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Abstract:  It is shown that the main n-T dependent terms of the Coulomb energy have the same gen- 
eral form in the Wigner supermultiplet scheme as in the low seniority limit of the j-j coupling 
scheme of  the shell model. 

L Introduction 

As a result of the extensive work on isobaric analogue states, there has been re- 
newed interest in the study of Coulomb displacement energies. Despite the simplicity 
of the Coulomb interaction, some of the recent analyses 1,1) have been based on the 
Coulomb energy formula of Carlson and Talmi 3,4) derived for proton configurations 
and applied to configurations of both protons and neutrons under the assumption 
that the seniority of the protons is a good quantum number (rather than isospin). 
This approach has been quite successful since the Coulomb energy shows only a 
weak dependence on total nucleon number and isospin. Although the n-T dependence 
is weak, the accuracy of recent measurements of Coulomb displacement energies is 
such that the n-T dependent terms should be taken into account properly in the 
theoretical treatment. Moreover, they are the source of the interesting odd-even and 
oscillatory A-dependent effects which have been observed experimentally 5). Theoret- 
ical expressions for the n-T dependent factors of the Coulomb energy have recently 
been derived for states of low seniority (v < 2) and simple configurations of the shell 
model inj- j  coupling 6, 7). Despite the simplicity of the assumptions, these expressions 
seem to be in remarkably good agreement with the experimental facts 8). This is 
surprising since the seniority scheme may be a very poor approximation in nuclei 
where both neutrons and protons are filling the same shell. It may therefore be in- 
teresting to examine the nature of the n-T dependent factors of the Coulomb energy 
for another limiting coupling scheme. The results of such a calculation are presented in 
this note for the Wigner supermultiplet scheme of a major oscillator shell. It is shown 
that the main n-T dependent factors of the Coulomb energy have a form identical 
with that found in the seniority scheme in states in which the Wigner supermultiplet 
quantum numbers, total spin S and isospin T are assumed to be good quantum 
numbers. 

Work supported in part by U.S. Office of Naval Research, Contract 1224 (59). 
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2. Results and discussion 

The Coulomb interaction between nucleons, when classified according to its irre- 
ducible tensor character in isospin space, can be written as 

e 2 
V c = ~ Y a / 3 + t  • - - ~ t ~  i tj)--½(tz,+tzj)+½(3tz, tz~--ti tj)}. (1) 

i<j r U 

In first-order perturbation theory, this leads to the three terms of the Coulomb energy 
formula 

E = E ( ° ) -  T=E(1) + [3Tz 2 - T ( T  + 1)]E (2). (2) 

The present interest is in the n-T dependent terms of the isovector and isotensor co- 
efficients E (1) and E (2~. Results for the simplest coupling schemes are shown in table 1. 
For  states of low seniority v and reduced isospin t for a simple configuration j", these 
results have been derived in refs. 6,7). For states with v = 0 and 1, the Coulomb 
energy coefficients are given in terms of the two-body matrix elements 

2 
Vs = ( j 2 j [  e [ j 2 j )  

~ri.j 
by the two coefficients 

b = 2 ( j + l ) V 2 - V o  c - V o - V 2  

2(2j + 1) ' 4(2j + 1)" (3) 

where Vz is the average seniority-two matrix element 4,6). The contributions from the 
interaction of the nucleons in the configuration j" with the core are given by 

(2J + 1) e 2 
ac = Z ((jjc)JI i(jjc)J}, (4) 

J,~o (2j+l)  3r,j 

in which [(jjc)J} are antisymmetrized states. Exact results for states with v = 2 are 
given in ref. 7). Although the form of the n-T dependent factors is similar, the co- 
efficients t are more complicated functions of the two-body matrix elements V s and are 
dependent on the specific angular momentum Jz of the v = 2 state. Actual calculations, 
however, show that the dependence on Jz is very weak. In the 1L shell, for example, 
Coulomb energies for states with different values of J2 differ 8) from the average 

The coefficient f in eq. (90) o f  ref. 7) is in error.  The  second of  the two te rms  for f should  be 
replaced by 

2 
(2j + 1 ) { j P . . . .  --J( Veven UJ 2) -- VJ 2 -~ Vo }. 

