Y--LIR remains bounded 

almost everywhere as Y + 0. It therefore only remains to prove that (4.2) 
holds for both G and G*. This can be done by a variant of Riemann’s method. 
If 4 and # are two functions of class Ca, then 

Integrating this over a bounded domain w with piecewise smooth boundary 
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a,, oriented so that w is on the left of au+ we obtain the usual integral identity 

We shall take 4 E C3+ and 4 = 2G. The exceptional case /.L = K, k = 1,2,..., 
is easily disposed of. Let w be the rectangle bounded by the characteristics 
t + Y = t, + Y,, , t - Y = t, - Y,, , t + Y = t,, - Y,, , and by a characteristic 
Y - t = c, where c is a positive constant. The vertices of this rectangle are 
denoted by A, B, C, and P in Fig. 2. Since 4 has compact support, Y - t > c 

FIG. 2. 

will be in the complement of the support of # if c is sufficiently large, and we 
shall have+ = 0 on BC. As the support of+ is in Y > 0, there exists an a > 0 
such that I$ = 0 in 0 < Y < a, so that there are no convergence difficulties 
at Y = 0. Then (4.5) becomes 

jj 
w 

RWMI dy dt = j: (R4 - W) + j; (W - RW 

+ j”, (W - b-3 
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because 2G = R in W, dr = dt on AP, and dr = -dt on CP, AB. Further- 
more, R = 1 on CP and on PA, and R = F(k, 1 - k; I; 1) = const. on AB. 
Hence 

SI 
RM,[+] dr dt = .W,, , to), 

w 

taking into account that 4 = 0 at A, B and C. But this is (4.2) for the 
exceptional case, when R = 0, by definition. 

When p is not a positive integer, we must exclude the singular line 
t + r = to - r,, . We therefore take w to consist of a rectangle il bounded by 
the characteristics through P(Y, , ,, , t ) by t + r = t, - r. + 2~ where c > 0, 
by r - t = c, of a triangle A bounded by Y - t = c, t + r = t, - r,, - 2~, 
and by r = 0. The vertices of 17 are denoted by P, A’, B’ and C in Fig. 2, 
and those of A by A”, B”, and D. We can again take c large enough to ensure 
that 4 = 0 on I - t = c, and we shall have 4 = 0 at A’ when E is sufficiently 
small, since the support of 4 is in r > 0. Since G is defined by (4.3), we have 
2G = R in and 2G = R in A, so that (4.5) becomes 

j j RVM dr dt + j j R&[+I drdt l7 A 

= j; (W - 4dR) + j^,' ($dR - Rd4 

+ j;; (W - WR) - ,I: (R4 - WR), (4.6) 

in view of the fact that dr = dt on A’P, and dr = -dt on PC, A’B’, and 
A”B”; there is no contribution from A”D, since 4 vanishes in a neighborhood 
of the singular line. As R = 1 on CP, PA’, and + = 0 both at C and at A’ 
(provided that E is small enough), 

j; (Rd+ - WR) + ,I' (W - 4dR) = 2$(r0, to). (4.7) 

The other two integrals in the second member of (4.6) can be transformed 
by partial integration into 

2 j:; Rd+ - 2 j:: Rd+ 

Now on A’B’ one has 
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and on A”B”, 

2 = z” = 1 + (y + y. + + . 

yy 0 

As # vanishes in a neighborhood of Y  = 0, Y  will be bounded away from zero 
in both of the integrals (4.8), and so 2’ -+ 1 - in the first integral, 2” + 1 + 
in the second one, both uniformly in Y. We can therefore substitute the second 
members of (3.9) and (3.15) in (4.8), which then takes the form 

where HI is continuous in 2’ < 1, and Ha is continuous in 2” > 1. As E + 0, 
the contributions from HI and H, tend to 

% {H,(l) - H,(l)) j: d$ = 0. 

The logarithmic terms are, by (4.9a) and (4.9b), 

2 sirimp m 
?I I I log (Y + T- E)E 

d$(r, to - r. - Y  + 2~) 
0 

- log (Y + T+ + 
dr$(r, to - r. - Y  - 2~) , 

I 

where the integration is in effect over a finite interval a < Y  < b, a > 0, 
because of the properties of $, Since 4 E P, it is evident that this also tends 
to zero as E -+ 0. We can therefore make E + 0 in (4.6), and find by (4.7) that 
the limit of the second member is 24(yo , to). The limit of the first member is 

2 j-j-,, G(yo > to ; y, t) W+(y, Ql dy 4 

since the support of 4 is contained in Y  - t < c and that of G is 
t < to - 1 Y  - r. I. Thus G is an elementary solution of M,, . 

The second assertion, (4.4), is the reciprocity property of the Green’s 
function. It can be deduced from (4.3). For as 2 remains unchanged if to is 
replaced by -to and t by -t, while the supports of G and G* are inter- 
changed, we can also write (4.4) as 

G*(Y, , to ; Y, t) = G(Y, , -to ; I, -t). (4.11) 
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If 4 E 9+, and 4 = +(Y, -t), then + E 9+; hence 

- +(Yo 1 to) = Y+‘O , --to) = J-! 
G(r, , -to ; Y, t) Mu[$(r, t)] dr dt 

r>o 

= ss G*(yo , to ; r, -4 ~,J,+-, t)l dy dt 
r>o 

= ss G*(ro , to ; y, t) M,,[+(y, Ql dr dt. r>o 

5. 

