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Abstract-The plasma streams, emerged from their interactions with large bodies, are studied 
using the collisionless Boltzmann equation and the Poisson equation. The ambient ionosphere 
is assumed bithermal namely Te/Ti = a, a constant. Numerical results are obtained with the 
ionospheres in thermal equilibrium (a = 1) and quasi-equilibrium (a = 10) for comparison. 
The velocity of the moving bodies is much larger than the thermal speed of the ions and much 
smaller than that of the electrons. Both cases, with and without the presence of a permanent 
magnetic field, are considered. The magnetic field is aligned with the motion of the bodies. 

1. INTRODUCTION 

The electro-gasdynamic interaction between a charged body and the plasma tail of 
another moving body in a tenuous plasma presents itself in many occasions. For illustra- 
tions, one can cite the case of a plasma probe which is placed in the wake of an orbiting 
satellite, the motion of a meteorite in a meteoric shower and the interaction of the solar 
wind with a comet tail (Biermann and Lust, 1964). Among these cited examples, a common 
feature exists, namely, a plasma stream which has been slightly disturbed is interacting with 
the object of interest. In fact, the disturbed, rather than the quiescent, plasma stream is of 
more common occurrence in a physical environment, e.g., the ionosphere. To make our 
problemdefinite we postulate that the disturbed stream has beenscatteredfromaneighboring 
object which is located upstream from the body of interest. This specific mode of interaction 
is referred here as the double scattering. 

To further specify the problem, we assume that the ion mean free path (A) of the ambient 
plasma is many orders larger than the sixes (R) of the bodies which, in turn, are large 
compared with the Debye length (d) of the plasma, a characteristic length of the allowable 
polarization of the medium. It is also assumed that the velocity of the bodies (V) is 
mesothermal (Liu , 1967)) i.e., it is much larger than the thermal speed of the ions ; smaller, 
than that of the electrons. These assumptions comply with most of the physical conditions 
imposed on the current problems of ionospheric gasdynamics e.g., the motion of a satellite 
in the ionosphere. The study of the plasma disturbances in the close vicinity of a moving 
body has been discussed elsewhere (Liu, 1967; Al’pert, Gurevich, and Pitaevskii, 1965; 
Liu and Jew, 1966; Liu, 1965). The theory of plasma far-wake behind a single body is 
also available (Al’pert, Gurevich, and Pitaevskii, 1965) though not complete. Our first 
objective is to develop a theory of the double scattering. We start with the single scattering 
i.e., the study of the far-wake behind a single body. A second motivation of the present work 
is to investigate the effect of the bi-thermal characteristics* of the ionosphere upon the 
theories of single and double scatterings. This has been found surprisingly strong when 

* It has been often suggested on the basis of experimental evidence that the upper ionosphere could be 
in a quasi-equilibrium state having its electron temperature (T,) much higher than its ion temperature (Ti). 
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compared with the corresponding results for an ionosphere in thermal equilibrium 
(T, = Ti = T). 

Generally speaking, the mathematical problem of the present plasma interaction would 
entail the simultaneous solutions of the collisionless Boltzmann equation and the Maxwell 
equations of electromagnetics because the kinetic and the electromagnetic aspects of the 
interaction are coupled. This, indeed, is a hopeless task. It is found, however, by using 
inferences drawn from the assumed conditions of the interaction, much simplifications can 
be obtained. It is of interest to view the interaction in question from the standpoint of 
wave excitations by the moving bodies. It is well known (Stix, 1962) that there are four 
principal types of plasma waves in an ionized gas : (1) electromagnetic waves, (2) magneto- 
hydrodynamic waves, and (3) electrostatic waves of electrons and of ions. With the assumed 
velocity for the moving body which is many orders smaller than the propagation speed of 
the electromagnetic waves, it is expected that the generation of electromagnetic waves by the 
bodies is insignificant. Among the many modes of the magnetohydrodynamic waves, we 
may consider the simplest one, the Alfven wave, which has a speed of propagation given by 
H,/2/4~mri,, where mn, is the mass density of the plasma; H,,, the magnetic field. For 
the upper ionosphere at Fmax, the Alfven speed is estimated to be about 300 km/set 
which again is an order higher than the characteristic body velocity, e.g., the satellite 
velocities. Thus the excitation of the Alfven waves by the moving body would be negligible 
(Drell, Foley and Ruderman, 1965); it follows when the other modes of the magneto- 
hydrodynamic waves are considered. Among the remaining types, the electrostatic 
electron waves have a much higher speed than the bodies, as assumed in the present study, 
hence is not expected to be significantly excited. The electrostatic ion waves, also called 
ion-acoustic waves, which propagate with a velocity near the mean thermal speed of the 
ions, if T, GW TI, may become strongly excited by the moving bodies of interest. Indeed it 
will be seen that the plasma far-wake behind a moving body is characterized by the ion- 
acoustic wave parameter, in appearance, much like the Mach wave in the continuum 
gasdynamics of neutral particles by the neutral acoustic waves. In view of these considera- 
tions, the Maxwell equations of electromagnetics, when applied to the present plasma 
interaction problem can be reduced to a single equation, the Poisson equation. 

