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Abstract—The plasma streams, emerged from their interactions with large bodies, are studied
using the collisionless Boltzmann equation and the Poisson equation. The ambient ionosphere
is assumed bithermal namely 7./T; = «, a constant, Numerical results are obtained with the
ionospheres in thermal equilibrium (« = 1) and quasi-equilibrium (« = 10) for comparison.
The velocity of the moving bodies is much larger than the thermal speed of the ions and much
smaller than that of the electrons. Both cases, with and without the presence of a permanent
magnetic field, are considered. The magnetic field is aligned with the motion of the bodies.

1. INTRODUCTION

The electro-gasdynamic interaction between a charged body and the plasma tail of
another moving body in a tenuous plasma presents itself in many occasions. For illustra-
tions, one can cite the case of a plasma probe which is placed in the wake of an orbiting
satellite, the motion of a meteorite in a meteoric shower and the interaction of the solar
wind with a comet tail (Biermann and Liist, 1964). Among these cited examples, a common
feature exists, namely, a plasma stream which has been slightly disturbed is interacting with
the object of interest. In fact, the disturbed, rather than the quiescent, plasma stream is of
more common occurrence in a physical environment, e.g., the ionosphere. To make our
problem definite we postulate that the disturbed stream has beenscattered fromaneighboring
object which is located upstream from the body of interest. This specific mode of interaction
is referred here as the double scattering.

To further specify the problem, we assume that the ion mean free path (4) of the ambient
plasma is many orders larger than the sizes (R) of the bodies which, in turn, are large
compared with the Debye length (d) of the plasma, a characteristic length of the allowable
polarization of the medium. It is also assumed that the velocity of the bodies (V) is
mesothermal (Liu, 1967), i.e., it is much larger than the thermal speed of the ions; smaller,
than that of the electrons. These assumptions comply with most of the physical conditions
imposed on the current problems of ionospheric gasdynamics e.g., the motion of a satellite
in the ionosphere. The study of the plasma disturbances in the close vicinity of a moving
body has been discussed elsewhere (Liu, 1967; Al'pert, Gurevich, and Pitaevskii, 1965;
Liu and Jew, 1966; Liu, 1965). The theory of plasma far-wake behind a single body is
also available (Al’pert, Gurevich, and Pitaevskii, 1965) though not complete. Our first
objective is to develop a theory of the double scattering. We start with the single scattering
i.e., the study of the far-wake behind a single body. A second motivation of the present work
is to investigate the effect of the bi-thermal characteristics* of the ionosphere upon the
theories of single and double scatterings. This has been found surprisingly strong when

* It has been often suggested on the basis of experimental evidence that the upper ionosphere could be
in a quasi-equilibrium state having its electron temperature (7;) much higher than its ion temperature (73).

2 845



846 V. C. LIU and R. J. HUNG

compared with the corresponding results for an ionosphere in thermal equilibrium
T, =T1=T).

Generally speaking, the mathematical problem of the present plasma interaction would
entail the simultaneous solutions of the collisionless Boltzmann equation and the Maxwell
equations of electromagnetics because the kinetic and the electromagnetic aspects of the
interaction are coupled. This, indeed, is a hopeless task. It is found, however, by using
inferences drawn from the assumed conditions of the interaction, much simplifications can
be obtained. It is of interest to view the interaction in question from the standpoint of
wave excitations by the moving bodies. It is well known (Stix, 1962) that there are four
principal types of plasma waves in an ionized gas: (1) electromagnetic waves, (2) magneto-
hydrodynamic waves, and (3) electrostatic waves of electrons and of ions. With the assumed
velocity for the moving body which is many orders smaller than the propagation speed of
the electromagnetic waves, it is expected that the generation of electromagnetic waves by the
bodies is insignificant. Among the many modes of the magnetohydrodynamic waves, we
may consider the simplest one, the Alfven wave, which has a speed of propagation given by
Hy[+/4mmn,, where mn, is the mass density of the plasma; H,, the magnetic field. For
the upper ionosphere at F-max, the Alfven speed is estimated to be about 300 km/sec
which again is an order higher than the characteristic body velocity, e.g., the satellite
velocities. Thus the excitation of the Alfven waves by the moving body would be negligible
(Drell, Foley and Ruderman, 1965); it follows when the other modes of the magneto-
hydrodynamic waves are considered. Among the remaining types, the electrostatic
electron waves have a much higher speed than the bodies, as assumed in the present study,
hence is not expected to be significantly excited. The electrostatic ion waves, also called
ion-acoustic waves, which propagate with a velocity near the mean thermal speed of the
ions, if T, ~ Ti, may become strongly excited by the moving bodies of interest. Indeed it
will be seen that the plasma far-wake behind a moving body is characterized by the ion—
acoustic wave parameter, in appearance, much like the Mach wave in the continuum
gasdynamics of neutral particles by the neutral acoustic waves. In view of these considera-
tions, the Maxwell equations of electromagnetics, when applied to the present plasma
interaction problem can be reduced to a single equation, the Poisson equation.