In terms of distribution, the solution of the initial value problem 

is a distribution with support in t 2 0 which satisfies 

K&4 = we(y) s’(t) + WI(Y) s(t). (54 

This equation shows that it is sufficient to consider the case where w. = 0, 
w1 f 0, since the solution for w. f 0, w1 = 0, can then be obtained by 
replacing wr by w. , and differentiating with respect to t. The same remark 
applies to the solution of the singular mixed boundary value problem, and 
to the solution in the classical sense. We shall therefore consider this case 
only. 

If w is a function, with support in t > 0, then (5.2) means that this function 
is a weak solution of the initial value problem, in the sense that 

jr jr w~uM1 dr dt = jr ‘4~) d(r, 0) dr, (5.3) 

for all 4 EC@+. Since MJrua] = ~uL,,[w], one can go from (5.1) and (5.2) to 
the Euler-Darboux equation (1.1) by putting w = ruw, wi = rug, to obtain 
the initial value problem 

L[4 = 0, W(Y, 0) = 0, wt(r, 0) = g(y). 

By (5.3, the weak solutions of this problem satisfy the identity 

(5.4) 

jr jr r%L,[$] dr dt = jr ~z’;e(r) #(Y, 0) dr, 4 E S3+. (5.5) 

Such a solution can be written down at once. We have 
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THEOREM 2. I f  g(r) is continuotls, then 

v(r, 2) = ,:” G(r, t; s, 0) (+)” g(s) ds (5.6) 

is a weak solution of the initiaE value problem (5.4). I f  V(Y, t) is considered as a 
distribution in t that depends on r as a parameter, then it tends to a limit, for 

t > 0, as r + 0, 

iii? v(r, t) = r(p + iI ;;;+ 1 _ p) (&r j: (t2 - s2)“-us2W) ds, (5.7) 

where n is any integer such that n - p + 1 > 0; the derivatives on the right- 

hand side are evaluated in the sense of the theory of distributions. 
To prove that (5.6) is a weak solution of (5.4), we first show that 

w(y, t) = j” G(r, t; s, 0) wl(s) ds 
0 

I 

r+t 
r= G(r, 1; s, 0) w,(s) ds 

0 

(5.8) 

satisfies (5.3). The support of G(Y, t; s, 0), considered as a function of s, 
is determined by the inequality 1 Y - s 1 < t. It is empty for t < 0, and the 
second member of (5.8) is then zero. For t > 0, it is in 0 < s < r + t, so 
that the integral (5.8) exists. Now if 4 E .9+, then 

m m 
is w(r, t) M&Q, t)l dr dt 0 0 

= j j r>o JfJ&, t)] dr dt jm G(r, t; s, 0) q(s) ds 
0 

=s 

m 

WI(S) ds 
Is 

G(r, t; s, 0) MJC(r, 01 dr dt 
0 r>o 

i 

m 
= 44 ds 

!-I 
G*(s, 0; r, t) M&(r, t)] dr dt, 

0 r>o 

where the interchange of the order of integration is justified by Fubini’s 
theorem. By (4.4), this gives (5.3). Since v = Y-uw and g = Y-~w~ , it follows 
that (5.6) is a weak solution of the initial value problem (5.4). 

It has already been observed that for generalized solutions which are 
based on the class of test functions 9+, the behavior as T -+ 0 is irrelevant 
since the supports of the members of 9+ are in r > 0. If one wants to consider 
the behavior of the weak solution (5.6) as r -+ 0, still in terms of generalized 
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solutions of the Euler-Darboux equation, one must adopt a different point 
of view. It can be shown that a consistent theory can be constructed by 
treating v as a distribution in t which depends on Y  as a parameter. We do not 
propose to develop this point of view in detail here, but will only show that 
in this sense, v tends to a limit as Y  -+ 0. 

In 0 < s < t + Y, G(Y, t; s, 0) is a function of 

only, 

This can be written in the form 

G(y, t; s, 0) = (-$)” G(5), 

where n = 1, 2,..., and 

2rc,i; lf(~> 1 - P; n + 1; 0, 0<.5<1, 
WI = w P+ 

(5.11) 

- 2Q4 qn + 1 _ /p 71, CL; 8% 5-9, 53 1. 

