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Abstract: The experimental Coulomb displacement energies in the 1f; shell (except one) can be
described by Hecht’s Coulomb energy equation with a standard deviation of 8.5 keV if it is
assumed that the Coulomb interaction radius is 2.6 0.5 %{ larger for the completely filled shell
than it is for the unfilled shell. The standard error of the calculated energies is 1.8 keV. Elec-
tromagnetic spin-orbit effects are indicated. The two Coulomb interaction energies ¥, and Foyen
which were obtained from the least-squares analysis are in very good agreement with the theo-
retically predicted values. The energy of the 0¥, T = | ground state of #*Sc is too low and de-
viates by about 45 keV from the expected value.

1. Introduction

There exist various approaches for discussing the experimental Coulomb displace-
ment energies. One approach makes use of so-called energy relationships '). Another
widely used method consists in comparing the data with Coulomb energy equations.
These equations range in character from empirical or semi-empirical to theoretical.
The approach taken in the present study is close to the last case.

Coulomb displacement energies usually depend on N (isotope effect) and on the
configurations of the corresponding states. These effects were studied recently 27%)
for the Coulomb displacement energies in or including the 1f, shell. Harchol et al. 3
discussed the experimental data in terms of the Coulomb energy expression of Carlson
and Talmi ®). This equation was derived with harmonic oscillator wave functions
but only for protonsin a given shell *. In the 1f, shell, Harchol e al.?) used a harmonic
oscillator constant which depends slightly on the number of neutrons in the shell.
They found good agreement with the experimental results except for the three cases
with Z_ = odd and T > 1 where they assumed a proton seniority of 2. Sherr *) also
discussed the experimental data in terms of the Coulomb energy expression of Carlson
and Talmi ®), but in order to apply this equation to more general configurations he
used a modified pairing term 7>®) with a T-dependence of the form 1/T. He found
good agreement and essentially no explicit N-dependence (apart from the effect of the
T-dependent pairing term). Nolen er al. *) studied the Coulomb displacement ener-
gies of the Sc-Ca isobaric pairs. They calculated wave functions in a Woods-Saxon

T Work supported in part by the U.S. Atomic Energy Commission.
t* Unna °) calculated Coulomb energy differences for the mirror nuclei and obtained results which
were very close to the values from the expression of Carlson and Talmi %).
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well. By simultaneously varying the depth and the radius of the well, they could fit
the known binding energies of the excess neutrons and the observed Coulomb dis-
placement energies. Except for A = 42, they found that the well radius follows a A*
dependence very closely. The authors point out [see also ref. ®)] that this result
implies that the proton mass distribution increases less rapidly than 4*.

The present investigation was motivated by the desire to learn more about the
Coulomb displacement energies in the 1f; shell by applying the new theoretical
equations derived by Hecht 1°712). These equations were obtained by taking into
consideration isospin T in complete generality. It was hoped that the experimental
data could be described to a considerably higher degree of accuracy and that in-
formation could be obtained about the 4A-dependence of the proton-proton Coulomb
interaction radius. Both expectations were confirmed.

2. Hecht’s Coulomb energy equations

Hecht 1°712) derived two sets of theoretical Coulomb energy equations for any
number of protons and neutrons in a given shell. {For extensions to mixed config-
urations, see refs. 19712).] One set of equations was obtained in the j-j coupling low
seniority coupling scheme *%'1); the other set was obtained in the Wigner super-
multiplet scheme *2). The T-dependence of the equations is identical in the two
schemes; the 4-dependence is very similar. It therefore appears likely that the 4- and
T-dependence of nuclei which have intermediate coupling schemes can also be rep-
resented by the above equations.

The first set of equations will be applied to the 1f; shell. The equations contain
several quantities which depend on the Coulomb interaction energies. One such
quantity is the core interaction term

2
G = —— 3 QI+ S 1G> (1)
2_] + 1 J, Je 3 ij

where j = 7 and j, must be taken from all lower shells. The wave functions are anti-
symmetrized. All other quantities a, b, ¢ etc. depend on the four Coulomb interaction
energies

v, = (6] 3— €T @

tJ

with J = 0, 2, 4 and 6. Only two combinations of these energies are needed in the
discussion of the states which have a lowest seniority of v = 0 or v = 1. This will be
done since all the 24 presently known Coulomb displacement energies in the 1f;
shell involve states having components with v < 2. The two energies are Vo and
Veven = 26(Vo+5V,+9V,+13V).
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Hecht’s equations for the vector and tensor Coulomb energies for the 1f; shell
read as follows:

v=0 E¥ =3(a+a.)+3b(n-8),

e R)\2
EP = R o U)o . 3)
QT-1)(2T +3)
- 1
v=1 E& =3(a+a)+ (3b+ _35—) (n—8)—(—1)*""T3c 52T+ )’
2T(T+1) T(T+1)
()2
ED = b+c+cM’ @)
4T(T+1)
with n = A_40,
a = ‘;L_‘even’
b = 1_12 7I7even Vo)a
¢ = —Z—_Z_ﬁ(VO_Veven)' (5)

It should be noted that the coefficients @, b and & in the isobaric multiplet mass
equation M(T,) = @+ bT,+¢T? are closely related to EX, EY and E&). For b and
¢, the relations are b = Am—E&) and ¢ = 3EZ with 4m = 0.783 MeV.