2. MATHEMATICAL FORMULATION OF THE INTERACTION PROBLEM

Consider two axially symmetric bodies with characteristic dimensions R, and R,
(R, = R,) respectively at a distance D (D > R,) apart. A constant uniform, fully ionized
gas, with velocity V, flows past the bodies such that the velocity vector V is aligned with
the axis of symmetry of the tandum bodies. A constant and uniform external magnetic
field (H) also aligns with the vector V (see Fig. 1). It is assumed that the (ion) mean free
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FiG. 1. TANDEM ARRANGEMENT OF THE TWO BODIES WITH ALIGNED MAGNETIC FIELD AND FREE
STREAM VELOCITY.

path of the ambient plasma is many orders larger than the ionic Larmor radius which, in
turn, is much larger than the characteristic dimensions of the bodies while the Debye

length is small compared to any of them. The free stream speed is assumed mesothermal
which implies that it lies between the thermal speeds of ions and electrons and differs
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considerably from either of them. Under these conditions we would expect that the
electron distribution of the disturbed flow will deviate negligibly from the Maxwell-
Boltzmann distribution, the ionic flow will exhibit the ‘hypersonic’ characteristics and yet
the separation of the ion and electron species of the medium must not exceed a distance
of the order of Debye length.

It should be further noted that in the present study of the plasma trail scattering, we
are primarily concerned about the disturbances situated at large distances from the body
where the field (¢) effect is small compared with the thermal effect. Under such an
approximation, the terms representing the space charges in the Poisson equation may be
written in terms of their ambient values plus a first order perturbation. The use of the smali
perturbation technique helps to linearize the system and thus the general principle of
superposition becomes available. We shall regard the double-scattering effect as the
superposition of quasi-single scattering effects.

In treating the far wake of the first obstacle (R,) to which the coordinate system is
fixed we may determine the ion distribution f by using the collisionless Boltzmann equation
(also known as the Vlasov equation)

>3 %, ¥
Vo Tw (+V)XH" v
r.vV
z{———tr—lﬁ,&(r—-Rl) for r.V<0
0 for r.V>0.

Here {1 = f — f;, the small disturbance of ion distribution deviated slightly from that of
the Maxwellian f,; where v, ¢ denote particle velocity and the speed of light respectively;
m, the mass of an ion which is assumed singly charged with an amount e. It is assumed
that the effect of the induced magnetic field is negligible compared with either that of the
electrostatic field or external magnetic field Hy. The term on the right hand side of Equation
(1) acts as a sink of the free stream ions (f;) neutralized by the surface (R,).

The electrostatic field in far wake stream is governed by the Poisson equation

eé
Vid == —4 ((1)_. __)’ 2
¢ e | n Ry KTe 2
where n''! = n — n, denotes the small disturbance of ion number density deviated from
that of the ambient ion density n,.

We obtain the following equations as the Fourier components of Equations (1) and (2)
for a spherical obstacle of radius R, with the coordinate system shown in Fig. 2.

---(n X Hy). f +ik. (@ — V)V + ik. u—-":‘i-’i b = —aREVSG &)
k3¢, = —dne (nm nﬁe;;,) )

Here
= f f® exp (—ir. k) dr, 1 = jq& exp (—ir . k) dr,
n = fn‘” exp(—ir.k)dru=v-+V,
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and

G(kR,xX) = J‘ "sin 6 exp (—ikR, cos B cos x)J(kR, sin 6 sin x) df
[

15in B 49

FI1G. 2. SPHERICAL COORDINATES FOR THE VELOCITIES AND DISPLACEMENTS OF THE IONS.

