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Subjects saw samples from each of two populations of numbers and made 
intuitive inferences about which population had the larger variance. Then 
they either estimated the ratios of the variances or stated their confidence 
(subjective probability) in their inferences. The ratios were used to infer 
the subjective magnitudes of the sample variances; they were systematically 
inaccurate because of a tendency to underweight deviant sample data and 
because the subjects regard variance among large numbers as less variable 
than variance among small mmlbers. Then, confidence in the inferences about 
the population variances was compared to the probabilities that would have 
resulted if the ratios of sample variances had actually been the ratios that, 
the subjects reported. Confidence was systematically related to these proba- 
bilities but it  was always lower. The results are discussed in terms of the con- 
servatism findings reported in other investigations of intuitive statistics. A 
Bayesian F4est  is appended. 

I n f o r m a t i o n  a b o u t  the  fac tors  t h a t  govern  occurrences  of fu tu re  even t s  
is a f u n d a m e n t a l  p re requ is i t e  for  o p t i m a l  decision mak ing .  W h e n  the  
d o m a i n  of in te res t  can be descr ibed  in s t a t i s t i ca l  te rms,  the  requ i red  infor-  
m a t i o n  consists  of the  p a r a m e t e r s  of t he  popu la t ions  f rom which  fu tu re  
samples  wil l  der ive.  I n  mos t  decision exper iments ,  p a r t i c u l a r l y  those  t h a t  
involve  gambl ing ,  the  sub jec t  is to ld  t he  p a r a m e t e r s  of t he  r e l evan t  popu-  
la t ion,  e.g., t h a t  the  ou tcome of t he  b e t  wil l  be de t e rmined  b y  d rawing  
f rom a b inomia l  p o p u l a t i o n  w i th  P = .70 and  1 - - P  = .30. T h e  research 
then  focuses on the  o p t i m a l i t y  of subsequen t  choices a n d  decisions.  How-  
ever,  in the i r  n o r m a l  experience people  se ldom have  d i rec t  access to  envi -  
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tutes of Mental Health, and by the Air Force Office of Scientific Research under contract 
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ronmental population parameters; usually they must infer the values 
from previously observed samples. Because of this, it is of interest to 
investigate how subjects use samples to make predecisional inferences 
about population parameters. 

Previous experiments have examined how subjects use samples to infer 
specific values of a population parameter (e.g., Peterson and Phillips, 1966), 
others have studied how they infer which of two specified values of a 
parameter characterizes the population from which a sample was drawn 
(e. g., Phillips and Edwards, 1966) and others have studied subjects' use 
of samples to infer which of two populations had the larger value of a 
specified parameter (e. g., Irwin et. al., 1956). A statistician could perform 
these tasks using the appropriate formal statistical inference procedures. 
Subjects, however, must perform them by relying upon what has been 
termed, intuitive statistical inference (Brunswik, 1956). The research has 
used the formal procedures as a logically consistent, normative framework 
within which to examine the process of intuitive statistical inference. 

The majority of investigations of intuitive statistical inference have 
used binomial population proportions as the parameters of interest. Aside 
from three studies of means (Edwards, 1965; Irwin et. al., 1956; Little and 
Lintz, 1965) and one of correlations (Beach and Scopp, 1966)~ normal 
populations have received less attention. Because a substantial part of 
subjects' environment is probably normally distributed, it is important to 
extend the investigation of intuitive statistical inference to include other 
parameters of these distributions. Because distribution variances are 
central to the precision of predictions about future events, it is important 
to examine subjects' abilities to evaluate them. For these reasons the experi- 
ment to be reported investigated intuitive inferences about the variances 
of normally distributed populations. 