The ordinary Coulomb displacement energies between states of isospin T and with
T,=T—1and T, = T can be obtained from the relation 4Ec(4, T, T—1|T) = E"
(4, T)—-3QT—1)E$ (A, T). Any other Coulomb displacement energy (like *Ti-*?Sc
or *’Ti-*2Ca) can be obtained from the more general relation 4Ec(A, T, T,—k|T,) =
KEX(A, T)—3k(2T,—k)EZ (A, T) where k is an integer and |T,| < T, |T,—k| < T.

Hecht '°) pointed out that for very precise determinations of the various param-
eters and of the Coulomb interaction energies ¥, one must take into account other
small effects. One such effect is the electromagnetic spin-orbit interaction between
nucleons. This effect can increase the above small pairing quantity ¢ of eq. (5) by as
much as 40 ;. The increase in the tensor part should exceed the increase in the vector
part by the factor (9,—g.)/g, ~ 1.7. Therefore, the quantity ¢ in egs. (3) and (4)
was replaced by the two quantities ¢ and ¢®, respectively. The differences ¢ —¢
and ¢ — ¢ represent the contributions from the electromagnetic spin-orbit interaction
and from other small effects like charge dependent nuclear forces.

Using eqgs. (3) and (4), one obtains for the ordinary Coulomb displacement energies
the expressions

~ _ _ 2
v=0 AEc=a+fZ.—y? ﬂ¥4+BL£L§J, (6)
L 2T +3

v=1  AEc=a+pZ +y" n—8 —(=1)¥< 5(__21"_'_1)]

L2T(T +1) T(T +1)
—y® 2T_1+_(2i_il
L AT(T +1)

(100-—(n——8)2)] , %)
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with
Z. =in-T,
a = 3(a+a,)—21b,
B = 6b,
y D = 30,
7@ = 3¢P, (3)

Eq. (7) shows that the oscillatory pairing term in odd-mass nuclei is only one of
several small terms which contribute to AE.. The T-dependence of the oscillatory
pairing term is only approximately of the form 1/T. The other small terms depend
explicitly on n = A—40 and T.

The parameters a, a, b, c” and ¢'® are not necessarily constant but can depend on
A. Often, however, it is tacitly assumed that they are constant because it appears
more appropriate in shell-model calculations. One would therefore hope that the
A-dependence of the above parameters (and of ¥, and V,.,) is weak.

A comparison between the experimental Coulomb displacement energies of the
Sc—Ca isobaric pairs and the expression

18
AEC = d—18?(2)+5v1 ; (?(2)_?(1))9 (9)

which is derived from egs. (6) and (7) with Z-. = 0 and T = 1n clearly shows that an
A-dependence has to be introduced. It also shows that the (very small) oscillating
term which is due to the electromagnetic spin-orbit interaction is not sufficient to
explain the experimental *2Sc-*2Ca Coulomb displacement energy. An anomaly for
this isobaric pair has already been noticed by Nolen ef al.*). In the subsequent analy-
sis the *2Sc—*2Ca and *?Ti-*2Sc energies were excluded; the “*Ti—*?>Ca energy was
not excluded.

3. The least-squares analysis

Egs. (6) and (7) together with the remaining 23 experimentally known Coulomb
displacement energies were used in a least-squares analysis '?). The quantities «, 8,
D and y® were treated as parameters. They were assumed to decrease with 4 ac-
cording to o« = ag(zo4) ¥ etc. or & = ay [1+34-555(4—40)]7" etc. with 4 asan
additional parameter. The Coulomb interaction radii R; with
1 2 1 g 2
—_— = <(f%) J| - [(f%) J> (10)
R; Fij
therefore increase according to Ry = R,o(54)¥* or Ry = Ryo[1+34-J5(4—~40)],
where the R;, are constant. The latter function contains only the leading linear term
of the Taylor expansion of the former function. The parameter 1 was varied between
A = 0 (R, independent of 4) and 4 = 1 (4* dependence of R;). Also, the parameters
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9 and y® were taken to be equal (no electromagnetic spin-orbit interaction) or
not necessarily equal. Fig. 1 shows the result of the least-squares fitting process.
The quantity