Note that the function G(kR;,x) approaches unity as kR, approaches zero; the latter
condition represent the state of the far wake. In the present study the k2 and higher
order terms are neglected, thus Equations (3) and (4) can be readily reduced to

_-(ux H). f" +ik.(@— V)P +ik. u e"&" o= —mR2Vf, , Q)
— edy
n(l) By e KT (6)

Substituting Equation (6) into Equation (5), we have finally
(1)
2 xHY. L ik @— VD o+ iak . u Ll = —ar2V, 0
me ou gy

where the temperature ratio a = T[T},

3. PLASMA SCATTERINGS WITHOUT MAGNETIC FIELD
In many planetary plasma studies, it is justifiable to ignore the influence of the geo-
magnetic field. The neglect of the magnetic field effect from Equation (1) not only
simplifies the analysis but also helps to focus the attention on the electrostatic aspect of
the interaction. In the following study of the plasma trails scattered from the obstacles,
we shall start with the single scattering which constitutes a preliminary step to the
double scattering according to the present approach.

3.1 Single scattering—far-wake behind the first obstacle

It is recognized that the jon density in the far-wake behind an obstacle has been
determined in previous works (Al'pert, Gurevich, and Pitaevskii, 1965) for an isothermal
plasma (x = 1). We shall follow essentially the same procedure but study for a general
bi-thermal plasma where a = constant. It is also worthy to note that an additional ion
density (rarefaction) lobe is found which was not reported in the previous works. Inasmuch
as the procedure is similar to that in Al'pert, Gurevich, and Pitaevskii (1965), we shall
refer to the latter for some of the mathematical details leading to the pertinent results of
interest.
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From the formal solution to the perturbation Equation (7) for /{! in Fourier components,
we can obtain the first order deviation of the ion density from its ambient value, after
integrations with respect to the full-range velocity components,

inR2V+ [ —T0 _gu
VW kJu—Veosx
g = Vcos x Jo ®
x 0
Ltet ny fu—Vcosx

and in terms of the Hilbert transform of Gaussian (Faddeyeva and Terentev, 1954), which
is defined as

1 r+=exp —u?
Z(A)=;1‘f_w :p—A

{ r4
du = exp —A4? (1 + %fo exp (1%) dt) .
Equation (8) can be written

n{) = wR2A? %‘3 dD (4 cos x), 9

where
Z(A cos x)

1 4 « + ixd cos xZ(A cos x)

and 4 denotes the ion speed ratio V/(2KTi/m)'/2.

The ion density perturbation in the Fourier components given in Equation (9) which
is equal to the electron density perturbation under the present approximation, has been
useful in determining the radar cross section for the back scattering of the electromagnetic
waves in the determination of the trajectory of a re-entry body.

The inverse Fourier transform of Equation (9) gives the desired ion density variation in
the physical space. The integration has been performed using the method of analytical
continuation and Landau’s contour of integration (Landau, 1946)

7TR12A2n0

OW(A4 cos x) = (10)

(1) e (1)
n'V(r,0,4,x) i F1(6,4,0) , (1
where
1
F1(0,4,0) = cos OI:RedJ‘”'(A sinf)Insin 0 + | Re®V"(Ar)In [t + (¢2 — sin20)1/2] d¢
giné
A (I)(l)' . o sind (I)(l)" - t
+ {5 Tm O (4 sin 6) — J; Im O (AT) sin (sin 0) dt }] (12)
exp (—A%?% {
PU(4D) = 1
“0= e = 2pcanyant + /sl "¢ T 9
il—mBAL) + 2 (D1 + o — 2y (DY) (13)
dow a2
ay —_— wr —
© dr > @ dez ’

, (14)
B(At) = adt exp (—A%?), y(41) =fA exp (x%) dx.
)
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where, Re and Im denote real and imaginary parts of a function respectively (for details
see the Appendix).

Equation (12) has been evaluated by numerical analysis with a digital computer for
the cases: (i) speed ratios 4 = 4, temperature ratios « = 1; (i) 4 =4, « = 10; (iii)
A =8,a=1; and (iv) 4 = 8, « = 10. The plottings of the functions F® (0,4,) in polar
coordinates are shown in Figs.* 3-6. Except for the factor 1/r?, the function F (6,4,«)
gives the relative magnitude of the deviation of ion density, also of electron density, from
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FiG. 3. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE FIRST BODY.
nY = n — n, (speed ratio, 4 = 4, temperature ratio a = 1).
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FIG. 4. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE FIRST BODY.
nY =n—ny(4A=4,a=10).
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F1G. 5. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE FIRST BODY.
M=np—ng(4d=8,a=1).

|
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Fi1G. 6. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE FIRST BODY,
M =n —ne (4 =8, « = 10).