THE NORMATIVE MODEL 

The experimental task required intuitive inferences about which of two 
populations had the larger variance. This is distinctly different from the 
question whether or not the two population variances merely differ. There- 
fore, the classical null-hypothesis test is inappropriate and the normative 
statistical model is provided by Bayesian statistics (Edwards et. al., 1963). 
The Bayesian procedure focuses upon the probability that either of two 
populations has a larger variance than the other given samples from both. 2 
In the face of no knowledge about which variance is larger the Bayesian 
statistician may begin with a rectangular prior probability distribution 
over the hypotheses that each of the two populations has the largest vari- 

2 A Bayesian procedure for inferring which of two populations has the larger variance 
is given in the Appendix. 



INFERENCES ABOUT VARIANCES ] 11 

ance (i. e., ~ > g22 < ~22). Then he observes the samples, and computes 
the ratio of the sample variances. Next, using the F distribution, he revises 
the prior probabilities to obtain a posterior distribution. The posterior- 
probability distribution favors the population that yielded the larger 
sample variance and the statistician infers that this population has the 
larger variance. His confidence in the accuracy of this inference depends 
upon the magnitude of the posterior probability for the associated hypothe- 
sis. The larger the posterior probability the smaller the risk of error in 
inferring that the selected population has the larger variance. Subsequent 
statements about the population variances and decisions related to them 
are then tempered in light of the magnitudes of the posterior probabilities. 
Comparisons of intuitive and Bayesian inference processes have yielded 
two major findings (Peterson and Beach, 1967). The first, called consist- 
ency, is that the procedures by which subjective prior probabilities are 
revised in light of data generally conform to the Bayesian logic and pro- 
cedures (Beach, 1966; Peterson et. al., 1965; Phillips and Edwards, 1966). 
The second, called conservatism, is that even though subjects follow the 
appropriate procedures, they tend to revise their subjective probability 
distributions less than the amount prescribed by the normative Bayesian 
model (Peterson and Miller, 1965; Phillips and Edwards, 1966; Phillips 
et. al., 1966). That is, the data influence the subjective probabilities less 
than they do the Bayesian probabilities. 

An important source of at least part of conservatism is subjects' mis- 
understanding of the implications of observed data for the possible infer- 
ence. In more formal terms, subjects rely upon inaccurate subjective 
sampling distributions. This is demonstrated by the finding that if values 
from subjects' inaccurate estimates of sampling distributions are substi- 
tuted for the veridical values in Bayesian equations it is possible to pre- 
dict the suboptimal posterior subjective probability distributions (Peterson 
et. al., 1967; Wheeler and Beach, 1967). Thus it appears that the subopti- 
reality of inferences can have its roots in subjects' mistaken opinions about 
samples even though, within the constraints of these opinions, the intuitive 
and Bayesian inference processes may be quite similar. 

The results of the Peterson et. al., (1967) and the Wheeler and Beach 
(1967) experiments relating conservatism to inaccurate subjective sam- 
pling distributions illustrate the importance of taking subiects' opinions 
into account when investigating intuitive inference. When the samples are 
from normal distributions, and are not so easily summarized as binomial 
samples are, there are two kinds of erroneous opinions that can influence 
subsequent inferences. The first is inaccurate evaluation of the sample 
data, e. g., erroneous judgments of sample means and variances. The second 
is reliance upon inaccurate subjective sampling distributions. Investigations 
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of the first of these show that intuitive judgments of sample means are 
fairly accurate (Beach and Swensson, 1966; Spencer, 1961, 1963), but that 
intuitive judgments of sample variances ate influenced by the magnitude 
of the data in the sample; in general, judgments of sample variance decrease 
as means increase (Hefstatter, 1939; Lathrop, 1967). Moreover, some of 
Hofstatter's (1939) subsidiary findings suggest that in contrast to statisti- 
cal practice, subjects may weight large deviations more or less heavily than 
they do small ones. This leads to their varian~ judgments being corre- 
spondingly larger or smaller than the objective variances. 

There have been no investigations of the accuracy or inaccuracy of 
subjective-sampling distributuions for the parameters of normally dis- 
tributed populations. 

Because subjects' judgments of sample variance are inaccurate, the 
present experiment had two phases. The first examined the systematic 
inaccuracies of judgments of sample variances in light of the experiments 
just described, emphasizing the effects of data magnitudes (sample means) 
and how subjects weighted deviations. The second phase examined the 
correspondence between subjects' inferences and Bayesian inferences, 
taking the inaccurate judgments of the sample variances into account. 

METHOD 

]~XPERIMENT~iL DESIGN 

The subjects saw samples of equal size from two different populations 
and made inferences about which population had the larger variance. 
Then they either estimated the ratio of the population variances or stated 
their posterior subjective probabilities for the inferred population in the 
form of confidence in the inference. 