¥ = Zi: {[AE(i, calc)— AE(i, exp)]/o(i, exp)}* (11)

is plotted as a function of the parameter A. The a(i, exp) are the quoted uncer-

tainties of the experimental Coulomb displacement energies AE((i, exp). For

each value of 4, a search on the parameters «,, f,, 75" and 75 was performed to find
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Fig. 1. Plot of the quantity y* = Zzil{[AEc(i, cale) —AE,(, exp))/o(i, exp)}? as a function of the

parameter A in the two expressions for the Coulomb interaction radius R. The respective lower

(upper) curves were obtained with (without) the inclusion of electromagnetic spin-orbit effects. The
number p of degrees of freedom is p = 18 (p = 19).

the values which minimize y2. Very pronounced minima clearly exist. The best agree-
ment is obtained with the expression R; = R,o(3%54)** and A = 0.236. The corre-
sponding values for a, f, y*) and 72’ are shown in table 2. The uncertainties of these
values will be explained later. The standard deviation

23 2 A[AE(i, calc)— AE((i, exp)]ja(i, exp)}* :
G = i=1 : (12)

2 3. (Ui exp))?

of the experimental energies AE.(I, exp) is o = 8.5 keV; the standard error
0, = 6/,/23 of the calculated energies AE.(j, calc) is 0, = 1.8 keV. The above
value of 1 corresponds to an increase in the Coulomb interaction radii R, of 2.6 %
within the If; shell.
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TABLE 1

Comparison between experimental and calculated Coulomb displacement energies in
the 1f; shell

Isobaric pair A T AP AEc(exp) ®) AEc(calc) AEc(calc) —AEc(exp)
(keV) (keV) (keV)
Sc—Ca 41 3 0 72824 13 7287.1 5.1
42 1 0 72144 2P) 7258.8") 44.8 %)
43 3 0 7244+ 12 7250.2 6.2
44 2 0 7229+ 10 7232.2 33
45 5 0 72314 12 7222.4 —8.6
46 3 0 72084 10 7207.0 —1.0
47 Z 0 71944 15 7196.9 2.9
48 4 0 71754+ 15 7182.9 7.9
Ti-Sc 43 3 1 76354 20 7665.0 30.0
4 1 1 )
45 3 1 7580+ 30 7571.3 —8.7
46 2 1 )
47 b3 i 7560+ 30 7536.6 —234
48 3 1 )
49 z 1 75204+ 30 7509.3 —10.7
V-Ti 45 % 2 7888.5
46 1 2 78354 5 7829.4 —5.6
47 2 2 78604 30 7834.2 —25.8
48 2 2 78154 20 7818.3 3.3
59 5 2 7796+ 30 7814.1 18.1
50 3 2 78054 30 7801.5 —3.5
Cr-v 47 3 3 8263.8
48 1 3 ¢)
49 3 3 81704100 9) 8160.9 —9.1
50 2 3 )
51 3 3 8130+4-1004) 8132.9 29
Mn-Cr 49 3 4 3486.0
50 1 4 84124 5 8419.7 7.7
51 2 4 8431.6
52 2 4 83944 40 8417.0 23.0
Fe~Mn 51 % 5 8859.0
52 1 5 )
53 2 5 88004 70 8762.4 —37.6
Co-Fe 531 6 9079.9
541 6 9033+ 5 9029.7 —3.3
Ni-Co 55 1 7 9450.8
Ti-Sc 42 1 77694 15Y) 7716.8 %) —52.21)
Ti-Ca 42 1 149834 15¢) 14975.6 ©) —7.4¢)

2) Practically all experimental Coulomb displacement energies were taken from ref. ).

b) Not included in the least-squares fit.

¢) See text and table 3.

d) No experimental uncertainties were quoted in ref. 3). Uncertainties of 4100 were arbitrarily
assigned to these two values. The good agreement with the calculated values seems to indicate that
the experimental uncertainties are much smaller.

¢) Included in the least-squares fit by using eq. (3).
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4. Results and discussion

Table 1 shows a comparison between the individual experimental and calculated
Coulomb displacement energies. The agreement is extremely good except for the two
energies which depend on the energy of the 0*, T = 1 ground state of *?Sc. The ex-
perimental energy of this state is too low by about 45 keV; this is more than 20 times
the experimental uncertainty and more than five times the standard deviation derived
from all experimental energies. Nolen ef al. *) pointed out that this deviation may
possibly be caused by an isospin admixture because **Sc has 7, = 0 and the energy
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Fig. 2. Plot of the quantity (54)%°"%" AEc(exp)—(7353.3+326.5 Z’ ) keV (filled circles) for the
isobaric pairs in the 1f; shell. For #*Ti-**Sc and **Ti-**Ca corresponding quantities are plotted (see
text). The open circles were calculated from eqs. (6) and (7) with the parameters " and y** from
table 2. The open squares were calculated with the Coulomb interaction energies ¥ from table 2.
The respective upper (lower) points represent the average for J = 2,4, 6 (J =1, 3, 5, 7). The two
experimental energies marked with an asterisk deviate from the calculated values.