For 5 # 1, this can be verified by term-by-term differentiation of the hyper- 
geometric series. Moreover, we have 

r(c) qc - a - b) 
F(a, b; c; 1) = qc _ b) qc _ a) 

when c - a - b > 0, and this formula shows that G,(5) is continuous at 
5 = 1. Since 

d 2rs a 
-=--, 
4 t at 

and G, vanishes for s = Y  + t, (c # 0, -1, -2, *se) which corresponds to 
1 = 0, when n > 1, we can therefore write (5.6) as 

a n r+t 
v(y, t) = (m IS 

G,(~)(~)“-1L(2s)‘+‘g(s) ds, o (5.12) 

when g is continuous. Let us multiply this equation by an indefinitely 
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differentiable function tit) with compact support contained in t > 0, and 
integrate with respect to t. Then we obtain 

j” O(Y, t)+(t) dt = jj, G,(5) 4,,(t) g(s)(2+-“(2++u ds & (5.13) 
-03 

where we have put 

bn(t> = (-1)” (&)’ W’ (5.14) 

and D is the domain in which 1 r - s 1 < t and 4 f 0. By hypothesis there 
exist positive constants a and b such that + = 0 for t < a and t 2 b. If we 
suppose (as we may) that r < a, then D can be taken as a < t < b, 
0 < s < t - I, and (5.13) becomes 

I O” +, t) W dt = 11 + 12 , (5.15) 
--m 

where, by (5.1 l), 

11 = ' j" dt j;:;F(p, 1 - I-L; n + 1; 5) 
2qn + 1) a 

x g(s) Mt)[t2 - (r - ~1~1~ (+y 4 (5.16) 

%-4 b 

12 = s i t--r m%-4~(~+ 1-P) a 
dt F(P - nt, CL; 2~; 53 0 

x g(s) &(t)[t2 - (Y - s)~]-(~s)~~ ds. (5.17) 

For tl 2 1, the hypergeometric functions in the integrands are continuous. 
Hence 

I III .,j:dt j:;:(t+ r - s)” T-U ds = O(F‘+~) (5.18) 

where K is constant. If also n > CL, then the integrand of J2 is continuous, 
and bounded uniformly in r. Hence we can make r + 0 under the integral 
sign in J2 . By (5.18), Jl tends to zero, and so 

$k$j” 
2+-l&L) 

-co +, 4 w dt = qq4 qn + 1 - p) 

X jIm 4,,(t) dt j”, (t2 - s2)+“s2”g(s) ds, (5.19) 
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where we have restored the nominal limits of integration (-co, co). By the 
duplication formula for the Gamma function, 

22@--lr(/.L) *l/2 

w&4 = r(cL + 4) ’ 

and in view of (5.14), (5.19) is equivalent to (5.7), with n > 1, n > I*. But as 
distributional derivatives are identical with ordinary derivatives when they 
exist, we have, for any integer m, 

if m > p. Hence (5.7) is valid for n - p + 1 > 0. In particular, if $ < TV < 1, 
Hence (5.7) is valid for n - p + 1 > 0. In particular, if 4 < p < 1, we can 
take n = 0, and the second member of (5.7) is then a continuous function. 

In the exceptional case, when p is a positive integer k, one can take n = k 
in (5.7), and carry out one differentiation with respect to t. This gives (in 
terms of distributions) 

lii w(r, t) = 
1 

t 1 
a Ic--l {t2’“-lg(t)}. 

1.3 ... (2k - 1) t at 
(5.20) 

This result could also have been obtained by the method of descent, since 
a spherically symmetrical solution of the wave equation in 2k + 1 spatial 
dimensions satisfies L,[o] = 0. Conversely, one can recover a well-known 
form of the solution of the initial value of the first-order derivative, with 
respect to the time, of the dependent variable (see [2], p. 682). A similar 
remark applies to (5.7) when p = k + i. 

6. 

Since distributional derivatives are equal to derivatives in the usual sense 
when these exist, we can now pass from weak solutions to solutions in the 
usual sense by considering the differentiability properties of (5.6). In view 
of the application to the initial value problem in which ~(r, 0) # 0, wt(r, 0) = 0, 
we shall discuss what conditions must be imposed on g(r) to ensure that 
ZI E C3. For t < r, this is a very simple matter. For (5.6) then reduces to the 
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Riemann representation of the solution of the initial value problem, 

where 1 is again defined by (5.9). Since 

F(P, 1 --Pi 1;5) is of class C* in all three variables r, s and t, and er E Cm if 
g E Cm-l. For m > 2, (6.1) is then the unique solution of the initial value 
problem (5.4), and this can, of course, be verified easily by direct differen- 
tiation. 

We must now consider the case t > r. We shall assume for the present 
that p is not a positive integer; the exceptional case will be treated separately. 
We then have 

v(r, t) = /:‘t G(r, t; s, 0) (p)@g(s) ds, (6.2) 

and G has a logarithmic singularity at s = t - r. Now it follows from (3.9) and 
(3.15) that, if a and b are two constants such that 0 < a < t - r < b < t + r, 
and that ) 5 - 1 1 < 1 in a < s < b, then 