A Bayesian statistician's posterior probabilities would favor the popu- 
lation that yielded the larger sample variance and that population would be 
the statistician's inference. The ratio of the sample variances is the best 
estimate of the ratio of the population variances and would be the stat- 
istician's ratio estimate. The statistieian's confidence in his inference would 
be the posterior probability associated with the inferred population. 

On the assumption that subjects behave as the statistician does, the ratio 
estimates for population variances were assumed equal to subjects' opin- 
ions about the ratios of the sample variances and the confidence estimates 
were assumed equal to their subjective posterior probabilities for the 
inferred population. Then the ratio estimates were used to infer subjects' 
judgments of each of the sample variances. The difference between these 
inferred judgments and the objective sample variances were accounted 
for in terms of how subjects treated deviations in making their judgments. 
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The effects of sample means on intuitive judgments of sample variance 
were investigated by examining changes in subjects' agreement about 
inferences and by examining changes in their confidence as a function of 
different sample means, holding variances constant. Then, subjects' infer- 
ences and confidence were compared to the inferences and confidence a 
Bayesian statistician would report were he to observe variance ratios equal 
to those estimated by the subjects. This procedure provides information 
about how closely subjective inferences about variances conform to the 
normative Bayesian inferences, taking subjects' erroneous jud~nents of 
the sample variances into account. 

APPARATUS 

The stimuli ostensibly were random samples of n = 20 index cards from 
decks of N = 50 cards that each had a two-digit number written on them. 
However, to control the samples that subjects saw, each deck actually 
consisted of the 20 sample cards on top of 30 blank cards. The first four 
samples each had a mean of 37, equal ranges, and approximately normal 
distributions. Each of 10 numbers in each sample occurred twice. Adding 
constants of 16 and 32 to all of the numbers in the samples produced two 
more sets of four decks with means of 53 and 69 and with variances equal 
to those in the first four decks. The variances were (1) 82.31, (2) 123.37, 
(3) 200.42, and (4) 250.95. Their ratios were R4:8 = 1.25, R~:I = 1.50, 
R3:2 = 1.62, R4:2 = 2.04, R3:1 = 2.43, and R4:1 = 3.05. 

Confidence responses were made on 100-point scales that were divided 
in the center with the two ends labeled Left and Right. The middle was 
labeled .50/.50 and the scales increased to 1.00, in units of .05, in both 
directions. For ratio estimates, the response sheets merely had two columns 
of blanks labeled Left and Right and subjects wrote numbers in the blanks. 

PROCEDURE 

Inferences and confidence. The task was described to the subjects as one 
of making intuitive decisions about the variability of sets of numbers on 
the basis of samples from the sets. They would see the first 20 cards from 
each of two shuffled decks of 50 cards and then they were to make their 
inference about whether the right or left deck had the greater variability 
by marking the right or left end of the confidence scale. Their confidence 
that the inference would prove to be correct if they saw all 50 cards was to 
be indicated by the location of the mark upon the scale: .50/.50 if they 
were completely unsure about which deck was most variable, 1.00 if they 
were completely confident about the accuracy of the decision, and interme- 
diate scale values corresponding to intermediate degrees of confidence. They 
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were not informed of the correct answers. No written calculations were 
permitted. 

Variance was explained as the degree to which numbers cluster about 
their mean and examples were given of distributions with different vari- 
ances. 

The subjects saw all six combinations of the four variances within all 
nine combinations of the three means in the high-variance deck and the 
low-variance deck, a total of 54 judgments. The decks in each pair were 
randomly presented; cards from each deck were simultaneously displayed 
for about 4 seconds, turned face down, the next pair presented, etc., on 
through the two samples. Then subjects had 6 to 8 seconds to make their 
responses. The samples were shuffled behind a screen between presenta- 
tions. 

Ratio estimates. Three weeks after the first experimental session about 
one-half (18) of the subjects returned for the second session. The procedure 
was essentially the same as in the first session except that instead of making 
confidence statements, they estimated ratios of the larger population 
variances to the smaller. Responses were of the form l :x  or x: 1, where 1 
represented the smaller variance, x was some number equal to or greater 
than 1, and the positions of the numbers represented whether the right or 
left deck had the larger variance. 

