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ABSTRACT: Several interesting resulls are presented in delermining the value of an integrol
performance index for certain types of finile changes in the characieristics of the system. In
particular, we consider the assumed model of the system to be linear, while an accurate repre-
sentation 18 given lo o system conteining o single nonlinearity. These assumptions, in many
physical situations are quite reasonable. The performance index is specified as the integral of
o quadratic function of the state of the system. Two theorems concerning the existence of upper-
bounds for the values of the performance index are proved. Consideration of these theorems
may lead to a meaningful insight into the relationship between changes in the system charac-
teristics and the corresponding changes in the performance index.

Introduction

In many control situations there is a meaningful performance criferia which
can be established. For various reasons, changes will oceur in the characteristies
of the plant. In order to determine an upper bound on the eorresponding values
of the performance eriteria, it is desirable to consider the most general type of
change for which the existence of an upper bound can be guaranteed. We present
such conditions on the changes in the system characteristics where the changes
can be represented by a single nonlinearity. i

Several authors have recently been concerned with determining the effects
of various system characteristics on the performance of an optimally designed
system. This problem is of considerable importance, since in any physical system
uncertainties of various kinds inevitably occur. In particular, uneertainty may
oceur in the state measurement process if the control is of a feedback form, and
unecertainty may oceur in the eontrolled part of the system due to environmental
and aging effects. Also, there are always inherent uncertainties in the choice of
a mathematical model both for the controlled svstem and the controller, Thus,
for several reasons there are diserepancies between any physical process and the
mathematical model chogen ag its representation.

There have been various attempts to develop theoretical methods with which
to study this problem. The so-called performance index sensitivily vector, as pro-
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* A prime denotes the transpose of a vector.
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posed by Dorato (1), has been used by Pagurek (2, 3) and Witenhausen (4),
to investigate the change in a performance index due to changes in certain
system parameters. However, this approach has certain inherent difficulties
due to the fact that Dorafo’s sensitivity vector is defined as the gradient of
the performance index with respect to a parameter vector, hence, it can yield
information only of a purely local nature. Several other approaches based on
the consideration of essentially finite changes in the system characteristics have
been considered. Howard and Rekasius (5) discuss the worst possible changes
in the sense that the performance index is maximized. Rissanen (6) and
MeClamroch (7) consider the related problem of specifying an upper bound
on the change in the performance index and of determining admissable changes in
the system characteristics. Similar resulis are given by Rissanen and Durbeck (8).

Assume that the mathematical model for a gystem is given by the linear

differential equations
& = Az + Bu, z(0) = @ (N

where z i3 an n-veetor and u is an m-veetor. The minimization of the integral
critexia

J = f T (@' Qr + wRy) df )
Q

where € and R are positive definite matrices is achicved by the control law
uw = —R-\B'Px (3)

where P is 2 positive definite symmetric matrix which satisfies, (9) 4'P + P4 —
PBET'B'P + @ = 0. Using the control law Iqs. 3, 1 and 2 become

i = Fz, z(0) = xq (4)

J = fm /G di (5)

0

where ' = A — BR7IB'P and & = @ + PBRB'P. The value of J in (5) for
any matrices F' and & can eagily be determined by eclassical linear techniques
(10). The only restriction is that F have eigenvalues with negative real parts
and that ¢ be a positive defintte matrix. However, for reasons discussed pre-
viously, a more accurate representation of the system might be given by

& = 'z + by, z(0) = =
y = ¢(a) (6)

¢ =uar
where b and ¢ are constanl n-vectors, and the continuous nonlinearity ¢{g)

satisfies
0 < ¢pla)e < ke, E>0 {7

4:84 Journal of The Frankiin Institute



Brief Communicalions

and (0} = 0. The problem is now to determine, if possible, the value of the
integral given in (), denoted by J, for the plant given by Eas. 6 and 7. The
problem, as it is posed, is definitely not amenable to an analytical treatment.
Therefore, we take the following approach. Denote by @ a set of admissable non-
Jinearities. Denote by 8 a subset of the state space with the property that if
2(0) € 8, thenz(f) € 8, forallf > 0. Let J(&, 8) denote the set of real numbers
which correspond to the values of (5) for any ¢(s) € dandz, € § C S. Instead
of trying to obtain the value of J for some ¢ (¢) € & and some 2 € S, the problem
becomes one of trying to determine an upper-bound for the set J (&, §). In fact,
this is reaily the more mportant problem since we usuaily do not know the exact
gpecification for the nonlinearity, except possibly that it satisfies the conditions
in (7). Also, we might be interested in some set of initial conditions, rather than
a single initial condition. Thus, specification of the sets ® and S makes sensc from
a purely physical reagoning.