For  j _< {, m a n y  o f  the  coefficients o f  eq. (90), ref. 7), can be simplified by the  relation 

2(2j  17 . . . .  --  V0)=(Zj - -1){  Vdz--2j(VevenUd2)} 
valid only for j ~ -~; J ,  => 2, even. 
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v = 2 value by about 10 keV. It is therefore a good approximation to set Vs 2 = V2 
for all Jz _--_ 2, even. In this Jz-independent approximation, the Coulomb energies for 
v = 2 states are again given in terms of the two coefficients b and c of eq. (3), and the 
n-T dependent factors are only slightly more complicated than those for v = 0. 
The results are shown in table 1. 

Since the Coulomb energies are very insensitive functions of the spatial quantum 
numbers in the j - j  coupling scheme, a similar approximation can be expected to be good 
in other coupling schemes. In particular, by making such an approximation it is pos- 
sible to calculate general algebraic expressions for the Coulomb energy in the Wigner 
supermultiplet scheme, exhibiting its dependence on n, T, S and the Wigner super- 
multiplet quantum numbers [f] [the notation is that of ref. 9)]. The derivations are 
based on recent calculations of SU(4) Wigner and Racah coefficients 10,1,) in general 
algebraic form. Such coefficients have been calculated for those irreducible repre- 
sentations of SU(4) for which the quantum numbers S and T are sufficient to specify 
completely the states of a given representation. Although this does not include all 
Wigner supermultiplets, it does include most of the cases of practical interest. In 
particular, the needed coefficients have been calculated for the SU(4) representations 
If] = [yy], [yyl ], [y, y -  1 ], corresponding to spin-isospin functions whose symmetry 
is described by the partition numbers [x+y, x+y,  x, x], [x+y, x+y,  x + l , x ] ,  
[x+y, x + y - 1 ,  x, x], where x and y are arbitrary integers. In the representation 
[x+fl, x+f2, x+fa,  x] the numbers x+fi  give the number of squares in the ith 
row of the Young tableau describing the permutation symmetry of the spin-isospin 
wave function of a nucleus with n = 4x+fl  +f2+f3  nucleons in a major oscillator 
shell. By including with the above the special SU(4) representation [211], all sym- 
metries of actual importance for ground states of nuclei can be considered. Results 
for the four types of symmetries are shown in table 1. The coefficients b' and e' can 
be calculated for each major oscillator shell. It is convenient to express them as 

b' = ~ ( ~  + 3fl), c' = 4~8(e- fl). (5) 

Using harmonic oscillator wave functions, their values in units of e2[mo)/2nh] ~ are 
given by 

1 9  4 for the lp shell c~ = x~, fl = ~-, (6a) 

for the 2s, ld shell ~ = a 19 fl = 7. (6b) 9 6 7  

The coefficients b' and c' have magnitudes similar to those of b and e for the corre- 
sponding subshells inj-j coupling. The coefficient a'c is the orbital angular momentum 
analogue ofeq.  (4). 

The n-T dependence of the isovector and isotensor coefficients of the Coulomb 
energy is almost identical to that found in the seniority scheme. For  even nuclei, 
E °)  shows a simple linear dependence on n. The additional terms found in odd nuclei 
and the n-T dependent phase of these terms are the source of the odd-even and 
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oscillatory A-dependent effects which are observed experimentally 5). Since such terms 
are predicted for both the Wigner supermultiplet scheme and the low v limit of the 
seniority scheme, it is reasonable to assume that they have a much more general 
validity. 

