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In many control situaticns there is a meaningful performance criteria which 
can be established. For various reasons, changes will occur in the characteristics 
of the plant. In order to dotermino an upper bound on the corresponding vahux 
of the performance criteria, it is desirable to consider tho most general type of 
change for which the existence of an upper bound can be guaranteed. We present 
such conditions on the changes in the system characteristics where the changes 
can be represented by a singlc nonlinearity. 

Several authors have recently been concerned with determining the effects 
of various system characteristics cn the performance of an optimally designed 
system. ‘This problem is of considerable importance, since in any physical system 
uncertainties of various kinds inevitably occur. In particular, uncertainty may 
cccur in the state measurement process if the control is of a feedback form, and 
uncertainty may occur in the controlled part of the system clue to environmental 
and aging effects. Also, there are always inherent uncertainties in the choice of 
a mathematical model both for the controlled system and the controller. Thus, 
for several reascns thoro arc discrepancies between any physical process and the 
mathematical model chosen RS its representation. 

Thcro have been various attempts to develop theoretical methods with which 
to study this -problem. The so-called perSormance index sensitivity vector, as pro- 

483 



Brief Communications 

posed by Dorato (1)) has beon used by Pagurek (2, 3) and Witenhausen (4)) 
to investigate the change in B performance index due to changes in certain 
system parameters. However, this approach has certain inherent difliculties 
dun to the fact that Dorato’s sensitivity vector is defined as the gradient of 
the performance index with respect to EL parameter vector, hence, it cain yield 
information only of a purely local nature. Severs1 other approaches based on 
the consideration of essentially finite changes in the system characteristics have 
been considered. Howard and Rekaaius (5) discuss the worst possible changes 
in the sense that the performance index is maximized. Rissanen (6) and 
1McClamroch (7) consider the rolutcd problem of specifying an upper bound 
on the change in the performance index and of determining admissable changes in 
the system characteristics. Similar results are given by Rissanen and Durbeck (8). 

Assume that the mathematical model for a system is given by the linear 
differential equations 

z? = Ax + Bu, z(0) = zo (1) 

where z is an n-vector and u is nn m-vector. The minimization of the integral 
criteria 

J = l= (~‘Q:c + u’Ru) df’ (2) 

where Q and R are positive deli&e matnicev is achiovcd by the control law 

u = -R-‘B’Px (3) 

where P is a positive definite symmetric matrix which satisfies, (9) A’P + PA - 
PBR-‘B’P + Q = 0. ‘Using the control law Eqs. 3, 1, and 2 become 

& = Fz, z(O) = z0 (4) 

J = pGzdt (5) 

where F = A - BRm’B’P and G = Q + PBR-‘B’P. ‘The value of J in (5) for 
any matrices F and G can easily bc dctcrmincd by classical linear techniques 
(10) The only restriction is that F have eigenvalues with negative real parts 
and that C be a positive definite matrix. However, for reasons discussed pre 
viously, a more accurate representation of the system might be given by 
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and 4(O) = 0. The problem is now to determine, if possible, the value of the 
integral given in (5), denoted by J, for the plant given by Eqs. 6 and 7. The 
problem, as it is posed, is definitely not amenable to an analytical trc&mnt. 
Therefore, we take the following approach. Donate by 6 a set of admissable non- 
linearities. Denote by S a subset of the state space with the property that if 
z(O) t S, then s(t) t S, for all t 2 0. Lot j(6, 8) denote the set of real numbers 
which correspon,d to the values of (5) for any 4(u) t 6 and z0 t ~9 Z S. Instead 
of trying to obtain the vslue of .J for some 4(g) c 6 and home x0 C 3, the problem 
bccomcs one of trying to determine an upper-bound for the sot j( 6, 3) In, fact, 
this is really the more important problem sin,ce we usually do not know the exact 
specification for tho nonlinearity, except possibly that it satisfies the conditions 
in (7). Also, we might be interested in some set of initial conditions, rather than 
R single initial condition. Thus, specification of the sets 5 and 3 makes sense from 
a purely physical reasoning. 

The following lemma is used in, the proof of Thcorcm II and is stated below 
for completeness. The proof of the lemma easily follows from similar results 
in (7, 8). 

Lemma: Consider the differential eyuation i = f(z), z(O) t ,? with the 
performsnco eriterin 

/, 
L(x) dt, 7,(z) > 0, z # 0, L(0) = 0. 

I,et W’(z) denote a scalar valued function which is continuously differentiable 
in S, such that for SORE real p > 0, 

Instead of solving the problem directly, we obtai,n suflicient conditions on 
the sots 5 and 3 to guarantee that the sot j(6, 3) haa an upperbound. As will be 
shown, tho sets & and 3 cannot be arbitrarily chosen. 

*3 rp 
Theorem I. It is not sufficient to choose & as the set of characteristics 

lying in the Ilurwita sector in order to guarantee that for any bounded set 3, 
the set I( SE,, s?) has an upper-bound. 

Prw~f: This theorem gives a negative result. Thus, all that is needed is a 
counterexample, which is easily obtained by referring to a paper presenting 
countorexamples to &aerman’s conjecture (11). This paper presents exampl,es 
for which there is a 4(r) t &I such that the solution to (6) is unstable. There- 
fore, the corresponding value of J does not exist, and j(&, 3) does not have 
an upperbound. 
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Theorem II. It is suflicient to choose 6~ as the set of characteristics lying 
in the Popov sector in order to yarantce that in any bounded set 8, the set 
j(&, 8) has an upporbound. The Popov sector is defined as the set of non- 
linearities satisfying the following conditions: there exists finite real positive 
numbers q and k such that for all w 2 0, Rc (1 + iga)W(;w) + (l/k) > 0. 
[See (12) for the notation.] 