* Note the broken and segmented scales for the radial coordinates of the figures.




SCATTERING OF PLASMA STREAMS IN IONOSPHERE 851

the ambient density n, in the far wake as a function of angle 6. The solid-curve denotes
rarefraction (n' < 0); dashed-curve, compression (#'¥ > 0). Notice that the maximum
disturbance is reached on the surface of a cone with an included angle 20,,, where
O pax ~ sin~! (v,/V) in the case where o = 1. This appears similar to the Mach cone in
the continuum gasdynamics of neutral particles. The angle of the cone is determined by the
ratio of the thermal velocity to the free stream velocity of the particles.

3.2 Double scattering—far-wake behind the second obstacle

Consider the plasma disturbance in the far wake of the second sphere (D/r < 1) to
which we now fix the coordinate system of Equations (1) and (2). Note that the incident
stream to the second body fy, = f +f which is proportional to exp {— (mu® + 2edV)/
2KT;}, and¢?(r) is the field potential disturbance due to scattering of the first body.
Replace, however, f1) by f@) - f@ and f; by fy; in Equation (1). Again neglecting the
magnetic field effect and the second order perturbation, as in (3.2), we obtain the increment
in the ion density perturbation in the Fourier component, namely,

7TR12A 2n0

n? = — [02@® (4 cos x) — DB (4 cos x)] (15)
where
(2) (2) Ry
n® =| fi¥ du, 0 = 5~ €Xp (—edg, /KTY).
1
$g, = electrostatic potential at r = R,
o — Z(A cos x)

[1 4+ o + ioed cos xZ(A cos x)]z] with coordinate fix at the first body.

Following the same procedure as that in Section 3.1, we obtain the inverse Fourier
transform as follows;

TrRlezno

n®(r,0,4,0)= 2 )3
T

[ f OV (A cos x) sin x dxf kdk j exp {ikr(cos 6 cos x
+ sin 0 sin x cos @)} de
T © 2w
_f (A cos x) sin x dxf k dkf exp {ikr [(cos 6+ g) cos x -+ sin 8 sin x cos q{” de
0

le A%n, OV (Af)t dr
g®cos 6
@mr ~1[t% — sin? @ + 2id cos x cos 6]3/2

(cos 0+ —)

372
(1+2——cos0+D)

y _[1 O (ALt dt
- 2 3/2
1[(l + 2$cos 0+ %) t2 — sin2 0 + 2i8 (cos 0+ ?) cos x] ] (16)
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where ¢ = cos x.

Notice that Re @) (4¢) and Re O{?(A¢) are even functions; Im @ V(A7) and Im®{?(41),
odd functions. Letting § — 0%, we obtain (for details see the Appendix)

R 2 42
n®(r,0,4,0) = — "(2;;:’;“ [02F(0, A, ) — F2(0, 4, )], an
where
(cos 0+ -1;)-)
F20, 4, 0) = D D?\ 872
14+2—cosf+ -
r r
sin 0 sin 0
x | Re ®{’ D D2 |In D 2
1 A/1—!—2——cos0—|——2 A/1+2—cos0—|—22
r r r r
+ f ' Re O (4)In | + A/ o sin® § | ar
sin 8 D D
'\/(1+2$cosﬂ+—’,¥) 1 +2TCOSB+W

i % Im ®E sin 6

2
142 2 cos 0 + 22—
r r
gin 6 D D2
2
_fV(l+2$°°59+ %‘) Im @O sin—1 (tA/(l +2 — cos 0+ ?)/sin 0) dt}:l
0

Under the assumption D/r <1, Equation (17) simplifies to

7TR22A2n0

n®(r, 0,4, ) = — e

F®@6,4,a), (18)
where

1
F®(0, 4, «) = cos O[Re @' (4sin f)Insin@ +| Re ®?"(A4f)In [z + (¢2
gin 6
— sin? 6)1/2] d¢
i sin 6 t
+ {E Im ®®'(4 sin §) — f Tm ®®"(4¢t) sin-1 (s—) dt}:l ) (19)