3. Derivation of the Wigner supermultiplet formulae 

For the derivation, it is convenient to express the Coulomb interaction in terms of 
the projection operators Q,t introduced by Brink ~z). The operators Q~ are two- 
body operators which project out those parts of a two-nucleon state with relative 
motion in the state (nl) of a harmonic oscillator basis. In addition, the basic pro- 
jection operators will be classified according to their irreducible tensor character 
under SU(4). It is convenient to define operators Q,t, tfo]SoTo with SU(4) tensor 
character [fo] and spin, isospin character So, T 0. Since the Coulomb interaction is 
spin independent, So = 0; while T O = 0, 1, 2 for the isoscalar, vector and tensor 
parts ofeq. (1). Such operators can be expressed as 

Q,l,t•]oro = ½ ~ (nL/ff ~ ,  Llnalanflf, L ) ( n l ~ " ~ ,  Llnrlrn616, L)  
W ~ ' L  

x F dim [jr°] ~} ~S-q-~ ] E ([jro]0To; [jr]STII[jr]ST)(ToOTMrlTMT) 
kdim kj j . J  S T M s M T M L  

~ ¢ ' t [ f ] L S T  . . j t f ] L S T  (7) 
)( aft, M L M s M T  "~  )'6, M L M s M T  " 

The n, I, ,/V', ~ f  . . . .  dependent factors are Moshinsky-Brody brackets ~3). The 
harmonic oscillator quantum numbers n, l, ~A ~, ~f  describe the relative and center-of- 
mass motion of the two-nucleon states. The operators d t are pair creation oper- 
ators defined in terms of single-particle creation operators by 

•tt•LST ap, MLMsMT = ~,, (lamt~Ifmt~]LML)(½ms~½ms~[SMs) 
mle, ms=mt~ 

X (½mt ½mt ]TMr)a~ t,m . . . . .  a~t . . . . .  (8) 

The SU(4) tensor character is [jr] = 2 for the ST values 11 or 00, possible for 2n + l = 
odd integer. It is [jr] = [11] for the STvalues 01 or 10, compatible with 2n+ I= even 
integer. The pair annihilation operators d are defined as the hermitean conjugates 
of ~/ t .  Such operators have tensor character given by 

~ ¢ ~ [ ~ L S T  [ I ' I L - M L + t I + S - M s + T - M T T [ f f * ] L S T  
M L M s M T  ~ - -  ~,--  ~] ~ - -ML,  - -Ms ,  - - M T  (9) 

where [jr.] is the SU(4) representation conjugate to [jr]; that is, [2*] = [222], while 
[11"] = [11]. The phase factor t/is the [jr], S, T dependent part of the phase deter- 
mined by the conjugation properties of the SU(4) states, which is given for most 



SHELL-MODEL 285 

of the simple SU(4) representations in ref. 11). From the Kronecker products 

[2] x [2221 = [01+ [211]+ [422], 

[ l l ] x [ l l ]  = [0]+[2111+[22], (lO) 

it can be seen that the two-body operators include operators with SU(4) irreducible 
tensor character given by [fo] = [0], [211 ], [422] and [22]. In eq. (7), dim [f] is the 
dimension of the SU(4) irreducible representation [f], while the double-barred co- 
efficient is a reduced SU(4) Wigner coefficient of the type calculated in refs. , o, 11). 
This double-barred coefficient together with the ordinary isospin Wigner coefficient 
(and a spin Wigner coefficient, if needed) makes up the full SU(4) Wigner coefficient 
needed for the coupling of two SU(4) irreducible representations. The operators 
Q.t, tfo]oro can also be expressed in terms of isospin operators for nucleons i and 
in the expansion of the two-body operators, as shown explicitly in table 2. 

TABLE 2 

Isospin-dependent  factors of  the operators  Qnl, [f~10To 

[fo] So To 2n+l  q~(ti, tj) 

[0] 0 0 even, odd  1 

[22] 0 0 even ½(1 ÷ 4 h "  ti) 

[422] 0 0 odd  ~ ( - - 3 ÷ 2 0 t ,  • tj) 

[211 ] 0 1 even ~/-J (tzi -~ tzj) 
[211 ] 0 1 odd  ~/~(tz,-]-tz~) 

[22] 0 2 even --2(3tzitzj--t i" tj) 
[422] 0 2 odd  2~/~(3tz,tz~--t," ts) 