Proof: Assuming that the Popov conditions me satisfied, Aiaerman and 
Gantmacher (12) proved that there exists a Liapunov function for (6) of the 
form 

V(z) = X’PZ + p 
/, 

@(r) da. 

Thus, dV(z)/dt is negative definite along tho trajectories of (C), that is, 

z’(PF + P’Pp)z + 4(u) (2b’P + @a’F)z + pa’b@(u) < 0, s#O 

for all $(c) t &. If we now consider the following continuous function of the 
scalar ,I, and G > 0 

$(,,) = z’(PP + P’P + pG)z + 4(o) (26’P + &z’F)s + fia’b@(r), 

since+(p) is uniformly continuous at p = 0, z E 9, there exists a p > 0 such that 
+(p) < 0, z t S - (0). Therefore, 

V,‘(z) [Fz + bc$(u)] < - ps’G.z, P > 0, z E s - (01 

If we use the lemma presented earlier and choose W(z) = TV, then we have 

i-.‘Gzdt 5 (l/p)V[z(O)], s(O) t 3. 

Thus, we have exhibited an upper bound for the set 3 (&, $, and the theorem 
is proved. 

If we are interested in the problem of specifying the s&s 5 and 8, and in 
determining an upper bound or the set j( 8, 3)) then it is sufficient to require 
that 6 t & and 8 are bounded in order to guarantee that the set I($ 8) has 
an upper bound. 

Since Theorem II gives only sufficient conditions for the existence of an ^^ ^ 
upper bound for J (@, S) , it may be possible to obtain slightly more general con- 
ditions, say, conditions which are necessary as well as sufficient. Howover, at 
present this mms unlikely. 

We have obtained conditions which guarantee that the set j(8, 8) has m 
upper bound. However, we have not presented a constructive procedure by which 
this upper bound can be determined. In ~omo cams it is not difficult to construct 
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an upper bound using the lemma. As an example, consider 

2 = -cm + a&z), z(0) = 20 

where 0 5 X+(Z) 5 hxZ, h < 1, and the performance index is given by 

J = Jrn x%t. 
0 

We assume that W(z) = x2 and determine p so that the hypothesis of the lemma 
is satisfied. Thus, 

lv,‘f(z) = --2aa? + Zm+(z) 
5 --2az2(1 - h). 

Thus, if p = 2a( 1 - h) the hypothesis is satisfied and we obtain 

J 5 [zZ/Za(l -h)]. 

This example is quite simple; in fact the procedure used for determining p is a 
slight modification of a procedure proposed by Rissanen and Durbeck (8). 
The point we emphatxize is that evea though it may not be possible to obtain a 
simple expression for an upper bound, it can be asserted that one exists if the 
conditions of Theorem II are satisfied. 

(1) P. Dorato, “On Sensitivity in Optimal Control Systems,” IEEE Trans. on Auto. Contd, 
Vol. AGS, pp. 256-257, July, 1963. 

(2) B. Pitgurek, “Sensitivity of the Performance of Optimal Control Systems to Plant Param- 
eter Variations,” IEEE Trans. on Auto. Control, Vol. AClO, pp. 178-180, April, 1965. 

(3) B. Pagurek, “Sensitivity of the Performance of Optimal Linear Control Systems to 
Parameter Variations,” International J. * Control, Vol. 1, pp. 33-45, 1965. 

(4) 1% Witsenhausen, “On the Sensitivity of Optimal Control Systems,” IEEE Tmns. on 
A,,&. Control, Vol. AC-lo, pp. 495-496, Oct., 1965. 

(5) D. R. &ward and Z. V. Rekasius, “Error Analysis with the Maximum Principle,” IEEE 
Trans. on Auto. Control, Vol. AC-9, pp. 223-229, July, 1964. 

(6) .I. Rissanen, “Performance Deterioration of Optimum Systems,” IEEE Trans. on Auto. 
Cmtrol, Vol. AC-11, pp. 530-532, July, 1’366. 

(7) N. 1%. MoClamroch, “A Result on the Performance Deterioration of Optimum Systems,” 
IEXE Trans. m Auto. Control, Vol. AC-n, pp. 209-210, Apr., 1967. 

(8) J. Riss2mcn and R. Durbeok, “On Performance Boundv for Control Systems,” ASME 
Paper No. 66WA/A&9, Nov. 27, 1966. 

(9) R. K&nan, “Contributions to the Theory of Optimal Control,” Dol. Sm. Mat. Ma., 
Vol. 5, pp. 102-119, 1960. 

(10) R. Bellman, “Introduction to Matrix Analysis, ” New York, McGraw-Hill, pp. 243-244, 
1960. 

(11) R. Fit@ “Two Counterexamples to Aiserman’s Conjecture,” IEEE Trans. on Auto. 
Control, Vol. AGll, pp. 553-556, July, 1966. 

(1~) M. Aizerman and F. Gantmacher, “Absolute Stability of Regulator Systems,” San 
Francieco, Halden-Day, 1964. 

“01.285, NO. 6, June 1968 487 