0 in 6

exp (—A%?)
O = T UADF 4w[5(At)ﬁ(At)12{‘/”[{l ta—dt
— 4B(AY (A E(AL) — mFA(AL)} + 2a exp (—A*2)E(AL)
X {241p(A)[E(AL) — 072] + wALp(AD}]
+ i[{£3(4t) — mBA(AOHmB(AL) + 2y(AD[£(Ar)
— 02} — 2wB(A){1 + a — 072 — 4B (AD)y(4n)}
x E(AN, (20)
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where

(2) 2¢h(2)
o =20, oo B sy 14 a—2pupan. @

The function F®(0, 4, «) has been evaluated numerically for the following cases:
A=4,a=1; A=4,0a=10; A=8, a=1; A=28, a=10. These are plotted in
Figs.* 7-10. Except for the factor 1/r2, F®(0, A4, o) gives the additional relative ion
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FiG. 7. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVIATION BEHIND THE SECOND
BODY.
n'® = n — (np + n'V), (speed ratio A = 4, temperature ratio oo = 1,
body size ratio (R,/R,) = 10).
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0O S50 100 150 200 250 300 500 1000 2000 3000
FiG. 8. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVIATION BEHIND THE SECOND
BODY.
n(” =n-— (”o + ,,u)), (A = 4: &« = 10’ Rll.Rg = 10).

O 05 075 10 5 20 S50 10 15 20 25

Fi. 9. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVIATION BEHIND THE SECOND
BODY.
n® = (n—ny+nV), (4=28,0a=1, RRs = 10),

* Note the broken and segmented scales for the radial coordinates of the figures.
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Fi. 10. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVIATION BEHIND THE SECOND
BODY.
(4 =8, « =10, R/R, = 10).

disturbance as a function 6, due to the presence of /" superposed to f; as the ‘free stream’
distribution for the second obstacle. These additional lobes in the ion density distribution
are generated through the transformation of the Fourier components of n{"’ by interaction
with the second sphere. Hence the total disturbance of the ion density relative to its
ambient value is given by n®(r, 0, 4, ) + n®(r, 0, 4, ).

4. PLASMA SCATTERINGS WITH A MAGNETIC FIELD

When a permanent magnetic field (Hy) is added, the motion of the charged particles
will be under the dual influences of the electrostatic and the magnetic field as shown in
Equation (1). It is the relative strength of the two that determines the motion of the
particles. In the equilibrium state, electrons distribute according to the Maxwell-Boltzmann
law. In the case where the magnetic field (H,) aligns with the free stream such as we have
here, the disturbed electron velocity-distribution is not expected to maintain essentially
isotropic with zero electrostatic field because the electrons will have more freedom to move
in the direction of the magnetic field. This non-Maxwellian effect for the electrons will be
ignored in the present study. It is assumed that the Larmor (ion) radius is large compared
with the characteristic dimension of the bodies such that the sink term on the right hand
side of Equation (1) will not be affected by the Larmor gyrations of the ions. Procedures
similar to that of Section 3 will be followed to treat the plasma scatterings with a magnetic
field.

4.1 Single scattering—far-wake behind the first obstacle

Starting with Equation (7) and letting the Larmor (ion) frequency Q) = eH,/mc and
the coordinate system be fixed to the first sphere we have (see Fig. 11),

UL i
'-g_;'—m(klulcosﬂ‘l‘k"u"—k.v)f£1)

ioc Jo 7R3,
+ g ok cos B+ kywy) n—:n,(‘l) = _Q%’ (22)

From the solution for f{? which is then integrated with respect to the velocity components,
n{V is obtained.

o — nRé2nV Yk, k)

* Q iak .V ’
‘ ¥y, k)

2
14+ o+ 0 @3)
1
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F1G. 11. CYLINDRICAL COORDINATES FOR THE VELOCITIES AND DISPLACEMENTS OF THE IONS.
where

© ik.V KT ., X

It is of interest to start with a trivial case by assuming a weak magnetic field such that
viky/Q4 > 1 where vy denotes the mean thermal speed of ions (2KTy/m)'/%; Ky, the wave
component parallel to the magnetic field (H,). Under this condition, it is noted that the
integrand of the integral (24) becomes extremely simplified. Following the approximation
introduced in Al’pert, Gurevich, and Pitaevskii (1965), we ignore the small contribution
to the integral for |x| > 1 and approximate sin? (x/2) by x2/4 for |x| < 1;

_(°_ [ik.V__ KTi , 2}
Yk, k) = L exp [ o~ Bk O, @25)
where k2 = k2 + k2. Theintegral (25) can be further simplified by the use of the identity:
© 2 b
f exp (it - %) dt = (/m +2i f exp (2) df) exp (— b%) = Z(b). (26)
0 0
Hence
Wy, k) = 2 Z(4) @n
| E];
and
2
nil) — '7TR1 Ano Z(A) (28)

k 1+ a+icdZ(4)’

Notice that this is identical to the result of Equation (9). Thus we have substantiated
the validity of the non-magnetic approximation to the study of a planetary plasma provided
the local geomagnetic field is sufficiently weak, i.e., vik/Qs > 1.