2. MATHEMATICAL FORMULA TION OF THE INTERACTION PROBLEM 

Consider two axially symmetric bodies with characteristic dimensions Rr and R2 
(R, 2 R,) respectively at a distance D (D > R,) apart. A constant uniform, fully ionized 
gas, with velocity V, flows past the bodies such that the velocity vector V is aligned with 
the axis of symmetry of the tandum bodies. A constant and uniform external magnetic 
field (H) also aligns with the vector V (see Fig. 1). It is assumed that the (ion) mean free 

z ” _.@-_-_-__ZJ?+ 

Pro.1. TANDEMARRAN~BMENTOFTHBTWOBODIESWITHALIGNEDMAGNE~CF~ELDAM)PREE 
STREAMVErn. 

path of the ambient plasma is many orders larger than the ionic Larmor radius which, in 
turn, is much larger than the characteristic dimensions of the bodies while the Debye 
length is small compared to any of them. The free stream speed is assumed mesothermal 
which implies that it lies between the thermal speeds of ions and electrons and differs 
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considerably from either of them. Under these conditions we would expect that the 
electron distribution of the disturbed flow will deviate negligibly from the Maxwell- 
Boltzmann distribution, the ionic flow will exhibit the ‘hypersonic’ characteristics and yet 
the separation of the ion and electron species of the medium must not exceed a distance 
of the order of Debye length. 

It should be further noted that in the present study of the plasma trail scattering, we 
are primarily concerned about the disturbances situated at large distances from the body 
where the field (4) effect is small compared with the thermal effect. Under such an 
approximation, the terms representing the space charges in the Poisson equation may be 
written in terms of their ambient values plus a first order perturbation. The use of the small 
perturbation technique helps to linearize the system and thus the general principle of 
superposition becomes available. We shall regard the double-scattering effect as the 
superposition of quasi-single scattering effects. 

In treating the far wake of the first obstacle (RI) to which the coordinate system is 
fixed we may determine the ion distributionfby using the collisionless Boltzmann equation 
(also known as the Vlasov equation) 

=: ( - y+yqr - 81) for r. v < 0 (1) 

0 for r .V> 0. 

Here f(l) = f -fop the small disturbance of ion distribution deviated slightly from that of 
the Maxwellianf,; where v, c denote particle velocity and the speed of light respectively; 
M, the mass of an ion which is assumed singly charged with an amount e. It is assumed 
that the effect of the induced magnetic field is negligible compared with either that of the 
electrostatic field or external magnetic field I$. The term on the right hand side of Equation 
(1) acts as a sink of the free stream ions (Jo) neutralized by the surface (Rr). 

The electrostatic field in far wake stream is governed by the Poisson equation 

Vsfj = -47re 
( 

4 n(l) - n, ksTe 
) 

, 

where n(l) = n - no denotes the small disturbance of ion number density deviated from 
that of the ambient ion density no. 

We obtain the following equations as the Fourier components of Equations (1) and (2) 
for a spherical obstacle of radius R, with the coordinate system shown in Fig. 2. 

Here 

fir’ = /f(r) exp (- ir . k) dr , #’ = [# exp (-ii. k) dr, 

@ -_ 
s 

n(i) exp (-ir . k)dr u = v -+- V, 
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and 

G(kR,,x) = 
I 

n ’ sin 8 exp (-ikR, cm 6 cos x)J,(kR, sin 6 sin X) d0 
0 

X 

FIG. 2. SPIWWAL CMRDINATTS FOR THE v~mcx~~~ AND DISPLACEMENTS OF THE IONS. 