The following lemma is used in the proof of Theorem II and is stated below
for eompleteness. The proof of the lemma easily follows from similar resuits
in (7, 8).

Lemma: Consider the differential equation & = f{z), z(0) € § with the
performance eriteria

me{:c) @, @) >0 z¥0, L(0) =
0

Tet W{x) denote a scalar valued funetion whieh is continuocusly differentiable
in S, such that for some real p > 0,

W/ f(x) < —pli(x), forall z € §,
then

[ 1@ d < 1/ W0)]
0

Instead of solving the problem directly, we obtain sufficient conditions on
the sets ® and S to guarantee that the set J (®, §) has an upperbound. As will be
shown, the sets & and § cannot be arbitrarily chosen. o

]

Theorem I. It is not sufficient to choose &, as the set of characteristics
lying in the Hurmtz sector in order to guarantee that for any bounded set 3,
the set J (&5, S) has an upper-bound.

Proof: This theorem gives a negative result. Thus, all that is needed is a
counterexample, which is easily obtained by referring to a paper presenting
countorexamples to Aizerman’s conjecture (11). This paper presents examples
for which therc is a ¢(o) ¢ &, such that the solution to (6) is unstable. There-
fore, the corresponding value of J does not cxist, and J (@5, 8) does not have
an upperbound.
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Theorem II. Tt is sufficient to choose $p as the set of characteristics lying
in the Popov sector in order to guarantee that in any bounded set 8, the set
J(®p, 8) has an upperbound. The Popov sector is defined as the set of non-
linearities satisfying the following conditions: there exists finite real positive
numbers ¢ and & such that for all w > 0, Re (1 + igw) W (iw) + (1/k) > 0.
[See (12) for the notation. ]

Proof: Assuming that the Popov conditions are satisfied, Alzerman and
Gantmacher {12) proved that there exists a Liapunov function for (6) of the
form

Vz) = &P + 8 f (c) do.

Thus, dV (x) /di is negative definite along the trajectories of (6), that is,
2’ (PF -+ F'P)x + ¢(¢) (20°P + Ba'F)z + Ba'be(a) < 0, x #=0

for all ¢(s) € &p. If we now consider the following continuous function of the
sealar p, and & > 0

V(o) = 2/ {(PF + F'P + of)a + ¢(a) (26'P + Bo'Fiz + Ba’be? (o),

gince ¢(p) is uniformly eontinuous at p = 0, z € S, there exists a p > 0 such that
¥(p) < 0,z € 8§ — {0}, Therefore,

V(@) [Fa + bp{o)] < — pa'Ga, p> 0,28 — {0},

If we use the lemma presented earlier and choose W{z) = V(z), then we have

fmx’Gm dt < (1/p)V[z(0)], z(0) € 8.

0

Thus, we have exhibited an upper bound for the set J(®p, 8), and the theorem
i3 proved.

If we are interested in the problem of specifying the sets $ and 8, and in
determining an upper bound or the set J(&$, 8), then it is sufficient to require
that & ¢ &p and 8 are bounded in order to guarantee that the set .J($, §) has
an upper bound,

Since Theorem II gives only sufficient conditions for the existence of an
upper bound for J (&, 8), it may be possible to obtain slightly more general con-
ditions, say, eonditions which are necessary as well as suflicient. However, at
present this seems unlikely.

We have obtained conditions which guarantee that the set J (&, S) has an
upper bound. However, we have not presented a constructive procedure by which
this upper bound ean be determined. In some eases it is not difficult to construet
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an upper bound using the lemma. As an example, consider
& = —ar + ap(x), z(0) = x

where 0 < z¢(x) < ha?, b < 1, and the performance index is given by

J = fm a2t

|

We assume that W(z) = 2? and determine p so that the hypothesis of the lemma
is satisfied. Thus,
Wif(z) = —2a2® + 2az¢(z)
: < —Zazi(l — A).

Thus, if p = 2a{l — ) the hypothesis is satisfied and we obtain
J < [ed/2a(l — )]

This example is quite gimple; in fact the procedure used for determining p is a
slight modification of a procedure proposed by Rissanen and Durbeck (8).
The point we emphasize is that even though it may not be possible to obtain a
simple expression for an upper bound, it can be asserted that one exists if the
conditions of Theorem IT are satisfied.
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