separation between T' = 0 and T = 1 states of simple configurations is small. If this
were the only reason for the above deviation, one would expect the same effect for the
energy differences between 4V-*¢Ti, °Mn->°Cr and **Co—**Fe. This is not the
case. The complete least-squares analysis was repeated with these additional (very
accurate) Coulomb displacement energies excluded. The over-all fit is almost as good,
and the three calculated energies are equally close to the experimental values. There-
fore, it must be concluded that the effect applies specifically to this nucleus only.
A low-lying state with 0%, T = 0 and any configuration could certainly lead to iso-
spin admixtures and thus depress the energy of the 07, 7 = 1 ground state of #2Sc



440 J. JANECKE

which is the T, = 0 member of the isobaric triplet. It is not quite clear, however, why
such a 0%, T' = 0 state should not be present in any of the other odd self-conjugate
nuclei. It should be pointed out that charge-dependent nuclear forces cannot be
made responsible because they would not affect the general 4- and T-dependence un-
less the interaction has a tensorial rank higher than 2. The above unexplained effect
may have to be taken into account in the analyses of 0% — 0" superallowed S-
transition '*). It may also have to be considered in shell-model calculations (e.g.
ref. 1) and refs. quoted therein) for the 1f; shell where the nucleus *?Sc plays an im-
portant role.

Coulomb displacement energies AE. are given by AE. = a+fZ’. +small terms
[see egs. (6) and (7)]. To examine the fine structure effects due to the presence of the
small terms one can compare the quantity AE.(exp)—(a+BZ%) with the small
terms. This is done in fig. 2. For practical reasons, however, the factor (7%54)°:°7%’
is included. This factor, which amounts to at most 2.6 %, cancels the A-dependence of
the parameters «, 8, " and y®. Fig. 2 shows a plot of the quantity (z%;4)°°"%7
AE;(exp)—(7353.34+326.5Z.) keV for the various isobaric pairs (filled circles).
No apparent pattern seems to exist. However, when using the eqs. (6) and (7) with the
parameters 7" and y® of table 2, the open circles were obtained. They reproduce the
experimental values extremely well. Disregarding *’Sc only three of the 23 experi-
mental Coulomb displacement energies deviate from the calculated values by more
than the quoted experimental uncertainties. Fig. 2 includes calculated energies (open
squares) for the six cases with 4 = even and Z- = odd. Here, the Coulomb dis-
placement energies depend on the spins of the respective states which may range from
1 to 7. Only two values are shown, however. The respective upper (lower) point
represents the average for even (odd) J. The spread of the three (four) individual
energies is only about 410 keV. The details of the calculations will be discussed later.
Fig. 2 also includes a thin line which connects the calculated values for T = 1.
This line is unrelated to the preceding remarks. It demonstrates the known effect of
the oscillating pairing term for the mirror nuclei.

The parameters o, 8,y and y¢ which were derived earlier can be used to calculate
the quantities a, b, c etc. and the Coulomb interaction energies ¥, and V,,.,. The
quantities a+a,, b, ¢V and ¢‘® follow directly from egs. (8). The result is included in
table 2. The quoted uncertainties will be explained below. At this point a difficulty
arises because the experimental numbers do not permit the calculation of the pairing
quantity ¢. One only knows that the relation ¢ < ¢’ must hold. Therefore, the
theoretical ratios (see below) ¢/ct!? and ¢/c!® were used to estimate c. This procedure
seems to be justified because the theoretical and experimental ratios ¢/®/ct") are in
reasonable agreement and also because the result is not very sensitive to these ratios.
A value for ¢ was obtained (the uncertainty due to this procedure was estimated
and included in table 2) and the remaining quantities a, a., V, and V,,,, were cal-
culated from egs. (5). The quantity a, can be used to calculate the average Coulomb
interaction ¥ of one proton in the 1f; shell with a single proton in the core. Assuming
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that the matrix element in eq. (1) is independent of j, and J it follows thata, = Z, V.,
where Z, is the number of protons in the core. The value for ¥, is included in table 2.