Note that the function G(kR,,x) approaches unity as kR, approaches zero; the latter 
condition represent the state of the far wake. In the present study the kz and higher 
order terms are neglected, thus Equations (3) and (4) can be readily reduced to 

Substi~~g Equation (6) into Equation (3, we have finally 

G (u X H& . g + 1.. (n - ~~‘) + iak , u$ nf) = -dt~vfb , 

where the temperature ratio a = T,/Tg. 

(71 

3. PLASMA SCATTERINGS WITHOUT MAGNETIC FIELD 

In many planetary plasma studies, it is justifiable to ignore the influence of the geo- 
magnetic field. The neglect of the magnetic field effect from Equation (1) not only 
simplifies the analysis but also helps to focus the attention on the electrostatic aspect of 
the interaction. In the following study of the plasma trails scattered from the obstacles, 
we shall start with the single scattering which constitutes a preliminary step to the 
double scattering according to the present approach. 

3.1 Single ~~atter~~g-far-wake ~eh~d th~~r~t obstacle 

It is recognized that the ion density in the far-wake behind an obstacle has been 
determined in previous works (Al’pert, Gurevich, and Pitaevskii, 1965) for an isothermal 
plasma (IX = I), We shall follow essentially the same procedure but study for a general 
bi-thermal pIasma where a = constant. It is also worthy to note that an additional ion 
density (rarefaction) lobe is found which was not reported in the previous works. Inasmuch 
as the procedure is similar to that in Al’pert, Gurevich, and Pitaevskii (1965), we shall 
refer to the latter for some of the ma~emati~l details leading to the pertinent results of 
interest. 
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From the formal solution to the perturbation Equation (7) for#)in Fourier components, 
we can obtain the first order deviation of the ion density from its ambient value, after 
integrations with respect to the full-range velocity components, 

i.rrR12 V - 
@’ = 

:su - kos x d” 

l+a+ 
aVcosx 

no s u - kos x d” 

(8) 

and in terms of the Hilbert transform of Gaussian (Faddeyeva and Terentev, 1954), which 
is defined as 

Z(A) = _L s +mexp--U2 

7l-i --m 
u_A du=exp-A 2 (1 +-$--/OAexp(tB)dt). 

Equation (8) can be written 

nf) = nR12A2 2 O(l) (A cos x) , (9) 

where 

W)(A cos x) = 
Z(A cos x) 

1 + a + iaA cos xZ(A cos x) 

and A denotes the ion speed ratio V/(2KTi/m)li2. 
The ion density perturbation in the Fourier components given in Equation (9) which 

is equal to the electron density perturbation under the present approximation, has been 
useful in determining the radar cross section for the back scattering of the electromagnetic 
waves in the determination of the trajectory of a re-entry body. 

The inverse Fourier transform of Equation (9) gives the desired ion density variation in 
the physical space. The integration has been performed using the method of analytical 
continuation and Landau’s contour of integration (Landau, 1946) 

nWAA4 = - (2.rr)2r2 
TR12A2n0 pl)(e,A,a) , (11) 

where 

s 

1 

P(B,A,a) = cos 8 ReW)‘(A sin 13) In sin 8 + ReW)“(At) In [t + (t2 - sinV)l/s] dt 
sin6 

sine 
Im W)‘(A sin 0) - 

s 
Im W)“(AT) sin-l 

0 

exp (-A2t2) 

‘,c1’(At) = [l + a - ~/I(AQJ(A~)]~ + ’ a) 

+ i[-+W) + 2y(AO{l + a - W(AWW)l I 
q)(l)' = dw1’ 

dt ’ 
gp)" = d2<D(1) 

dt2’ 

B(At) = aAt exp (-AV), 
s 

Al 

Y(&= exp(xq dx. 
0 

(12) 

(13) 

(14) 
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where, Re and Im denote real and imaginary parts of a function respectively (for details 
see the Appendix). 

Equation (12) has been evaluated by numerical analysis with a digital computer for 
the cases: (i) speed ratios A = 4, temperature ratios cc = 1; (ii) A = 4, a = 10; (iii) 
A = 8, a = 1; and (iv) A = 8, o! = 10. The plottings of the functions F(l) (O,A,a) in polar 
coordinates are shown in Figs. * 3-6. Except for the factor l/9, the function F(l) (8,&z) 
gives the relative magnitude of the deviation of ion density, also of electron density, from 

\ 
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Fro. 3. POLAR DJSTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE PIRST BODY. 
0 = n - no (speed ratio, A = 4, temperature ratio a = 1). 