. W, t; s, 0) + ?I+,1 --;l;l -c)logIt-r---s/ 

= I G,(r, t; s), a < s < t - r 
Gz(r, t; s), t - r < s < b, (6.3) 

where both GI and G, are functions of class C”O. Hence (6.2) can be written as 

v(r, t) = i C 1: PF(p, p; 2~; 5-l) (+)@g(s) ds 

+ f j:+'F(p, 1 - CL; 1; 5) ($+) ds 
+ jr W, t; 4 (~)'g(s) ds + j:-, G-b, t; 4 (+)"g(s) ds 

sin 77~ b 
----I 27r a 

IQ,1 --;I;1 -<)(+)“g(s)log/t-r-sjds, 
(6.4) 

where C is the constant (3.14). 
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The derivatives of the last term in (6.4), which is the only one that presents 
any difficulty, can be obtained by a well-known device. Suppose that a 
function $(s) satisfies a Lipschitz condition 1 (b(s2) - C(sJ < K 1 s2 - si / 
in a ,< s < b, and put 

t/(x) = jb 4(s) log 1 s - x 1 ds = J-I+@ + X) log 1 s 1 ds. (6.5) a 

By partial integration, this can be transformed into 

Now 

I)(X) = [log / s ( j~‘$(e) dn]: - jz t j;‘gl(o) da. (6.6) 

/ $ j:+‘b(4 da 1 = I 4(x + 4 - #)I B KS, 

so that differentiation with respect to x of the last integral in (6.6) can be 
carried out under the integral sign, and #‘(x) exists for e < x < b. One 
finds in this way that 

#l'(x) = - j:,@$s, 

where the integral is a principal value. The derivatives of higher order can 
be obtained in the same way. For if + E P-l and #(+l) satisfies a Lipschitz 
condition, then we can differentiate the last integral in (6.5) m - 1 times, and 
then use the same device to establish the existence of #fm). 

We can therefore conclude from (6.4) that if g E Cm-l and gcrn-l) satisfies 
a Lipschits condition, then v E C” in Y  > 0, t > Y. If these conditions are 
fulfilled in 0 < Y  < c, then the conclusion holds in 0 < Y  < t, t + Y  < c. 
But it still remains to consider the behavior of v and of its derivatives at 
t = Y. It is obvious that v itself is continuous there, and that 

V(Y, Y) = ; j2’F (p, 1 - CL; 1; ~j(~j’g(s) ds. w3) 
0 

Hence W(Y, I) E Cm if g E Cm-r. We need therefore only discuss the derivatives 
of v in a direction that is not tangential to t = Y, say those with respect to t. 

For t < I, we have 

Vt(Y, t) = ;g(Y + t) (TjU + ;g(Y - t) (GjU 
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and since p > 0, it follows that 

‘o&, r -) = 2“+(2r) + ; /;p’ (p, 1 - /A; 1; q) G&s) ds. (6.9) 

For t > Y, we can again use (6.4). But we must now make a a function of r 
and t, in order to ensure that a < t - r. It is sufficient to take a = &(t - r). 
For 5 is a decreasing function of s when t > r, and we have, when s = =&(t - r), 

5 t2 - 1 (r + s12 1 - Y) _ = = 3(t 
4rs 2+-r, 

so that 5 < 2 in +(t - r) < s < t - Y  for t - Y < +r, which we may 
assume to be the case. We must also take b < 2r, so that b < t + r for all 
sufficiently small values of t - r. The limiting value of the derivative of the 
last term on the right-hand side of (6.4) can again be computed by means 
of (6.7). We must now take a = +x in (6.5); it is easily seen that (6.7) then 
becomes 

d b 
z I 

z,2$(s) log 1 x - s j ds = - $5 (3 log ; - C+(X) log 2(b ; ‘) 

b - +(‘) - +(‘I ds 
xl2 s-x ’ 

(6.10) 

In the application of this equation to (6.4), we shall have 4 = P& , where +i 
satisfies a Lipschitz condition in 0 < s < b. Then 

4(s) - &4 = s%(s) - x”M4 
s-x I I s-x 

< so MS) - Mx) 

s-x 
1 -t$,(x)/~I (6.11) 

where K is the Lipschitz constant of ~$r , and M is an upper bound for 
1 y$ 1 in 0 < s < b. Also 

Hence the integrand of the integral in the second member of (6.10) is 

505/4/3-12 
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dominated by an integrable function, and we can make x -+ 0 under the 
integral sign, to obtain 

lii$ b s b 

2,2 s”&(s) log j s - x j ds = - s+J1(s) ds. (6.12) 
0 

This is exactly what one would obtain if the integral were differentiated 
formally, and then put x = 0. We can therefore compute the limiting value 
of v, as t --f r + from (6.4) by the same rule. Since the nonsingular contri- 
butions from the variable limits a = -&(t - Y) and t - Y, and the derivative 
of the integral from 0 to a, vanish in the limit, this again gives (6.9). Hence vt 
is continuous at t = Y. 