TABLE 2
Coulomb energy parameters for the 1f3 shell

Calculated %) with

Obtained from least-squares analysis harmonic oscillator
potential

2 0.2364 0.040
AR/R 26 + 05 %
o 73533 2+ 6.0 keV
B 3265 + 4.5 keV (40/A4)0-0787 307.3 keV
i 2.891-- 0.068 keV 3.12 keV
AL 3,703+ 0.135 keV 3.39 keV
a-ta, 28320 4+ 7.2 keV
a 3976 + 7.0 keV 375.0 keV
a, 24344 4-10.0 keV
b 544 4 0.7 keV 51.2 keV
c 0.9294 0.100 keV (40/A4)0-0787 0.92 keV
o 0.964+ 0.023 keV 1.04 keV
o2 1.234+ 0.045 keV 1.13 keV
cV—¢ 0.0354+ 0.120 keV 0.12 keV
c®—¢ 0.3054+ 0.140 keV 0.21 keV
2/t 1.28 + 0.08 1.09
b/c 58.6 4+ 7.2 55.7
Ve 1423 -+ 50 keV 135.5 keV
V, (122.9) keV 115.8 keV
vV, (111.4) keV 105.0 keV
Ve (109.4) keV [ (40/4)%°787 103.1 keV
Veven 113.6 + 2.0 keV 107.2 keV
v, 1217 + 0.5 keV

8) The calculations were performed by K. T. Hecht.

The uncertainties of the various quantities listed in table 2 are based on the follow-
ing considerations. It appears that the standard procedures *3) for the extraction of
uncertainties cannot be applied for two reasons. One reason is that egs. (6) and (7)
contain the empirical function R,/R;, = (3}54)**. Fig. 1 shows a minimum of the
quantity x* for 4 = 0.236. Using another empirical function with a linear radius in-
crease according to R,/R;o = 1+ (34) 3%5(4 —40) one obtains a minimum value of ¥*
which is only slightly larger. The minimum, however, occurs for a value of 4 which
is about 15 % smaller. The uncertainty of A should therefore be given such that it
reflects the uncertainty in the empirical function. The second reasons why the standard
procedures cannot be applied is the fact that the y? test seems to be too good. A value
of 10.5 for x* with 18 degrees of freedom corresponds to a probability of 91%
that, on repeating the measurements of all the 23 experimental energies, larger de-
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viations from the calculated values would be observed. One may consider such a high
probability as a fortunate coincidence. A more realistic explanation, however, can
be given by assuming that all or some of the experimental uncertainties o(i, exp)
have been overestimated. This assumption is confirmed by the rather large uncer-
tainty 44 which one obtains *3) from the y? plot of fig. 1. Using the “golden rule”
4% = (30%%*/84*)™* one obtains 44 = 0.087. If we assume that x? should not
exceed the mean value of p = 18 [the internal and external errors become equal;
see Birge ! )] or should not exceed the limiting value of p+./2 p = 24, we obtain the
values 42 = 0.076 or 44 = 0.100, respectively. If we assume that P(x?) should not be
smaller than 50 % or 109, we obtain the values A1 = 0.072 or 41 = 0.107, re-
spectively. All these estimates are too large. Systematic deviations between the cal-
culated and experimental energies 4E can definitely be recognized for the limiting
values of 4. One way to solve this problem would be to decrease all experimental un-
certainties o(i, exp) by a factor of 0.77 which would increase 2, to the expected
mean value of p = 18. Even a factor of 0.66 would increase xZ2;, only up to the limit-
ing value of p+\/ 2 p = 24 which still represents an acceptable fit. The uncertainty
AA will then decrease accordingly. However, instead of introducing such correction
factors it was decided to make a reasonable estimate on A4 directly by studying the
systematic deviations between the calculated energies 4E¢ (which depend on 1) and
the experimental energies AE. The result is 4 = 0.236+0.040, where the uncertainty
A4 = 0.040 should have the character of a standard deviation. The uncertainties of
the quantities o, 8 etc. were obtained directly from the computer output for the re-
spective values of A. The effect of the increased uncertainty of ¢ which was mentioned
before was taken into account.

Table 2 shows the Coulomb interaction energies ¥y, V.., and the related param-
eters which were obtained from the least-squares analysis. In addition, the values
which were calculated using a harmonic oscillator potential are shown. The oscillator
constant had a value ez\/ (mw)/(2=h) = 300 keV which was derived from hw =
(41 MeV)/4* with 4 = 48. The Coulomb interaction energies ¥ and V.., are in
surprisingly good agreement with the values obtained from the least-squares analysis
despite the fact that (i) the ground states in the 1f; shell are not pure seniority states,
and (ii) a harmonic oscillator potential was used rather than a Woods-Saxon well.
Increasing the oscillator constant by 6 % at the beginning of the shell and by 3 % at
the end of the shell would give agreement to within 1 keV. This result seems to indi-
cate that Coulomb displacement energies are rather insensitive to the details of the
wave function.