FIO. 4. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND TEE PIRST BODY. 
n") = n - n, (A = 4, a = 10). 

0 025 0.50 I.00 200 3.00 4.00 5.00 6.00 ?CG 800 

FIO. 5. POLAR DISTRIBUTION OF TI-IR ION-DENWTY PERTURBA~ON BEHXND THE FIRST BODY. 
n(l) = n - n, (A = 8, a = 1). 

0 2.5 5.0 7.5 IO 

FIG. 6. POLAR DISTRIBUTION OF THE ION-DENSITY PERTURBATION BEHIND THE PIRST BODY. 
n"l = n - n, (A = 8, a = 10). 

* Note the broken and segmented scales for the radial coordinates of the figures. 
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the ambient density n, in the far wake as a function of angle 8. The solid-curve denotes 
rarefraction (n(l) < 0); dashed-curve, compression (n(l) > 0). Notice that the maximum 
disturbance is reached on the surface of a cone with an included angle 20,, where 
8 mBE w sin-l (s/V) in the case where IX = 1. This appears similar to the Mach cone in 
the continuum gasdynamics of neutral particles. The angle of the cone is determined by the 
ratio of the thermal velocity to the free stream velocity of the particles. 

3.2 Double scattering-far-wake behind the second obstacle 

Consider the plasma disturbance in the far wake of the second sphere (D/r < 1) to 
which we now Gx the coordinate system of Equations (1) and (2). Note that the incident 
stream to the second body fOl = fO + f (l) which is proportional to exp {-(miu2 + 2e#o))/ 
~KTI}, and+(l)(r) is the field potential disturbance due to scattering of the first body. 
Replace, however, f (l) by f (I) + f 12) and fO by fOl in Equation (1). Again neglecting the 
magnetic field effect and the second order perturbation, as in (3.2), we obtain the increment 
in the ion density perturbation in the Fourier component, namely, 

nk 
(2) = y42Q [a2@,(1yA 

cosx)- @~2'(Acosx)] (15) 

where 

@ = 
I 

fi2’ du, u = 2 exp (-e&/KTi). 

+R, = electrostatic potential at r = R, 

cq2’ = 
Z(A cos x) 1 [l + a + ia, cos xZ(A cos cc)], with coordinate fix at the first body. 

Following the same procedure as that in Section 3.1, we obtain the inverse Fourier 
transform as follows; 

nc2)(r, 0, A, a) = 
m 

cos x) sin x dx 
I s 

k dk 
0 

2”exp {ikr(cos 8 cos x 
0 

+ sin 0 sin x cos v)} dg, 

- s w(I$2)(A cos x) sin x dx 
0 

/c~k&~02*exp(ikr[(cosfI+~)cosx+sin0sinxcos~])dp 

rR12A2n, V’(At)t dt 
=- 

(277)2r2 - sin2 8 + 2i6 cosxcos ep 

(cose+fJ 
- 

s 1 

X 
0i2)(At)t dt 

-’ 1 + 2pcos 8 + $ 
) 

P- sin2 8 + 2i6 cos e + T cosx 
( "> ,s/2] (16) 
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where t = cos x. 
Notice that Re W)(k) and Re 0~2$4t) are even functions; Im @ (l)(k) and Im@i2)(At), 

odd functions. Letting 6 + O+, we obtain (for details see the Appendix) 

n(2Yr, 6,A, a) = - (2T)2r2 rrR12A2no [a2P(0, A, a) - Fj”)(O, A, a)], (17) 

where 

q2)(0, A, a) = 

(coss+p) 

J 

+l 
s 

Re @j2)“(At)In 
sin 6 

y/(,,2+!.o~e+g) 

sin 8 

J 1+2$0se+$ 

dt 

sin e 

- s ql+2pcme+~ ) Irn Q'12'" sin-l t 
0 (J( 

i+2$0se+ 

Under the assumption D/r < 1, Equation (17) simplifies to 

d2)(r, 8, A, a) = - 7%d2A2Q paye, A, a) 

(27r)V2 
, (18) 

where 

:)/sin (3) dt)] 

s 1 

F’2’(8, A, a) = cos 8[Re W2)‘(A sin 0) In sin 8 + Re W2)“(At) In [t + (t2 
ain 0 

- sin2 0)1’2] dt 
sin 8 

m cDt2)‘(A sin 0) - 
s 

Im (D@)“(At) sin- o I(&) dt)] ’ 