To avoid complicating the ratio estimates by having different means for 
the pairs of samples, only the decks with means of 53 were used. A fifth 
deck with a mean of 53 and a variance of 273.47 was added to the original 
four to increase the number of comparisons. Each of the five decks was 
paired with the other four in both left and right positions for a total of 20 
ratio estimates. The cards were shuffled between presentations. The sub- 
jects were not permitted to make written calculations. 

Response scoring. Group posterior subjective probabilities for the infer- 
ences were obtained by calculating median confidence for that deck in each 
pair which the mean ratio estimates indicated to have the larger judged 
variance. For all pairs of decks this turned out to be the same inference a 
statistician would make. Therefore, the degree to which the group poste- 
rior probabilities were optimal could be obtained by comparing median 
confidence with the Bayesian posterior probabilities. Moreover, the ma- 
jority of subjects always made the optimal inference prior to estimating 
ratios or stating confidence. This permitted computation of the percentage 
of the subjects who agreed that the normative (optimal) inference was the 
subjectively best choice. This percentage summarizes both the unanimity 
among subjects about the best inference and the degree of inferential 
optimality for the group as a whole. As an example of scoring, if a subject 
inferred that the left deck had the larger variance and was .60 confident, 
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but the right deck was the optimal inference, the response was scored as 
one suboptimal inference and confidence of .40 in the optimal inference. 
Arbitrarily one-half of the .50/.50 responses were scored as optimal infer- 
ences and the other one-half as suboptimal. Ratio estimates were scored in 
the same way that confidence was scored and means were taken in logs. 

Subjects. Forty-four university students, both males and females served 
as subjects. None of the subjects were~ at all statistically sophisticated; 
about one-fourth had heard of variance in a brief discussion in introductory 
psychology courses. 

RESULTS 

WEIGHTING OF DEVIATIONS 

The mean ratio estimates showed that while the objectively larger 
sample variance in each pair was always judged as being the largest, the 
ratios did not correspond to the objective ratios. Using the Baker and 
Dudek (1955) method for ratio estimates, a scale of judged variance was 
constructed in which the smallest judged variance was the unit and the 
other judged variances were multiples of the unit. This scale is shown in 
Fig. 1. 

i I i i J 

/ 
q9 

2.6 / 

2.2 

J / ~ 1.4 ~Z 

1 . ( 1  , , , - ~ , 

80 120 160 200 240 280 
OBJECTIVE SAMPLE VARIANCE 

FIG. 1. The relation between judged and objective sample variances. 

Hofstatter's (1939) data suggest that the discrepancy between judged 
and objective variance results from differences in how subjects and stat- 
isticians weight deviations. On the basis of this, the relation in Fig. 1 can 
be made nearly proportional (r = .966, slope = 1.028) by assuming that 
the equation for intuitive iudgznent of variance is a modified form of the 
usual variance equation; 
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Judged Variance = L I ) ? -  J~il'39/n 
i = 1  

The effect of weighting deviations by raising them to a power of less 
than 1.0 is the opposite of squaring; it emphasizes the small deviations 
relative to the large ones and results in smaller judgments of variance than 
the statistician would give. 

EFFECTS OF SAMPLE !~[EA/~S 

Although subjective judgments of the sample variances are inaccurate, 
the judged magnitudes increased as a function of the objective variances. 
This relation permits examination of the effects of sample means on the 
judgments. In general, as the ratio of the two objective sample variances 
increases, i.e., becomes more discriminable, the percentage of subjects who 
agree in giving the optimal inference should increase, and the group's 
confidence in the inferences also should increase. As a result, any variable 
that systematically increases or decreases the judged sizes of the variances 
should influence both the percent agreement among subjects and the 
group's confidence. Therefore, the influence of sample means upon judg- 
ments of any two samples' variances should be reflected in increases or 
decreases in percent agreement and in group confidence as a function of 
various combinations of the two samples' means. 