Calculated energies for the contributions ¢!’ —c¢ and ¢® —c¢ from the electromag-
netic spin-orbit interaction are also included in table 2. The values obtained from the
least-squares analysis are in reasonable agreement with the calculated values. The
least-squares analysis cannot provide very accurate values because the effect is small
and therefore the uncertainties are large. However, the presence of the effect can
definitely be seen. On the other hand, the improvement of the fit between the experi-
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mental energies and the calculated energies obtained by assuming ¢ > ¢ > ¢
or ¢® = ¢ = ¢ is insignificant. (The second case is not included in tables 1 and 2.)
The *!Sc—*'Ca isobaric pair is the only pair where the difference between the calculated
energies amount to more than 10 keV. The calculated energies are 7287 keV (sce
table 1) and 7275 keV, respectively. The parameters a,, @ and b are practically identi-
cal in the two cases, the parameter ¢ is about 30 % larger for the second case. The
(apparent) Coulomb interaction energies become Vo = (152.0 keV)(7%54)*, V,yen =
(115.1 keV)(54)** and ¥, = (121.5 keV)(z754)** with 1 = 0.242.

It should be noted that other small effects like charge-dependent nuclear forces
may also contribute to ¢ and ¢®. A charge-symmetric charge-dependent nuclear
force, for instance, would increase ¢'® but would not affect ¢‘*). The experimental
values for ¢ and ¢ seem to support the existence of such forces.

TaBLE 3
Calculated Coulomb displacement energies in the 1f; shell with even 4 and v > 0

Isobaric AEc(calc) in keV

pair A T Z. J* 1t 2+ 3+ 4+ 5+ 6+ 7+
Ti~Sc 44 1 1 2* 7563 7657 7573 7640 7579 7638 7568
Ti-Sc 46 2 1 4+ 7538 7571 7548 7565 7554 7564 7543
Ti-Sc 48 3 1 6+ 7515 7536 7525 7529 7530 7529 7520
Cr-V 48 1 3 @ 814 8258 8154 8240 8161 8237 8147
Cr-v 50 2 3 6+ 8130 8169 8141 8158 8146 8157 8136
Fe-Mn 52 1 5 6+ 8746 8866 8754 8848 8759 8846 8748

The energies depend on J.
a) Ref. 17),

The fact that the experimental and calculated (including electromagnetic spin-
orbit interaction) energies ¥, and V,,., agree so well permits a reliable estimation
of the individual energies V,, V, and V. They are shown in table 2 in parentheses.
These energies can be used to calculate the missing (see table 1) Coulomb displace-
ment energies for the six cases with even 4 and v > 0. The computations are more
involved '°), and many small parameters have to be calculated. The Coulomb dis-
placement energies for J = 1 to 7 are shown in table 3. Similar calculations may be
carried out for all pairs of excited isobaric analogue states in the 1f; shell which are
based on (1f;)” configurations. The J-dependence is rather weak except for an even-J/
odd-J effect which is particularly pronounced for T = 1. In fig. 2, the open squares
are included which represent the calculated small terms averaged over all even J or
all odd J. Formulae for a simplified treatment of all cases including the v = 2 case
with even and odd J are given in appendix A.

Carlson and Talmi’s equation °) follow from Hecht’s general equations 1°°11) by
specializing with 7 = ~T7, = in. Strictly speaking the former equation cannot be
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applied to any pair of isobaric nuclei because at least one member contains neutrons
outside the core. The relative success of the Carlson-Talmi expression, however, is
well understood. Coulomb displacement energies depend strongly on the number of
protons in a given shell. The presence of neutrons leads only to the small terms which
have the pairing quantity ¢ as a common factor. These terms replace the proton-
proton pairing term in the expression given by Carlson and Talmi.

From the least-squares analysis, it is found that the Coulomb interaction radii R,
are not constant but increase slightly with 4. The extreme cases where R, = const
(A = 0) or R, oc A* (A = 1) are completely ruled out. For the filled shell, the R ;
have increased by 2.6 +0.5 %,. This increase is 24 % of the increase which would fol-
low from R; oc A*. The Coulomb interaction energies ¥, and all the other parameters
decrease by the same percentage. From the Coulomb interaction energies of table 2,
one obtains

R, = 3.38 fm
R, =391 fm
R, = 431 fm ; (554)°°7°7.
Rg = 4.39 fm
R, = 3.95fm

These radii are approximately equal to the nuclear radius. Such an 4-dependence oJ
R; and the Coulomb interaction energies V; is not an intrinsic constituent of the
Coulomb energy eqs. (3) and (4). It is hoped that eventually this effect can be under-
stood ?) on more general grounds, in particular with regard to the differences between
the radii of the proton and neutron mass distributions.