@(2)(k) = 
exp (-A2t2) 

K2(At) - rp2(At)12 + 4vr[E(At)/3(At)]2 d’dil + a - o-a 

(19 

- 4B(At)r(At)}{t2(At) - ~B*(At>} + 2a exp (-A2t2)E(At) 

x {2Aty(At)[S(At) - c2] + vAt/?(At)}] 

+ i [{ t2(At) - @2(At)}{+(At> + 2y(At) [E(At) 

- @I} - 2q%W{l + a - o-~ - 4&At)y(At)) 

x &At)lh (20) 
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where 

Q(2)’ 
dW2’ 

Q(2)’ = 
d2@(2’ 

=79 
dt2’ 

E(k) = 1 + o! - 2/&4t)y(At). (21) 

The function FC2’(8, A, a) has been evaluated numerically for the following cases: 
A=4,a=l; A=4,a=lO; A = 8, a = 1; A = 8, a = 10. These are plotted in 
Figs.* 7-10. Except for the factor l/r2, F(2)@, A, a) gives the additional relative ion 

0 L 2 3 4 5 6 7 6 9 10 

FIG. 7. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVLUION BEHIND THE SECOND 

BODY. 

n'" = n - (no + n(l)), (speed ratio A = 4, temperature ratio o! = 1, 
body size ratio (R&J = 10). 

FIG. 8. POLAR DLWRIBUTI~N OF THE PEWDRBED ION-DENmY DEVIA~ON BEHIND - s~mm 

BODY. 

n'*l = n - (n, + n(l)), (.4 = 4, a = 10, RI/R2 = lo). 

0 05 0.75 I.0 I.5 2.0 5.0 IO I5 20 25 

FI<;. 9. POLAR DISTRIBUTION OF THE PERTURBED ION-DENSITY DEVLUION BEHIND TEIB SECOND 

BODY. 

#) = (n - n, f n(l)), (A = 8, a = 1, RJR2 = 10). 

* Note the broken and segmented scales for the radial coordinates of the figures. 



854 V. C. LIU and R. J. HUNG 
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FIO. 10. POLAR DISTRIBUTION OF F PERTURBED ION-DENSITY DEVIATION BEHIND THE SECOND 

BODY. 

(.4 = 8, a = 10, RI/R2 = 10). 

disturbance as a function 6, due to the presence offi” superposed tofe as the ‘free stream’ 
distribution for the second obstacle. These additional lobes in the ion density distribution 
are generated through the transformation of the Fourier components of $1 by interaction 
with the second sphere. Hence the total disturbance of the ion density relative to its 
ambient value is given by n(l)(r, 0, A, a) + r~(~)(r, 0, A, a). 

4. PLASMA SCATTERJNGS WITH A MAGNETIC FIELD 

When a permanent magnetic field (H,,) is added, the motion of the charged particles 
will be under the dual influences of the electrostatic and the magnetic field as shown in 
Equation (1). It is the relative strength of the two that determines the motion of the 
particles. In the equilibrium state, electrons distribute according to the Maxwell-Boltzmann 
law. In the case where the magnetic field (HO) aligns with the free stream such as we have 
here, the disturbed electron velocity-distribution is not expected to maintain essentially 
isotropic with zero electrostatic field because the electrons will have more freedom to move 
in the direction of the magnetic field. This non-Maxwellian effect for the electrons will be 
ignored in the present study. It is assumed that the Larmor (ion) radius is large compared 
with the characteristic dimension of the bodies such that the sink term on the right hand 
side of Equation (1) will not be affected by the Larmor gyrations of the ions. Procedures 
similar to that of Section 3 will be followed to treat the plasma scatterings with a magnetic 
field. 