The derivatives of higher order can be treated in the same manner. But as 
a[lat = t/2rs, convergence difficulties may arise at s = 0. In t < Y, the mth 
derivative of (6.1) will consist of an integral whose integrand contains a term 

(St)” r-m-u s-g(s) P)(p, 1 - /.k; 1; [), 

and of contributions arising from the differentiation of the variable 
limits that include terms which are proportional to (Y - t)u-m+lg(Y - t), 

(I - t)u-m+zg’(Y - t),... . As t ---f Y  -, the limit will certainly exist if either 
m < p + 1, or if g(j)(O) = 0 for 0 < j < [m - p - I], where [z] denotes, 
as usual, the greatest integer less than Z. We shall then have g(s) = O(@-@)) 
as s -+ 0, so that su-“g will be integrable at s = 0, and the terms arising from 
differentiation of the lower limit will tend to zero as Y  - t + 0. When 
i?%/LP is computed in t > Y  by the same method as that which was used 
above to evaluate h/at, it is found that the same conditions ensure that the 
limit exists as t ---f Y  +, and is equal to that found as t + Y  -. 

It would therefore appear at first sight that if v is to be of class Cm in 
Y  > 0, and m > p + 1, then the subsidiary conditions g(j)(O) = 0, 
0 < j < [m - p - I] must be added to the basic requirement that g E Cm-l 
and that gcrn-l) should satisfy a Lipschitz condition. But it can be shown that 
only the derivatives of odd order need be assumed to vanish at the origin. 
For t < Y, this can be proved as follows: If g = Yap, 1 = 0, 1,2,..., then the 
solution of the initial value problem (5.4) is a polynomial pi(r, t), 

PO = t, Pl = r2t + 8(P + w, (6.13) 

1 pqz + I) qz + p + 4) Y2c-2Q2j+1 

pz(‘p 4 = jso F(l - j + 1) r(Z - j + P + B) (2j + l)! . 

But the solution of the initial value problem in t < Y  is unique; hence 

p,(y, t) = ; s’l’+, 1 - CL; 1; 5) ;I: ds, (t < Y, 1 = 0, l,... ). (6.14) 
7 t 
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We can therefore write (6.1) as 

v(r, t) = i gfzz)(0) $y$c + ; f;;F(p, 1 - /J; 1; 5) (t)UgL(~) ds, 
Z=O 

Clearly, gisj)(O) = 0 for 0 <j < k. Since we can work with this identity 
instead of (6. I), it tells us that only the requisite number of derivatives of odd 
order of g must vanish at the origin in order to ensure the existence of the 
limit of EPw/@ as t -+ r -. 

We cannot establish the analog of (6.14) for t > Y by an appeal to the 
uniqueness theorem, since we are in fact trying to prove that (5.6) is a solution 
of the singular mixed boundary value problem which satisfies, for suitable g, 
the conditions of the uniqueness theorem. To overcome this difficulty, the 
argument can be divided into two steps. For 1 = 0, the identity 

sl’” G(Y, I; s, 0) (+)w ds = t (6.15) 

can be proved directly. The proof will be given at the end of the next section. 
We can therefore write (5.6) as 

v(r, t) = g(O)t + 1:” G(r> t, s, 0) (+)” [g(s) - g(O)] ds. (6.16) 

Since g(s) -g(O) = O(s) and (CL + 1) - 2 > -1, we can conclude that 
if g E C’, and g’ satisfies a Lipschitz condition, then (5.6) is a solution of class 
C2 of the initial value problem (5.4) in T > 0. It then follows from Theorem 4, 
which will be proved below, that for g = Yap, I = 1, 2,..., vu, and wt remain 
bounded as r + 0. Hence Theorem 1 shows that the identities 

pz(r, t) = 1:” G(r, t; s, 0) G ds, 1 = 1, 2,..., (6.17) 

are valid, and we can argue as in t < r. We can therefore state the following 
theorem on the differentiability properties of (5.6): 

THEOREM 3. If g(r) is of class P--l, m > 1, in 0 < r < c, and g(“-l)(r) 
satisJes a Lipschitz condition, then (5.6) is of class Cm in I > 0, t > 0, T + t < c, 
provided that either m < TV + 1 or that, if m > p + 1, gt2j+l)(0) = 0 for 
j = 0,1,2 >***, and 2j + 1 < m - TV - 1. If m > 2, then (5.6) is a solution 
of class Cm of the initial value problem (5.4) in r > 0. 
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In the exceptional case p = k, k = 1,2,..., (6.16) remains valid, and takes 
the form 

v(y, 6 = gw + ; ,;;IT, F(h, 1 - K; 1; 5) t+)B [g(s) -g(O)] ds. (6.18) 

Now F(k, 1 - K; 1; 5) is a polynomial in 5. Hence there is no need for a 
Lipschitz condition in t > Y. Then g E Cm-l implies that v E Cm for r > 0, 
t f r. It follows from (6.18) that the derivatives of ZJ of the first and second 
order are continuous at t = r provided only that g E C’. The continuity of 
the derivatives of higher order can be discussed by the same method as in 
the case of nonintegral CL. One finds that the subsidiary conditions at the 
origin, which are required when the order m of the differentiability class 
exceeds K + 1, are g(2j+1)(0) = 0,j = 0, 1,2 ,..., for 2j + 1 < m - K - 1. 

7. 