We shall proceed with the case of the opposite extreme where the magnetic field effect
becomes a dominant influence by postulating

vik)
-Q—l< 1. (29)

It is clear that under a dominant influence of magnetic field, the ions must behave such
that the Fourier component of the ion density #{" will have sharp maxima when values of
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k,V[Qy are close to integers. In other words, n{" will have a Maximum value whenever
kﬁV equals an integral multiple of the ion cyclotron frequency ;. Now let
kv
Q4
where N == 0, 4-1, +2...and [¢] < 1, be introduced to Equation (24) which becomes

=N+e¢, (30$)

Wik, k) =J; exp (isx — Q = k" xz) exp (1Nx ~op k_L2 sin? ) dx. (31

An approximation to the above integral can be made by noting (Al'pert, Gurevich, and
Pitaevskii, 1965) that the second exponential factor varies much more rapidly than the
first under the strong field condition (29), hence the integral (31) can be approximated by
replacing the rapidly varying factor with its averaged value over a cycle:

2,,2 24,2
- f exp (1Nx k 2 sin? ) dx ~ exp (— kZ‘LQv; ) I, (kz_z)v; ) , 32)
i 1

where I, denotes the Bessel function of an imaginary argument. Accordingly,

Q4 V — N k| 2vi? k| 202
ey k) = FkuZ( ” kv ) cxp ( 2J-Qi ) I"( 2-1-912 ) 33)
and
R 2”0.4 W(k ’ k )
(1) — TRy i L
where
k,V — Ny k 2of o (k 2o?
Wiy k) = 2( ke )= (~5) 1= () ¢

The inverse Fourier transform of n{) given in (34) is performed by using a cylindrical
wave space, dk = k, dk | dk qu leadmg to

R%nA Wiky.k Wo(pk,) k, dk, dk
e _ TR Mo XL WolpKr | 1 4k, drgy 36
" (P’ Z) (277)3 k)| =0 J;"‘—'=-—w 1 -‘l" o + laA W(k", kJ.) k“ ? ( )
where J, is the Bessel function of the first kind.
Since the evaluation of the integrals in (36) depends on
k,V — Ny ey

(220 () .
kyor kyor D

which can be approximated for different frequencies, we shall discuss the two following

cases:
(1) When the frequency of the perturbation wave, induced by the obstacle, is not close

to the ion-cyclotron frequency £, such that,
k"V— NQ; > k“'v1 or sQi/kHv; >1 (38)

expand the Z-function (37) (see Fried and Conte, 1961),
(k”V NQi) ~i (k“V— NQ;)-l

39
kot ko %
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the integrand of Equation (36) becomes

i viP(k ®) exp (izky)Jo(pk )
‘f f (1 + e)(kyV — NQy) — aVk Pk, k, dk, dky, (40)

where

& 2ol k. 202
Pk, ®) = exp (-—- f-ZLQt;) I, ( ;le ) . 41)

Note that the singularity of the integrand in (40) is located on the real axis, the contour
of integration is chosen as shown in Fig. 12. After the integration of Equation (36) over
Im ky

@ Re ky;

Fi16. 12. CLOSED CONTOUR OF INTEGRATION,
dk, is performed, we obtain finally
. iz(1 + )Ny }
nD(p, 2) = — TR i )BXP{V[U o aPGe ) PR
BB =T Ry fa [+« — «P(k, 9]

(42)

(2) When the frequency of the perturbation wave, induced by the obstacle, is very close
to the ion-cyclotron frequency €, such that,

kHV o NQi < kn‘vi or eﬂ;{knv; < i (43)
expand the Z-function (37) (see Fried and Conte, 1961),
— —— 2
z (k--um“V o Q“) A imtl2 (1 - (km“V N Q“) } A iml/2 (44)
kuvi ku'{)i

and Equation (36) is evaluated giving finally

) W

W X(p), (45)

”m(!’, Z) =

where

° P (k,;_ﬁ)-fo(Pk_L)
o 1+ a— at2¢4P(k,?