4.1 Single scattering-far-wake behind thefirst obstacle 

Starting with Equation (7) and letting the Larmor (ion) frequency !A1 = eH,,/mc and 
the coordinate system be fixed to the first sphere we have (see Fig. 1 l), 

afp 
- - & (k,ul cos /3 + k,, q - k . V)fr' 
ai? 

ia f 0 (1) + G (u,k, ~0s B + kp,,) ;on, = z!?$. (22) 

From the solution forf il) which is then integrated with respect to the velocity components, 
#) is obtained. 

n RIBno V 
#’ = ~ Y(k,, 3 k,) 

ai 
l+a+ ‘vY(k,,, k,) ’ 

i 

(23) 
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t 

FIO. 11. &‘LINDRICAL COORDINATES FOR THE VELOCITIES AND DISPLACEMENTS OF TiXE IONS. 

where 

/c,,%~ + 4kL2 sin2 % )I dx. (24) 

It is of interest to start with a trivial case by assuming a weak magnetic field such that 
u&,,/!& > 1 where ui denotes the mean thermal speed of ions (2KT&z)l/“; k,,, the wave 
component parallel to the magnetic field (H,,). Under this condition, it is noted that the 
integrand of the integral (24) becomes extremely simplified. Following the approximation 
introduced in Al’pert, Gurevich, and Pitaevskii (1965), we ignore the small contribution 
to the integral for 1x1 2 1 and approximate sin2 (x/2) by x2/4 for 1x1 < 1; 

KTi 
k2x2 dx 1 2ms2,” * (25) 

where k2 = kL2 + k,,2. The integral (25) can be further simplified by the use of the identity : 

dt = (4~ +2i (tS) dt) exp (- b2) = Z(b) . (26) 

Hence 

‘W,, 9 k,) = vik Z(A) 

vrR12Ano 
Q = ~ Z(A) 

k 1 + a + iaAZ(A) * 

(27) 

(28) 

Notice that this is identical to the result of Equation (9). Thus we have substantiated 
the validity of the non-magnetic approximation to the study of a planetary plasma provided 
the local geomagnetic field is sufficiently weak, i.e., uik,,/Ch > 1. 

We shall proceed with the case of the opposite extreme where the magnetic field effect 
becomes a dominant influence by postulating 

It is clear that under a dominant influence of magnetic field, the ions must behave such 
that the Fourier component of the ion density @ will have sharp maxima when values of 
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k,,V/Qr are close to integers. In other words, $1 will have a Maximum value whenever 
k,, V equals an integral multiple of the ion cyclotron frequency !&. Now let 

whereN=O,fl,&2... and jel < 1, be introduced to Equation (24) which becomes 

y(k,,, k,) = iex - g2 k,,%v2) exp (iNx - $ k12 sin2 g) dx. (31) 

An approximation to the above integral can be made by noting (Al’pert, Gurevich, and 
Pitaevskii, 1965) that the second exponential factor varies much more rapidly than the 
first under the strong field condition (29), hence the integral (31) can be approbated by 
replacing the rapidly varying factor with its averaged value over a cycle : 

1 2a 

2nO s ( 
exp iNx - * kL2 sin2 

Qi2 
~~d~~exp~-k~)I~~~), (32) 

where I, denotes the Bessel function of an imaginary argument. Accordingly, 

(33) 

and 

(I) _ =42wf n, -- 
Wk,,, k,) 

kll 1 + a + iocAWk,,, kL) ’ 
where 

(34) 

(35) 

The inverse Fourier transform of la(l) k given in (34) is performed by using a cylindrical 
wave space, dk = k,dk, dk,, d$ leading to 

vrR12n& +m s s -+-a~ ~(k&JJoW,) 
n’l’(p’ ‘) = (27~)~ kL -0 Ebb=-- m 1 + u + iarAW(k,,, k,) 

k, dk, dkll 
kll ’ (36) 

where Jo is the Bessel function of the first kind. 
Since the evaluation of the integrals in (36) depends on 

(37) 

which can be approximated for different frequencies, we shall discuss the two following 
cases : 

(1) When the frequency of the perturbation wave, induced by the obstacle, is not close 
to the ion-cyclotron frequency Qi, such that, 

k,, V - NCh > k,p or &h/k,p > 1 (38) 

expand the Z-function (37) (see Fried and Conte, 1961), 
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the integrand of Equation (36) becomes 

where 

(40) 

Note that the sin~larity of the integrand in (40) is located on the real axis, the contour 
of integration is chosen as shown in Fig. 12. After the integration of Equation (36) over 

FIO. 12. cLO3JZD CONTOUR OF INTEGRA’IWN. 

dk,, is pe~o~ed, we obtain finally 

(2) When the frequency of the perturbation wave, induced by the obstacle, is very close 
to the ion-cyclotron frequency ai, such that, 

k,,Fr - A% <kiwi or e~~~~~~~i < 1 (43) 

expand the Z-function (37) (see Fried and Conte, 1961), 

and Equation (36) is evaluated giving finally 

n’qp, z) = - 
dp'"Rr%Z@A 

(&)3 x(p) ’ 

where 

(45) 

4.2 Double s~~~~e~~ng-f~~wak~ behind the second obstacle 

In studying the disturbed field far down-stream from the second sphere,* we follow the 
same rule of substitution as used in Section 3.1 with the coordinate system fixed to the 
second sphere. The relative order of the magnetic effect in the quation (7) used under the 
condition t(ikaft2i < 1 for the first body will be maintained. We shall dispense with the 
study of the case with weak field because of its triviality. 