We can now complete the discussion of the singular mixed boundary 
value problem by considering the behavior of (5.6) as r + 0. We shall again 
first assume that p is not a positive integer. Now if K < p < k + 1, 
h = 0, 1, 2 ,...) and g(r) E Ck, then the distribution (5.7) is a continuous 
function. The fact that v tends to this function in the sense of the theory 
of distributions does not imply that it does so in the ordinary sense. However, 
we can prove directly that this is indeed the case, and that there is a corre- 
sponding result for vt when g E C Ic+l. The proof can be effected by means 
of an integral representation which is of some intrinsic interest. It should be 
noted that although we are assuming that TV 3 3 in this paper, the proof 
of Theorem 4 is valid for p > 0. 

THEOREM 4. If k < p < k + 1, k = 0, 1, 2 ,..., and g(r) E C”+l in 
0 < r < c, then v(r, t), given b (5.6), tends to 

&2 

s 

t 

m  + a, ru - CL) 

(t2 - s2)-us2ug(s) ds 
0 

(7.1) 

as r -+ 0 in 0 < t + r < c; for p > 1, this integral must be interpreted as a 
finite part in the sense of Hadamard. Also, v, + 0, and vt tends to the derivative 
of (7.1). 

Let us first suppose that 0 < p < 1. We can then derive an integral 
representation for G(r, t; s, 0) that is similar to (1.10). It follows from the 
well-known relation 

r(c) @, b; c; d = r(b) qc _ b) s ’ ub--l( 1 - +-b-1( 1 - UZ)-~ da, (7.2) o 
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which is valid for Re b > 0, Re(c -b) > 0 and / z 1 < 1, that for 5 > 1, 

; Cl-“F(,u, p; 2~; l-l) = F 1; a“-l(l - o)“-I([ - u)-” da (7.3) 

where C is the constant defined by (3.14). Again, for 0 < 5 < 1, 

;F(p, 1 - p; 1; 5) = % j’ d-1(1 - u)-u(l - +)LA-I da, 
0 

and if we replace u by a/[, then this becomes 

; F&L, 1 - p; 1; 5) = + ,I ,u-I(1 - u)u-‘([ _ u)-u da. (7.4) 

Now when 5 is the quantity defined by (5.9), then the first members of (7.3) 
and(7.4)arethevaluesofG(r,t;s,O)inO~s<t-randint-r <s<t+r, 
respectively. We can combine the two integrals by putting u = ;(I - cos 8), 
to obtain 

G(r, t; s, 0) = + j 
c$nZU-1 

(45 - 2 + 2 cos ep 
de 

where the integral is taken over 0 < B < rr if 5 > 1, and over 
0 < 8 < co&(1 - 25) if 5 < 1. For 5 = 1 it is, of course, not defined. 
Substituting 4rs 5 = t2 - (Y - s)~, we find then that 

G(r, t; s, 0) = + j” 
(rs)u sin2+I 

o (t2 - r2 - 9 + 2rs cos ep 
de 

(7.5) 

where the integrand is defined to be zero when t2 - r2 - s2 + 2rs cos 8 < 0. 
We can now multiply (7.5) by (s/T)~ g(s), integrate with respect to s from 

0 to t + r, and put s cos B = f, s sin t9 = 7. Then, by (5.6), 

TJ(r, t) = F j j r12u-k(S) 
D [t2 - (5 - r)2 - r12]u dfd% (7.6) 

where s = ($ + ~~)l/~, and D is the domain in which ([ - r)2 + $ < t2, 

7 > 0. For continuous g this procedure is justified by absolute convergence. 
We can now put 

f = r + 516 rl = rl1t, Pl = ([I2 + 7)12Y2, (7.7) 
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and write (7.6) as 

t sin rrp 
a(r, t) = ___ ss 

#-k(s) 
45 4,) 3r D, (1 - pIa)’ 

(7.8) 

where D, is the domain 0 < pi < 1, 7 > 0, and 

s = [(Y + t&t)* + Tgt*]l’*. (7.8a) 

If 0 < r < c and 0 < Y  + t < c, then 0 < s < c in D, , so that g(s) is 
continuous, and bounded uniformly in r. We can therefore make r - 0 
under the integral sign in (7.8). Th e result will be the same as that which is 
obtained by making r -+ 0 in (7.6), 

w(0, t) = yf jj r12”+1ds) 
D (t2 - s2)u df dv 

and since 

sin rrp =- 
rr s 

n t 

sin2u-18 de 
0 s 

o (t* - s*)-+g(s) ds 

s A 
0 

sln*-le de = ‘$$$f , 
this gives (7.1). 

Also, if g E Cl for 0 < r < c, then we can differentiate under the integral 
sign in (74, and find that 

(7.9a) t sin rp 
w,(r, t) = - 

li 
$lg’(s) y + 51t 

- dt, 41, 

si,:, J-J-~;;;;~;+~;:’ +lt) + $1 tgys)l (1 ““;--2,u d&drll. 
o,(r, 2) = - 

(7.9b) 

Since I(Y + tlt)/s / < 1 and 0 < vlt/s < 1, we again let Y  tend to zero under 
the integral signs. Thus 

w,(O, t) = T j j 1)?-%g’(fd) d.& ,&, = 0 
Do fdl - f-h2)‘” 

, 

as the integrand is an odd function of t1 . Again, 

o,(O, t) = F jJ Do MflO + fltd(flt)> (1 T;;*p d5, h 

79/2 
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and the substitution s = pit shows at once that ~~(0, t) is obtained from (7.1) 
by differentiation with respect to t. We have thus proved Theorem 4 when 
k = 0. 