X(p) = k dk, . (46)

4.2 Double scattering—far-wake behind the second obstacle

In studying the disturbed field far down-stream from the second sphere,* we follow the
same rule of substitution as used in Section 3.1 with the coordinate system fixed to the
second sphere. The relative order of the magnetic effect in the Equation (7) used under the
condition vik/Q < 1 for the first body will be maintained. We shall dispense with the
study of the case with weak field because of its triviality.

* We use a similar assumption as in Section 3.2, namely Dfz £ 1.
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Contrast to the non-magnetic case shown in Equation (15), we have

1

(2) — 5(1) 2
n? = nl) | g% —
U k lock”

47

1 + o + ‘F(k", J_)

which, after inverse Fourier transform, becomes

_ TR A [T Wik, k )IQKk), k,) — 072 .
n®(p, 2) = -——(277)3 £y =0 J; _— 0k k) exp (sz")
% °§:’i) k dk, dk;, (48)
1
where
Oy ky) =1+ a+ iad Wik, k). (49)

The integral (48) is to be approximated under different frequencies of the perturbation
waves in the same manner as was done in Section 4.1.

(1) k"V— NQi >k“vi or sgllk"'vi > 1.

Using the similar approximation for the Z-function as in (39) and the same contour
(Fig. 12), the integration for integral (48) is performed.

- iny(1 - o)z
n®(p,2) = — w;&zn;f TR o [W]
(2m) 0 Sk, ®
x [V{S(klz) — o2+ inQia"zz{ ; (: :;}]kl dk, , (50)
where

Sk,D=14+a—aPk,? €2))
(2) k"V-— NQy <k"v1 or eQilkuvi <£1.
Using the similar approximation for the Z-function as in (44), we obtain finally

/2R, 2o A

n¥(p, z) = — @ Y(p) (52)
where
® P(k, 3Jo(pk ) [Tk, 2) — o2
Y(o) f P(k,® o(pﬁz][cfz)l) it PR (53)

In the numerical computation of the integrals in (42) and (50), we choose the ionosphere
parameters (Al'pert, Gurevich, and Pitaevskii, 1965) corresponding to an altitude of
1000 km. It is estimated that for N = 1, k 23/2Q,2 ~ 1:32 X 102 and I (k, %0:3/2Q:%)
~6-6 X 102, Note that 1 + « > «P(k,?), Equations (42) and (50) reduce to the forms

7R Qiz Qz
" = = 1 M 69
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and
2R ( Qz Q:Z)
(2 = e e 20 — g2 20— sin -
n'®{(p, 2) YA T o (14— ocHlicos - —sin—; M(p) (55)
respectively, where
M(p) = JO P(k  2Jy(pk Dk, dk . (56)

The numerical results computed for Equations (46), (53) and (56) are shown in Figs. 13-15,
respectively.

It is noted that if the magnetic field is so weak such that the ion—cyclotron frequency is
much smaller than the ion-acoustic frequency, the magnetic field effect can be ignored in

02—
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the calculation. On the other hand, if the ion-cyclotron frequency is much greater than the
ion-acoustic frequency, we can discuss the results under two different conditions: (1)
When the frequency of the perturbed wave, induced by the obstacle, is not close to the
ion—cyclotron frequency, then in the z-direction we have sinusoidal ion—cyclotron
oscillations, and strongly damped motion along p-direction; (2) When the frequency of
the perturbed wave, induced by the obstacle, is very close to the ion—cyclotron frequency,
the strong cyclotron damping makes the oscillation die out rapidly along the z-direction,
and it has, however, relatively less effect on the amplitude of the oscillatory motion along
the p-direction.
5. CONCLUSION

The dynamics of interaction between a rarefied plasma and a moving probe, whether
it is natural such as a comet or artificial, e.g., a satellite, often plays a vital role in the
studies of the upper atmosphere and the interplanetary gas. Sometimes the interaction
process can become multifold. The present modest attempt to study this complex particle-
field interaction utilizes a simple idealized model to gain some insight in the physics of
the problem in question. In order not to make this paper unwieldy, we have not attempted
much ramification of the results, e.g., the implication of the multi-lobes in the perturbation
density distributions of ions and, of course, electrons (Figs 7-10) to the radar cross section
problem.