+ We use it sin&t ~sumption tw in Section 3.2, namely I#2 < 1. 



858 V. C. LIU and R. J. HUNG 

Contrast to the non-magnetic case shown in Equation (15), we have 

ni2’ = @ 

[ 

(r2 - 
I 

If-a+ YY(k,,, k,) 1 (47) 

which, after inverse Fourier transform, becomes 

TR,~Q,A + * 

I f 
+* 

n’2)(p9 =) = (24~ )I 4) qc-m 

Wk,,, k,)[Q(kll, k,) - ~~1 
Q2(kr 3 k,) 

exp W+ 

x JOCP,) 
- k,dk, d& (48) 

%I 
where 

Q&, k,) = 1 + a + idW$l, k,). (49 

The integral (48) is to be approximated under different frequencies of the perturbation 
waves in the same manner as was done in Section 4.1. 

(1) k,,V - iVi& > kp or &/k,p > 1. 

Using the similar approximation for the Z-function as in (39) and the same contour 
(Fig. 12), the integration for integral (48) is performed. 

rr2&2no 
nt2’(p, z) = - (2T)q/ 

s 

m JYk,2)Jo(pk_J exp 
inQi(l 

[ 

+ a)z 

o Vs(k,2) 1 S2(k,_3 
cr2) + in4c2z 1 - ( 

where 

S(kL2) = 1 + a - aP(kL2) (51) 

(2) k,, V - NC&i Q k,,vi or &/k,,w << 1. 

Using the similar approximation for the Z-function as in (44), we obtain finally 

n’2Q, z) = - +2R22noA 

(27r)S y(p) (52) 

where 

Y(P) = 
s 

m ~(k,3JdPk,) [W12) - c21 k 

0 Wk~3 

dk 
I I (53) 

T(kL2) = 1 + a - d/“aAP(kL2). 

In the numerical computation of the integrals in (42) and (50), we choose the ionosphere 
parameters (Al’pert, Gurevich, and Pitaevskii, 1965) corresponding to an altitude of 
1000 km. It is estimated that for N = 1, kL2w2/2Q12 - 1.32 x 1O-2 and I,(k1svrs/2@) 
~6.6 x 10-8. Note that 1 + a > a.P(k12), Equations (42) and (50) reduce to the forms 

vR12no 
rP(p, z) = -’ (2~)s(1 + a) 

f&Z 
i cos v - sin (54) 



SCA’MERWG OF PLASMA S-MS IN IONOSPHERE 859 

and 

nyp, 2) = - ~~~~~~)~ (1 + a - (r2) (i cos F - sin $) M(p) (55) 

respectively, where 

(56) 

The numerical results computed for Equations (44), (53) and (56) are shown in Figs. 13-15, 
respectively. 

It is noted that if the magnetic field is so weak such that the ion-cyclotron frequency is 
much smaller than the ion-acoustic frequency, the magnetic field effect can be ignored in 

FIG- 13. FUNCITON X vs. p (EQUATION 46). 
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FIG. 15. FUNCTION M vs. p (EQUATION 56). 

the calculation. On the other hand, if the ion-cyclotron frequency is much greater than the 
ion-acoustic frequency, we can discuss the results under two different conditions: (1) 
When the frequency of the perturbed wave, induced by the obstacle, is not close to the 
ion-cyclotron frequency, then in the z-direction we have sinusoidal ion-cyclotron 
oscillations, and strongly damped motion along p-direction; (2) When the frequency of 
the perturbed wave, induced by the obstacle, is very close to the ion-cyclotron frequency, 
the strong cyclotron damping makes the oscillation die out rapidly along the z-direction, 
and it has, however, relatively less effect on the amplitude of the oscillatory motion along 
the p-direction. 