The reasoning is as follows: Itofstatter's (1939) and Lathrop's (1967) 
results show that judgments of sample variances decrease as the associated 
mean increases. This implies that an increase in the mean associated with 
the large sample variance, i.e., the numerator of the F-ratio, should reduce 
the judged size of that variance and lead to a corresponding decrease in 
the judged size of the ratio. Therefore the ratio should have a smaller 
effect on subjects' rectangular prior subjective probabilities and should 
lead to smaller posterior probabilities for the favored population. Because 
of this, percent agreement should be low and group confidence should 
be small. 

By the same token, increases in the size of the sample mean associated 
with the smaller sample variance, i.e., the denominator of the F-ratio 
should decrease the judged size of of the smaller variance still further, and 
thereby increase the judged size of the ratio. This larger ratio should have 
a large effect upon the prior probabilities and result in large posterior 
subjective probabilities for the favored deck. Therefore, percent agreement 
should be high and group confidence should be large. 

Table 1 contains percent agreement and group confidence, computed 
across all combinations of the sample variances, for each combination of 
the sample means. Reading across the rows or down the columns of the 
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TABLE 1 
PERCENT AGREEMENT AMONG SUBJECTS ~ INFERENCES AND MEDIAN 

CONFIDENCE FOR E/~CH COMBINATION OF SAMPLE ME/~NS 

Mean of Mean of high-variance sample 
low-variance 

sample 37 53 69 Over-all 

37 75% 71% 64% 70% 
.65 .65 .60 .65 

53 73% 82% 66% 74% 
.70 .70 .64 .70 

69 82% 69% 74% 75% 
• 75 . 75  . 60  .70 

Over-all 77 % 74 % 68 % 
.70 .70 .60 

table shows that, in general, the sample means had the expected effects on 
agreement and confidence. As the means associated with the variances in 
numerators of the ratios increased, both percent agreement and group con- 
fidence tended to decrease. As the means associated with the variances in 
the denominators increased, both percent agreement and group confidence 
tended to increase. Appropriately, the two most extreme cases are the 
upper-right cell in the table and the lower-left cell. In the first, the small 
mean does not change the judgment of the denominator variances very 
much, so they stay relatively large while the large mean reduces the 
numerator variances a good deal. The result is a small-judged ratio, less 
agreement, and lower group confidence. The opposite conditions hold for 
the lower-left cell, and the agreement and confidence are high. 
: The diagonal cells in the table show that the effects of the means do not 
cancel for ratios in which both samples have the same mean. The 53-53 
combination yields both higher percent agreement and higher group 
confidence than do  the 37-37 and 69-69 combinations. Examination of 
responses for individual pairs of variances revealed that this discrepancy 
held consistently throughout the data, but provided no obvious explanation 
of why it did so. 

INFERENCES ABOUT POPULATION VARIANCES 

If: the inaccurate ratio estimates represent subjects' judgments of the 
ratios of the sample variances, and if these ratios served as the basis for 
the revisions of the subjective prior probabilities, then percent agreement 
for optimal inferences and the group's median confidence should be sys- 
tematically related to the estimates. Figure 2 shows the relation. The 
percent of optimal inferences made in both the first (confidence estimation) 
and the second (ratio estimation) experimental sessions are listed at the 
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top of the figure for each ratio of sample variances. Group confidence is 
plotted against objective ratios and against mean estimated ratios2 The 
brackets around the data points indicate the range of the middle 50% of 
the response distributions. The smooth function represents the Bayesian 
posterior probabilities for the corresponding ratios of variances for samples 
of n - -  20; these probabilities derive from Equation 6 in the Appendix. 

On the left side of Fig. 2, neither the percent of optimal inferences nor 
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FIG. 2. Median confidence, percent agreement on optimal inference, and Bayesian 
posterior probabilities as functions of objective and estimated ratios of the sample 
variances. 

group confidence is systematically related to the objective ratios of the 
sample variances, and confidence looks nothing like the smooth Bayesian 
function. On the right, however, the relations are systematic and both the 
percent of optimal inferences and group confidence increase as the mean 
estimated ratios increase. 