In summary, the preceding discussion has shown that excellent agreement exists
between the experimental Coulomb displacement energies in the 1f; shell and the
values calculated from Hecht’s Coulomb energy equations 1% 1). Even the Coulomb
interaction energies V', and V,,.,, which were calculated for a harmonic oscillator
potential, are in very good agreement with the values obtained from the least-squares
analysis. Electromagnetic spin-orbit effects are indicated. It is found that the Coulomb
interaction radii R; are not constant but increase slightly with 4. The energy of the
0%, T = 1 ground state of *?Sc is about 45 keV too low for unknown reasons.

Numerous stimulating discussions with K. T. Hecht are greatly appreciated. Many
thanks are due to him for calculating the Coulomb interaction energies and the con-
tributions from the electromagnetic spin-orbit interaction for a harmonic oscillator
potential. I gratefully acknowledge the careful reading of the manuscript by
H. W. Baer.

Appendix A .
AN APPROXIMATE FORMULATION OF HECHT’S COULOMB ENERGY EQUATIONS

The approximation
VJ = V+510AV (13)
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will be introduced. Thus, all Coulomb interaction energies ¥, between pairs of pro-
tons are taken as equal except when their spins are coupled to J = 0. The quantity
AV has the character of a Coulomb pairing energy. Electromagnetic spin-orbit effects
will be neglected in this treatment. The above approximation results in a considerable
simplification of the Coulomb energy equations, particularly for the cases with 4 =
even and v > 0. The J-dependence within the even-J and odd-J cases is removed. A
small error is thereby introduced. Table 3 shows that the error for the Coulomb dis-
placement energies in the 1f; amounts to not more than 10 keV. An additional sim-
plification of the equations is obtained by using an average Coulomb interaction
energy V., between a proton in the j-shell and a proton in the core by

3 (27 +1)Vj%
V, = oo (14)
Y (2J+1)

Jije

The quantity @, becomes a, = Z, V, where Z,, is the number of protons in the core.
All the other quantities a, b, ¢, d, e etc. [see ref. '')] become simple functions of j, V'
and AV. For the vector, tensor and displacement energies, one obtains the following
expressions:

- AV
EPn,T)=Z 3Vc+ln—13(V— ———)
D0 T) = 2037, 4013 (- S22

+ I gy s n, T34V, (15)
2j+1
1 AV
E®m, T =—(V— ~)+ n, T, )34V, 16
¢(n, T) > 22+ 1) fa(n, T, j) (16)

AE(n, T, T—1|T) = Zo3V,+(3n—T)3 (V_ ,E{‘L)

2j+1
4j+1)—-QT-1), .
+ W 34V +f3(n, T, j)34V, (17)
0, (18a)
(1=2=1) _ e QEIRTED g
. AT(T +1) 4T(T+1)
Sl T0) = 30551y 0, (18¢)
(n—2j—1)
4 m, (18d)
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. 2 9132
2j+4)*—-(n-2j—-1) (19)
QT -1)(2T+3)
2j+3)*—(n—2j—1)?
(2j+3)" —(n—2j-1) ’ (19)
fim TJ) 1 4T(T +1)
N, 1,]) = To7n. | 13
2 7= 1020j+1) (2j+2)* —(n—2j—1)* (19¢)
QT -1)(2T+3)
, 2 . 2
(2j+2)*—(n-2j—-1) (1_ 3 ) _ 1 ’ (194)
2T -1)(2T+3) T(T+1) (T+1)
f3(n, T j) = fuln, T, j)=3QT = 1)fx(n, T, j), (20)
where the four cases correspond to
A = even, v =0, J =0,
A= Odd, v —>_— 19
A = even, v=2, J=13,...,2j,
A = even, v =2, J=2,4,...,2j—-1.

A special example for an application of the above equations is given below. The slope
and the amplitude of the oscillatory term of the vector Coulomb energies of the mirror
nuclei [taken from table IV of ref. 8)] can be used to calculate ¥ and AV. For the 1d;
shell, the result is ¥ = 134 keV and 4V = 51 keV. These values can now be used to
calculate the tensor Coulomb energies for the isobaric triplets. The result is

A =18  EP(calc) = 92.4keV  EP(exp) = 103.7+ 1.0keV,

20 54.1 keV 56.8+10.2 keV,
22 99.2 keV 102.2+ 6.0keV,
24 54.1 keV 527+ 7.5keV,
26 92.4 keV 101.3+ 2.1 keV.

The comparison with the experimental values [taken from table I of ref. ®)] shows
good agreement. In particular, the oscillations of ES? are well reproduced. A full
treatment as was done for the 1f, shell, however, can be expected to give considerably
better agreement. Cne would expect that in the p-shell and the ds shell, the “super-
multiplet equations’ are better than the “seniority equations’.