5. CONCLUSION 

The dynamics of interaction between a rarefied plasma and a moving probe, whether 
it is natural such as a comet or artificial, e.g., a satellite, often plays a vital role in the 
studies of the upper atmosphere and the interplanetary gas. Sometimes the interaction 
process can become multifold. The present modest attempt to study this complex particle- 
field interaction utilizes a simple idealized model to gain some insight in the physics of 
the problem in question. In order not to make this paper unwieldy, we have not attempted 
much ramification of the results, e.g., the implication of the multi-lobes in the perturbation 
density distributions of ions and, of course, electrons (Figs 7-10) to the radar cross section 
problem. 

The surprisingly pronounced effect introduced by the b&thermal characteristics of the 
ionosphere upon the plasma tail structure is worth noting both for the single scattering and 
the double scattering. Should the bi-thermal state (Te > Ti) be confirmed for the upper 
ionosphere under direct solar radiation, much of the studies on plasma interactions for 
gas in thermal equilibrium should be re-evaluated for the cases with the quasi-equilibrium 
state of Te > Ti. In drawing conclusions one, of course, needs to comprehend the basis 
of comparison of the scattering results with Te/Ti = 1 and Te/Ti > 1. Note that in the 
present comparison the speed ratios are made equal, i.e., the ions temperatures in the two 
states are the same. 
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It should be mentioned that the method of treating the double-sitting problem can 
be extended s~~~tfo~~dly to the N-scattering problems. 
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APPENIXX 

Consider the following integration 

s P 

F(O, A, a) = cosb 
@(A cos x) sin x cos x dx 

0 [cos2 x - sin2 0 + Zig cos x cos 0]3’8 * (A.1) 

Since ~12 < 0 < 3129, i.e., cos 0 < 0, the sign of the imaginary part in the denominator 
of Equation (A.1) is negative, it follows (Landau, 1946) that the contour of integration 
shall be taken along the real axis (see Fig. A). 

rm t 

FIG. A. OPEN CONTOUR OF IBWECSRATDN. 

Letting 6 -+ +0, Equation (A.1) becomes 

f 

1 

F(@, A, a) = cos 8 
cP(At)t dz 

-1 [(t - sin B)(r + sin @Is’* ’ 
64.21 

where t = cos x. 
It is clear that the point of si~~arities are &sin 8, The contour of inte~ation (Landau, 

1946) can be divided into five parts as shown in Fig. A. Investigating Equations (13) and 
(20), we find that both Re ~~l)(A~~ and Re ~~2)(A~) are even functions of t; Im W1)fAt) 
and Im ~~~)~~~) odd functions of t for the cases of the single and double scattering 

8 
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respectively. It follows that 

lim I 
sin -9 -8s Re @(At)t dt 

= 
-#in e+8, (P - sir? 0)sj2 

o 
along contour @ 

sl,al-rO 

r 
lim 

Im @(At)t dt Im @(At)t dt 
81,8P0 o+~, (t2 - sin” Q3j2 - sin .9+8, (t2 - sin2 O)s/2 s I 

(A-3) 

= 0 along contour @ and 0. (A-4) 

The method of integration by parts is valid only for the integration along the real axis. 
After applying the integration by parts twice, we obtain 

lim s Re @(A# dt = lim -Re @(At) 

?.%+a 0,~ (t2 - sin2 e)2/2 Sl,y+O t2 - ( sin2 ey2 I 
-Re @‘(A sin 0) In (A sin 0) 

a,~ 

s 1 

+ Re @“(At) In (t + 2/t2 - sin2 0) dt 
sine 

along contour (iJ and 0. (A-5) 

* s Im @WW = l im _ 

%ltrnd 0 i(t2 - sin2 e)s/a %%+O 
e) 1 

s sine 
+ sin 8 

0 

For the contour @ and @ we have the results 

liio 2/2E:‘eisin”BB @(A sin Q(i + 1) for contour 0, (A-7) 

for contour @ (A-8) 

respectively. Since 

(A-9) 

(A’10) 

Combining all these paths of the contour of integration, we have the results as shown in 
Equations (12) and (19) 

1 
F(e, A, a) = cos 0 Re @‘(A sin 0) In sin 8 + 

s 
Re @“(At) In (t + 2/t2 - sin2 f3) dt 

sine 

1 s sin e 

+ : Im @‘(A sin e) - Im @“(At) sin-l 
0 (A) dl)l . (A.11) 

where 

a+! and 0” = g. (A.12) 