The Bayesian curve in the right graph represents the posterior probabili- 
ties that a :statistician would obtain from Equation 6 in the Appendix if 
the samples he observed had the variance ratios that subjects estimated: 

The ratio estimates were made for decks with means of 53; the other means have 
been shown to result in different judgments of tbe variances (Table 1). Therefore the 
data in Fig. 2 for percent of optimal inferences and for confidence derive only from the 
pairs of samples in the first experimental session that  both had means of 53. Correspond~ 
ing curves for the other two equal mean conditions (37-37 and 69-.69) are para!l¢! al~d 
somewhat lower than the curves in Fig. !, 
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The group confidence curve is roughly the same shape as the Bayesian 
curve, but it is a good deal lower. As in previous investigations of intuitive 
statistical inference, the sample data, in this case subjects' incorrect judg- 
ments of the sample variances, resulted in less revision of the rectangular 
subjective prior probabilities than they would have for Bayesian probabili- 
ties. The degree of difference in amount of revision for each data point can 
be quantified by computing the ratio of log c: 1 - c to log p: 1 - p, where 
c is the group confidence for the optimal inference and p is the Bayesian 
posterior probability for that inference. This ratio is formally the same as 
the Accuracy Ratio used in previous Bayesian studies of intuitive statistics. 
A ratio of 1.0 indicates that subjects' revision of their probabilities was 
equal to the Bayesian revision and, as a result, that the group confidence 
and the Bayesian posterior probability were equal. A ratio of less than 
1.0 indicates the degree to which the median revision was conservative 
relative to the Bayesian revision; i.e., it indicates the proportion of Bayesian 
revision represented by the median revision. Because the ratio for c = .50 
is undefined, only the remaining five points on the right side of Fig. 2 are 
reported. From bottom to top they are .34, .32, .46, .53, and .44; values 
which correspond to the range reported in previous experiments (e.g., 
Peterson and Miller, 1965). 

DISCUSSION 

These results show that while subjects' judgments of sample variances 
are inaccurate and their posterior subjective probabilities are conservative, 
their inferences are based on the ratios of their judgments of the sample 
variances; both the percent of optimal inferences and group confidence 
show a clear relation to estimates of the ratios. For group confidence this 
relation is similar in form to the Bayesian posterior probability function 
that a statistician would obtain from observation of sample variance 
ratios equal to those that the subjects reported. 

Intuitive judgments of sample variance, and hence of ratios, appear to be 
influenced both by the tendency to weight small deviations more heavily 
than large ones and by the magnitudes of the sample numbers, as reflected 
by the sample means. Care is necessary in interpreting the weighting 
results. The exponent of .39 may be determined more by the experimental 
conditions than by any general weighting practice used by subjects. With 
normally distributed samples, the majority of deviations are small. And, 
because the ranges were held constant across all samples that had the same 
mean, the most extreme data were not informative about sample variance: 
These two characteristics of the stimuli may have encouraged subjects to 
rely upon the small deviations to make their judgznents. 

While the possible dependency of weighting upon the specific experi- 
mental stimuli was not crucial to this experiment, the results point up the 
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need to-complement the Hofstatter (1939) and Lathrop (1967) investi- 
gations of the effects of sample means on judgments of sample variances 
with a detailed examination of the conditions that influence weighting of 
deviations. Squaring of deviations is a convention adopted by statisticians 
for its mathematical convenience and there is no reason why subjects 
follow it; the conventions they follow may be systematic and more reason- 
able in light of their opinions about what variance is and what role it fills 
in ~he prediction of future events. 

The results showing the influence of sample means on percent agree- 
ment and confidence (Table 1) are congruent with those reported by 
Hofstatter (1939) and Lathrop (1967). This was so in spite of the fact that 
confidence was a fairly insensitive dependent variable. That is, confidence 
was conservative, subjects tended to make their marks on the .05-unit 
boundaries of the confidence scale, and both inferences and confidence 
were based on subjectively computed ratios of variances from two simul- 
taneously presented samples. Any of these factors might have been sufficient 
to prevent the effects of means from being observed. As Lathrop (1967) has 
shown, however, the effect of means is robust and quite compelling; even 
sophistication about the statistical concept of variance does little to over- 
come it. 