Qnl, [fo]0To = ~ (qnl)ij~(ti, tj). 
i<j  

In terms of the operators Q.t, r.7olOTo, the Coulomb interaction can be expressed as 

VC = nl(2n +2t = even) (nl[lV][nl) {~-6 [Qnt't°a°° +Onl't221°°] 

1 Qnt, [22102} 2 Q.l, r211101-- ~ 

+ nl(2n+l=odd)2 (nl[lV[[nl> {- -~  [3Qn,, toloo + Qn/, t422]00] 

-x/gQ.,,t21,]ot + ~ -  Q.t, r4221oz , (11) 

where the notation for the double-barred matrix elements is that ofref. 13). To identify 
the irreducible tensor character of the spatial part of the interaction in each major 
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harmonic oscillator shell, it is convenient to group the Q,~ in the following way: 
for the lp shell 

1 I 2 ~ z h ~ - ,  (nl[iVllnl)Q,l 
e 2 k m f D _ ]  nl 

1 9  = ~{Qoo+(Qlo+Qo2)}+4{Qol}  

+ o{(SQlo-Qo2)} 
for the 2s, ld shell 

1 I2rrh] ~ 
e -i t_rnco_j ~'.t (nIllVllnl)Q"t 

1 1 9 ¢  7 ._1_ = 96 tQoo+(Qlo+Qo2)+(Qzo+Qlz+Qo4)}+~{Qo1 (Qll+Qo3)} 

+ ~6 {3Qoo + 3(Q2o + Q12 + Qo4) - -  (Q,o + Qo2)} 

+ @2 {(21Q2o - 6012 + Qo,)} 

+ ~g~{(VQz o + 4Q12 - 3Q04) } 

+ ~0 {(5Q lo - Qoz)} + ~3-{(7Q 1 ~ - 3Qo3)} 

SU(3) scalars 

SU(3) (22) tensor, (12) 

SU(6) scalars 

SU(3) scalar, SU(6)[42222] tensor 

SU(3)(44) tensors 

SU (3)(22) tensors. (13) 

For each shell only the first two terms (in curly brackets) are completely invariant 
under all the symmetry transformations of the symmetry groups associated with the 
space part of the wave functions, ("full space scalars"). These are given by the oper- 
ators ~Q, l  summed over all possible values of nl with 2n+ l  = even integer or odd 
integer, respectively. They could also be identified with the operators n+ and n_, 
where n+ (or n_) counts the number of spatially symmetric (or antisymmetric) 
nucleon pairs within a major shell lz). The coefficients of n+ and n_ are the constants 

and/3 of eq. (6). The remaining terms have the SU(3) tensor character 14) indicated 
by the quantum numbers (2/~). In the 2s, ld shell there is one term which is an SU(3) 
scalar but has SU(6) tensor character [42222], the third term of eq. (13). Its eigen- 
value 12) is given by ~{½n(n-6)+¼G}, where G is the SU(3) Casimir invariant. The 
various terms enclosed by curly brackets have matrix elements of comparable orders 
of magnitude. It can thus be seen from the coefficients of eqs. (12) and (13) that only 
the full space scalars make a significant contribution to the Coulomb energy. The 
remaining terms are smaller by an order of magnitude, and to a good approximation 
they can be neglected. The full space scalars have matrix elements which can depend 
only on nucleon number n and the symmetry quantum numbers [f] and through 
their SU(4) tensor character as exhibited in eq. (11) on the spin and isospin of a 
state. In the approximation in which only the full space scalars are retained, Coulomb 
energy matrix elements can be calculated in general algebraic form. The matrix ele- 
ment of a full space scalar can be expressed in the usual fractional parentage format 9), 
with only the spin-isospin part of the c.f.p, needed 9). In performing the fractional 
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parentage sums, it is advantageous to recognize the relationship ~1,15)between the 
n to n -  2 particle spin-isospin c.f.p, and the SU(4) Wigner coefficients needed for the 
coupling of SU(4) irreducible representations [L-~I with [f2] to resultant [f,]. By 
exploiting this relationship, sums over spin and isospin quantum numbers can be 
performed and the matrix elements can be expressed in terms of resultant SU(4) 
Wigner and Racah coefficients. The matrix element of a full space scalar can be 
written as 