The surprisingly pronounced effect introduced by the bi-thermal characteristics of the
ionosphere upon the plasma tail structure is worth noting both for the single scattering and
the double scattering. Should the bi-thermal state (Te > T3) be confirmed for the upper
ionosphere under direct solar radiation, much of the studies on plasma interactions for
gas in thermal equilibrium should be re-evaluated for the cases with the quasi-equilibrium
state of Te > Ti. In drawing conclusions one, of course, needs to comprehend the basis
of comparison of the scattering results with Te/Ti = 1 and Te/T; > 1. Note that in the
present comparison the speed ratios are made equal, i.e., the ions temperatures in the two
states are the same.
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It should be mentioned that the method of treating the double-scattering problem can
be extended straightforwardly to the N-scattering problems.
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APPENDIX
Consider the following integration

D(4 cos x) sin x cos x dx
x — sin% 6 + 2id cos x cos 32 °

F(0, A, «) = cosh fo — (A1)
Since 7/2 < 6 < 32w, i.e., cos 6 < 0, the sign of the imaginary part in the denominator

of Equation (A.1) is negative, it follows (Landau, 1946) that the contour of integration
shall be taken along the real axis (see Fig. A).

Tm ¢
i 1 i
;-.-;«.-{-.2_; 3 T4-—:~v—~5~———~§
1
. I
Lo | !
| Py By |
! f7\ ! Re t
-1 ~8in 8 0 Sin & t

Fic. A. OPEN CONTOUR OF INTEGRATION.

Letting 6 — -0, Equation (A.1) becomes

DAt de
1 [(z — sin 9)(¢ -+ sin 6) P/2°

1
F(9, 4, %) = cos 0 f (A.2)
where ¢ = cos x.

Itis clear that the point of singularities are +sin 6. The contour of integration (Landau,
1946) can be divided into five parts as shown in Fig. A. Investigating Equations (13) and
(20), we find that both Re @™ (4¢) and Re @@ (4¢) are even functions of #; Im ®M(4r)
and Im ®®(4r) odd functions of ¢ for the cases of the single and double scattering

8
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respectively. It follows that
8in 6 —&q
,:.i,ffﬂ, Canoie, z% =0 along contour 3 (A3)
fim { fl Im @(40)tdt J~1 Im O(Af)r dt ’
er,eq-0\ Jaino+e, (¢2 — sin? )32 Jano+s, (2 — sin? 6)3/2
=0 along contour (D) and (3. (A4

The method of integration by parts is valid only for the integration along the real axis.
After applying the integration by parts twice, we obtain

f Re (An)edr . —Re ©(A1)

—Re @'(A4 sin 6) In (4 sin )

eney—e0 JO,@® (F2 — sin2 )32, oo (12 — sin? 012 |,
1
+ f Re®"(Af)In (r + V2 — sin? 0) ds
sin 0
along contour () and (3. (A5
X Im O(Af)ede . Im ®(41) ) [-:r . :|
.,,‘:,‘?J(@m‘,j::i i@ —smt oynlg, — S0 [z Im ¥ sind)
gin 6
4 sin f Tm ®"(41) sin—l( .5;_0) dr along contour (3. (A.6)
0
For the contour (2) and () we have the results
1
. (A si . .
E:I—lio V2" sl (Asin )i+ 1) for contour 2, A7)
1
lim —————— ®(4sin )i + 1) for contour @ (A.8)

g0 A/ 2652 sin1/2 6

respectively. Since

) —Re ©(41) o [ Re ®(4 sin 6)( 1 1 )]
‘1,131330 (12 — sin? 0)'2 |, @ —311’13:1_1.0 A/2sint2 6 \glP + e (A.9)
. —Im®(41) . 1 [Im ®(4 sin 6) ( 1 1 )]
lim —————a| = — 5+ 5] |- .
sl,::?.o i(#* — sin® 6)1/2 |3 ,1’1,1:30 il 4/2sin'29 \& + &l (A.10)

Combining all these paths of the contour of integration, we have the results as shown in
Equations (12) and (19)

1 — e
F(0, A, «) = cos B[Re ®'(A4 sin 6) In sin 0 —|—f Re ®" (A1) In (¢ + V¢ — sin? 0) d¢
sin 0

sin 6

T t
—Im @'(4si — " in1 {— . .
+ :2 Im ®'(A4 sin 6) fo Im ®"(A4¢) sin (sin 0) dt:] (A.11)
where
do _ d2

¢ = E-t- and O = 'm' . (A.12)