To extend this argument to k 3 1, we observe first that (7.2) is valid for 
all b and c, except c = 0, -1, -2 ,..., if the integral is regularized by the 
method of Gelfand and Shilov ([6], p. 118). Th is regularization is uniquely 
defined by analytic continuation. When neither b nor c - b is a non-positive 
integer, it is given by the finite part of the divergent integral in the sense 
of Hadamard, since this provides the analytic continuation of an 
integral with an algebraic infinity ([8], p. 40). Thus (7.5) also remains 
valid for nonintegral. p > 1, if the integral is interpreted as a finite 
part. 

On the other hand, we can also interpret the integral in the second member 
of (7.8) as a finite part, provided that 17y-l g(s) is of class Ck in a neighborhood 
of pi = 1, vr > 0, where k = [CL]. It is easy to see that this is the case. For, in 
the context of the proof of Theorem 4, we can assume that r/t < 1. Then 
it follows from g(r) E Ck that g( ) s is of class Ck in b<Pi<l,~i>O, 
where b is a constant such that b > r/t, since s is bounded away from zero 
there. Also, 2~ - 1 > 2k - 1 and k 2 1, so that 7y-l E C”. Now we can 
compute the finite part of (7.8) by reversing our previous argument: We first 
make the transformation (7.7), then introduce polar coordinates, and finally 
calculate the integral by integrating first with respect to 6 and then with 
respect to S, the inner integral being evaluated as a finite part. By (7.5) we 
therefore find again that the second member of (7.8) is equal to the second 
member of (5.6). 

Furthermore, v”,ll-‘g( ) s and its derivatives of all orders up to k are 
continuous functions of [i , pi and r in b < p1 < 1, 7 > 0,O < r < bt. 
It therefore follows from the properties of the finite parts of divergent 
integrals ([7], p. 149) that (7.8) depends continuously on I as r + 0. The 
calculation of ~(0, t) is formally the same as before; the only difference is 
that the end result must be interpreted as finite part. Also, if g(r) E Ck+l, 
then the same reasoning can be applied to (7.9a) and (7.9b), and thus 
Theorem 3 is proved for all k. 

We can now establish the identity (6.15) which was used in the proof of 
Theorem 3. We need only put g = 1 in (7.8). This gives, since (7.8) is 
equivalent to (5.6), 

s 

r+t 

0 
G(r, t; s, 0) (+I” ds = +” j j, -ciszF d5, d?, . 

0 

For 4 < p < 1, the integral can be evaluated at once by transforming to 
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polar coordinates: 

t sin 7rp ?I?-’ ___- 7r ss D, (1 - P12P d,C, drll = t”“!? jr sjn2U-le de j1 ___- 
0 

rwt 
s 

It now follows by analytic continuation that this equation remains valid for 
p > 1 if the integral is evaluated as a finite part, and this proves (6.15). 

The exceptional case can be treated directly by means of (5.12). When 
p = K, K = I,2 ,..., then (5.11) gives 

2Gk-l(l) i & 5”-‘(1 - V-l, 0 d 5 d 1, = 
0 5>1 

which is simply a form of Rodrigues’ formula, since F(R, 1 - k; 1; 5) = 
P,-,( 1 - 25), where PkP1 denotes the Legendre polynomial of order K - 1. 
We can therefore take 71 = K - 1 in (5.12): 

j;;r,, [“-“(1 - {)“-I Fg(s) ds. (7.10) 

Since 4rs [ = t2 - (Y - s)~, we have 

[(I _ [) = NY + Q2 - s21[s2 - 0 - 4”l 
(4rs)2 ’ 

and can therefore put 

in (7.10), to obtain 

S‘J = (r - ty + 4rt u (7.11) 

uk--l( 1 - u)“-‘t”“-‘g(s) do. (7.12) 

For g = 1, this again gives the identity (6.15). Now if g(r) E C-l and Y < t, 

then g(s) is of class C-l in all three variables Y, t and u. It is then legitimate 
to take the differentiations under the integral sign in (7.12), and to make 
Y  --f 0. In the limit, s = t, and so 

2yk - l)!]” 
v(“T t, = (k - i)! (2~ - iy 

k-l 
(7.13) 

[P-lg(t)]. 

This is the same as (5.20), but whereas the derivatives in (5.20) were 
distributional ones, (7.13) holds in the usual sense. 
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8. 

When & is an integer, the solutions of the Euler-Darboux equation are 
also axisymmetric solutions of the wave equation in 2~ + 1 spatial 
dimensions. The solution of the singular mixed boundary value problem 
which has been constructed is one for which there are no sources on the 
axis Y = 0. The proof of Theorem 1 remains valid if one assumes only that 
Y~u(w,.~ + vt2) is integrable at Y = 0 and that r2~vTvt tends to zero uniformly 
in t, as Y ---f 0. One can interpret these by saying that the total energy of the 
disturbance represented by v must be finite at any instant, and that the rate 
of energy flux across a cylinder Y = E must tend to zero as E + 0. The 
counterpart to this solution of the wave equation is one that represents a line 
source on the axis. A similar solution of the Euler-Darboux equation can be 
constructed for general II. 