<[L]SMs TMTI Z Q,a, tTo~oTol[f.]SMs TMr> 
nl 

= ½[n(n- 1 ) ] .  Z - ~/( [J" . -22)  ([f2]llOcLll[Ef2]> 
EI,-,lrI21 ~A/([f,]) [dim [fo]] ~ 

× Z ( -  1) "°+*°<[L]sr; [L]OTo"[L]sT>ATM~ ToOl TM~> 
p 

x u{[L]U~][L][L]; [L-2][L]}. (14) 
v {[L][I*][L][L] ; [L-2][0]} 

Here n is the number of nucleons within a major oscillator shell; Jff([f ,])  is the 
dimension of the irreducible representation If,] of the ~ymmetr:c group giving the 
permutation symmetry of the full n-nucleon state 9). The Q-operators of eq. (7) have 
been normalized such that their reduced matrix elements are given solely by the di- 
mensions of the irreducible representations of SU(4) 

Fdim [ / ° ] l  ~ . ( is) 
<[f:]l[Qtyo~ll[f2]> -- Ldim [f2]J 

The phase factor t/is defined in eq. (9). The S, T dependent double-barred coefficient 
is a reduced SU(4) Wigner coefficient. The U-coefficients are SU(4) Racah coefficients 
in unitary form. [The notation is a straightforward generalization of that for the 
angular momentum U-coefficient 9).] The quantum numbers p are needed in those 
cases in which the products [ f , ]x  [f0] are not simply reducible but contain the 
representation [f,] more than once. Such cases occur for the representations [fo] = 
[211 ] and [422]. The U-coefficient containing the scalar representation [0] is a con- 
venient way of expressing dimensional and phase factors. By expressing the full 
matrix element in the form of a ratio of two SU(4) U-coefficients, the result is in- 
dependent of particular phase conventions used in the calculation of the SU(4) 
Wigner coefficients. The SU(4) Wigner and Racah coefficients needed for the ir- 
reducible representations of table 1 have been calculated as functions of y, S and T 
in ref. 11). For these representations, the matrix element (14) can be evaluated in 
general algebraic form. The S, T dependence arises solely through the SU(4) Wigner 
coefficient of eq. (14). The results for the isovector and tensor coefficients of the 
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C o u l o m b  ene rgy  are  s h o w n  in t ab le  1 *. T h e  i sosca la r  coeff ic ient  fo r  all  f o u r  types  o f  

S U ( 4 )  s y m m e t r i e s  has  the  va lue  

E(O) = l ~ ( n + )  + 313 

+ 7~(a  + f l ) T ( T  + 1) - ~ z ( a -  f l )S (S  + 1), (16) 

whe re  n+ (n_ )  is the  n u m b e r  o f  spa t ia l ly  s y m m e t r i c  ( a n t i s y m m e t r i c )  n u c l e o n  pai rs  in 

t he  r e p r e s e n t a t i o n  [ f , ]  a n d  Csu(4) the  e igenva lue  o f  the  S U ( 4 )  C a s i m i r  o p e r a t o r .  

F u r t h e r  app l i ca t i ons  o f  eq. (14) a re  g iven  in ref. 21). 

I t  is a p l easu re  to a c k n o w l e d g e  m a n y  v a l u a b l e  and  s t imu la t i ng  d iscuss ions  wi th  

J. J / inecke.  

? Since the magnitude of the n-T dependent terms is determined entirely by the coefficient c', 
it should be pointed out that this is of the same order of magnitude as the coefficients of the neglected 
SU(6) and SU(3) tensor terms of eqs. (12) and (13). These tensor terms, however, cannot change 
the nature of the y, S, T dependent factors for the Coulomb energy. Even if these tensor terms cannot 
be neglected completely, the Wigner supermultiplet expressions of table 1 are exact if applied to the 
average Coulomb energies for all states of an SU(3) or SU(6) multiplet in the lp or 2s, ld shell, 
respectively. 
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