Appendix B
CALCULATION OF UNKNOWN MASSES AND ISOBARIC ANALOGUE STATES

Eqgs. (3) and (4) together with the parameters of table 2 can be used to calculate
the masses of unknown proton-rich nuclei as well as the excitation energies of isobaric
analogue states including higher isobaric analogue states.
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TABLE 4
Calculated mass excesses AM for proton-rich nuclei in the 1f shell (in units of AM(*C) = 0)
Nucleus AM (keV) Nucleus AM (keV) Nucleus AM (keV)
3V — 17886+ 7 49Mn —37687+11 51Co —27390-+15
uy —23832420 46Fe +  648+15 2Co —343214-20
15y —-31896+ 5 47Fe — 7051411 %3Co —42401-L45
UCr —13451+ 9 18Fe —18113+ 8 48N +16524+18
44Cr —19568+4+ 7 Fe —25661+ 8 BNi + 7678415
8Cr —29527+ 5 50Fe —34476+ 5 5ONi — 4113-+13
7Cr —34529+ 8 5'Fe —40184+50 SINi —11983-+10
4SMn — 5111+11 4Co + 9718+15 52N —22694+ 9
4Mn —125724+41 %Co -+ 1050+60 3Ni —296544 9
47Mn —22638+ 6 2Co — 9908+10 Ni -39302+ 6
4Mn —29285+20 5°Co —17663 +14 35N —453464-11

TABLE 5

Calculated excitation energies for isobaric analogue states in the lf% shell

Nucleus T, T E, (keV) Nucleus T, T E, (keV)
44Tj 0 1 4726+ 8 51Mn 3 2 11115+ 50
2Cr 0 1 5968 +200 2) 48T 1 3 141834 10
2Fe 0 1 56004 15 a8y 1 3 138044 22
51Mn % 3 4371+ 50 °Cr 1 3 132034 6
46T 1 2 9059+ 7 7T 3 % 15750+ 8
50Cr 1 2 83194+ 7 8y 2 % 151954 8
B ¥ 2 3 106354 9 48T 2 4 17409+ 10
AT 0 2 94674 13 8y ] 3 15002+ 14
8y 0 2 9216+ 23 4$Cr 0 3 203334-200 %)
48Cr 0 2 9030200 2) 50Mn 0 3 13836+ 30
5oMn 0 2 8533+ 34 v % % 20612+ 12
52Fe 0 2 85494 14 #Cr % 3 20721+ 14
45T % 3 114304+ 7 8y 1 4 21329+ 12
Y 3 3 11543+ 10 18Cr 0 4 278621-200%)
“Cr i & 11245+ 12

@) The estimated uncertainty is mostly due to the experimental uncertainty of the mass of 4¢Cr.
The estimated uncertainties of the differences between any two excitation energies are considerably

smaller.

Table 4 shows the result for the masses of proton-rich nuclei. The values were
calculated from the known masses '#) of the higher-order mirror nuclei and the rela-
tion AEc(n, T, —T,|+T,) = 2T,E{P(n, T). For the odd-mass nuclei and the even

nuclei, £{" was calculated from egs. (3) and (4). For the odd nuclei **V, *°Mn,

**Mn, *%Co, *°Co and *2Co, the “J-independent” approximation was used [see
ref. '?) and appendix A] and J was assumed to be even. An additional uncertainty
was introduced for these six cases. The quoted uncertainties of the calculated masses
must be considered with caution, particularly for the nuclei far off the stability line.
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There may be additional effects like the one observed in “*Sc or the Thomas-Ehrman
shift which are not included in the calculation. The nuclei which are unstable with
respect to proton emission (*’Co, *8Co, °Co, *°Co and **Mn) or two-proton emis-
sion (*3Ni and *°Ni) are likely to have masses which are slightly lower. The decay
49Ni — *"Fe+2p has a calculated Q-value of only Q = 150+20 keV which makes
this nucleus a possible candidate for double proton decay *°).

Table 5 shows the calculated excitation energies of isobaric analogue states with
T = |T.|+k, where k = 1, 2, 3 and 4. For the ordinary isobaric analogue states with
k = 1, only those states are listed which are experimentally unknown. The procedure
used to calculate the excitation energies is very similar to the one mentioned above.
The mass values were taken from ref. '®). The Coulomb displacement energies were
calculated from AEc(n, T, T,—k|T,) = kE (n, T)—3kQT,—k)E& (n, T). For k =1,
the values of AE were taken directly from tables 1 and 3. The previous remarks about
the quoted uncertainties also apply to the values given in table 5. Isobaric analogue
states which undergo a T-allowed particle decay are likely to have a somewhat lower
excitation energy. Some of the listed states may also be fragmented.
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