The function 

H = (YY,)-u G*(Y, , t, ; Y, t), (8.1) 

where G* is defined by (4.4), satisfies the equation 

L,[H] = Y,2”6(r - Yo) 8(t - to), (8.2) 

and has the support t 2 t,, + 1 Y - r,, I. If one thinks of Y as a spatial variable, 
and of t as the time, then H can be interpreted as a disturbance due to a point 
source at Y = r0 , t = t, . Now when r,, + 0, one has 

H + qp + 4) q1 _ /&) Kt - 4d2 - r21+9 t > t, + I, (8.3) 

as the field due to a point source on the singular line, if one ignores the 
singularity on t = Y. By superposition, one can now form the solution due 
to a line source on the singular line, 

&I2 

5 

t--C 
v(y, t, = I-(, + 4) r(1 - CL) 

4’) 

--io [(t - t’)2 - r$]u &‘* (8.4) 

This representation of solutions of the Euler-Darboux equation seems to 
have been first given by Volterra [9]. 

Let us suppose that K < p < K + 1, k = 0, 1, 2,..., that u(t) vanishes for 
sufficiently large negative t, and that u E Ck+l, with CY(~+~) satisfying a 
Lipschitz condition in any finite t-interval. Then the integral (8.4) exists, 
in the usual sense for k = 0, and as a finite part for K > 0. Its derivatives of 
the first and second order can be obtained by formal differentiation under 
the integral sign, provided that the resulting integrals are read as finite parts. 
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Since L,[(t2 - r2)-~1 = 0, (8.4) is a solution [of class C2] of the Euler- 
Darboux equation in r > 0. Its support is t > T + t, , where t, is the 
greatest lower bound of the support of o(t). We can show that 

To prove (8.5), we differentiate (8.4) with respect to r and then put 
t’ = t - r - rs. This gives 

r2rr au - _ 
2&8 

ST-- T(P + 4) W-II) s 

O” a(t - r - rs) ds 

0 w + w+l ’ (8.6) 

where the second member is a finite part. It is easy to see that one can make 
T + 0 under the integral sign in this equation. One can divide the interval 
of integration into (0, a) and (a, co), where a > 0. In (a, co), a(t - Y - YS) 
is bounded uniformly in Y for fixed t, and [s(2 + s)]-“-i is integrable. Hence 
the passage to the limit is justified by Lebesgue’s theorem. In (0, a), 
u(t - T - YS) and its derivatives with respect to s up to order K + 1 depend 
continuously on T for Y 3 0; it is known that this implies the continuity of 
the finite part of the integral with respect to r. Hence 

lim+ !?! = - 27r”2 u(t) co ds 
t-0 i% QP + 4) F(l -CL) s 0 MS + mll+l * (8.7) 

TO evaluate the finite part of this integral, we note that it converges for 
- 8 < Re p < 0, and is then an analytic function of p. It can be computed 
by setting s + 1 = z-l/2, which gives 

m 
o [s(s +“1)]u+l = ; s 

’ (1 - z)-u-lzu-l/% & = “lll’i +A,. (8.8) 
o 

By analytic continuation, the finite part of the integral in the first member of 
(8.8) is given by the second member of (8.8) except when p = 0, 1, 2,... . 
Thus (8.5) follows from (8.7) and (8.8). 

The exceptional case p = K, K = 1,2,..., is elementary. Clearly, one has, 
for K = 1, 

o(t - r) w=-------. 
I 

Now it is well known that 

Hence 
(-l)“-’ 

( 1 
a k-1 u(t - I) 

+, t, = 1.3 *a* (2k - 1) I %, T (8.9) 
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is the appropriate solution of Lk[w] = 0, if u E Cli+l; it is easily verified that 
(8.6) remains valid. 

The Volterra representation (8.4) can also be treated as a distribution in t 
which depends on r as a parameter. Let 

qtL + ;;;,1 - Jt2 - r2)-, t > r (8.10) 
0, t<r 

For Re p < 1, the linear form determined by this distribution is 

s c0 qr; t) d(t) 4 (8.11) 
--m 

where +(t) is an indefinitely differentiable function with compact support. 
For Re p > 1, it is defined by analytic continuation, and is the finite part 
of the integral (8.11) when p is not a positive integer. Let u(t) be a distribution 
whose support is contained in t > a, for some finite a. Then the convolution 

w = E(r; t)* u(t) (8.12) 

exists. It is an elementary exercise in distribution theory to prove that 
L,[Ej = 0 for r > 0, and that 

lim (IB”$-) = -S(t). (8.13) 

Hence v, considered as a distribution in t that depends on r as a parameter, 
satisfies L,[w] = 0 in r > 0, and r2uv7 tends to -u(t) as r -+ 0. 
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