The suboptimality of group confidence that remains after the inaccura- 
cies of judged sample variance are taken into account, is similar in form 
and  amount to that obtained in previous Bayesian investigations of intui- 
tive inference. I t  is not unlikely that this conservatism in revising subjective 
probabilities results from the second source of error suggested in the intro- 
duction; the subjects' F-distributions may be inaccurate. In other words, 
in addition to errors in judging the sample variances that go into the ratios, 
the subjects may incorrectly evaluate the implications of their inaccurate 
ratios for the revision of their subjective prior probabilities. If the results 
reported by Peterson et. al. (1967) can be generalized to this experiment, 
it might be possible to account for the conservatism in the right half of 
Fig. 2 by ascertaining the subjective F-distributuins. This experiment has 
accounted for some of the variance in intuitive inferences about population 
variance in terms of errors in judging sample variances. The investigation 
of the role of inaccurate subjective F-distributions remains to be done. 

APPENDIX ~ 

The task is one of inferring which of two normal populations has the 
greater variance given two equal-sized samples from each of the popula- 
tions. 

4 This  section and  the  Bayesian tes t  in i t  are by  Dr. W. M. Kincaid, Depar tmen t  of 
Mathematics ,  Universi ty  of Michigan. 
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Let the sample variances be sl 2 and s22 and the corresponding population 
variances be 0.12 and 0.22. For  given 0.12,0.22 the ratio 812/0"12(822/022) -1 has an 
F-distribution with n - 1 df  in both numerator  and denominator. This fact 
is the basis for the usual statistical test for the equality of variances. 

With a Bayesian approach, the problem of interest is the reverse one of 
determining the (subjective) distribution of 0.12/0.22, given an observed value 
of slVs2 ~ and prior distribution of 0.12/0.2 ~. While this approach seems natural, 
it should be pointed out that  it is somewhat incomplete from a strictly 
Bayesian point of view. For  ideally there is a joint distribution of four 
parameters, namely the population means and variances, from which the 
distribution of 0.12/0.22 is derived. A discussion of the problem in these terms 
would be re1T laborious at best. These considerations are relevant, however 
only to the extent tha t  two different sets of data having the same value of 
sP/s22 could lead to different posterior distributions of 0.12/0.~ 2. The interest 
here is only in the situation where such differences would be negligible, 
tha t  is, in the ease of a very fiat prior distribution. Under these circum- 
stances, it seems reasonable to avoid the difficulty by  making the simplify- 
ing assumption that  the ratio sP/s22 is the only information available. 

At this point it is convenient to introduce the ratios 

0.12 812 
"r - -  a n d  ~ - 

0.12 -4- 0.2 ~ sl 2 -~- s2 2 

These ratios are limited to the range [0,1], and they are effectively sym- 
metric in the two variances, since 

0.2 2 
- -  T ~ 

0.12 --~ 0-2 2 

The task can now be restated as one of determining the posterior distri- 
bution of r given w. 

A prior distribution of r is needed; making the simplest choice, suppose 
that  it is uniform on [0, 1]. The posterior density off(@o) is then propor- 
tional to the conditional density f(wlr ). 

I t  was noted above that  s120.22/s.o20.12 has an F-distribution for given 
z12,z2~; tha t  is, the conditional density f (x lr)  has the form 

f(x[r) = Cx('~-~)/2(1 - x) -('~-1), x > 0 (1) 

where x = s12rr22/s2~(n ~ and C is a constant. The densityf(~Ir) can be derived 
from (1) and the relation 

TX 

= ] - ~- + T x '  (2) 
it is the form 

(~ + ~ _ 2~w).-1  (3) 



122 BE~C~ AND SCOOP 

Consequent ly ,  f(@o) is of the  form (3) also, or, for any  fixed ~o, 

f ( r ]~ , )  = k r ( ' ~ - ' l ~ ( 1  - r)(,~-~)/~ 
(r + ~ - 2r~) ~-1 (4) 

where k can be de termined f rom the  condit ion 

Llf(rl¢o) dr = 1 (5 )  

I n  our  ease we are interested in the  probabi l i ty  p(a12 < a2~) __ P(r < ½) 
which  in view of (4) and  (5) is given b y  

L i / : rc_2_~- l_~)/ : ( l_-r)(~- ' ) /~ r r , , < : - , , , : ( , _ , ) < : - , , , ~  ]-, 
(r + <o - 2r~)-- ,  dr X LJo ~ T ~  - -  ~ dr (6) 

The  integral  (6) is mos t  readi ly  eva lua ted  numerical ly.  
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