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Abstract-An analytical attempt is made to understand the non-equilibrium interaction between thermal 
radiation and laminar free convection in terms of a heated vertical plate in a stagnant radiating gas. 
The effect of radiation is taken into account in the integral formulation of the problem as a one-dimensional 
heat flux, evaluated by including the absorption in thin gas approximation and the wall elfect in thick 
gas approximation. The local Nusselt numbers thus obtained help to interpret the gas domains from 
transparent to opaque and from cold to hot. The present thick gas model approximates the radiant flux as 

qR=-E[- (I-?)exp(-$aygT’$ 

whose limit for large a and small but non-zero y is the Rosseland gas, qgs = - (16a/3a) T3(cW/ay), and 
that for y = 0 and large but finite a is 4”, = - c,(8a/3a) T$W/ay),. 

NOMENCLATURE 

thermal diffusivity, k/pep; 
Bouguer number, a6 ; 
local Bouguer number, ax ; 
specific heat at constant pressure ; 
integro-exponential function of order 

n; 
gravitational acceleration ; 
local Grashof number, gj3p2(Tw - T,) 

x3/$; 
heat-transfer coefficient ; 
thermal conductivity ; 
local Nusselt number, hx/k ; 
Prandtl number, V/U = ,uc,/k ; 
ambient Planck number, akT,/4a 
L4; 
heat flux ; 

-. 

absolute temperature ; 
x-component of velocity; 
maximum of u ; 
variable along plate wall ; 
variable normal to plate wall. 

Greek symbols 
a, volumetric absorption of gas ; 

coefficient of thermal expansion ; 
local dimensionless number, B../(G,/ 

4Y ; 
boundary-layer thickness ; 
diffuse emissivity of plate wall ; 
dimensionless variable, 1 - l; 
dimensionless variable, cry ; 
temperature ratio, (T, - TJT, ; 
viscosity ; 
kinematic viscosity ; 
dimensionless variable, q/B; 
density ; 
diffuse reflectivity of plate wall ; 
Stefan-Boltzmann constant ; 

cpo; ‘pl ; cp2; (~3; v4; 4n5; functions 

defined for thick gas ; 

tie : +I ; $2 ; ti3 ; ti4; $G functions 
defined for thin gas. 

Superscripts 
C, convection ; 

K radiation ; 
-9 mean value ; 
I 
3 dummy variable. 
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Subscripts 
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0, first approximation ; 

1, second approximation ; 
w, plate wall ; 
‘X, ambient ; 

X, local ; 

& Rosseland gas. 

INTRODUCTION 

MOTIVATED by the technological demand and 
provided by the present level of applied science, 
the effect of thermal radiation on gas dynamics 
and/or heat-transfer problems has received 
increased attention in the last decade. Because 
of the size of the literature, no attempt will be 
made here to give a complete list (see, however, 
references cited in Viskanta [l] for heat-transfer 
problems and those in Cheng [2] for gas 
dynamics problems). Although recent works on 
gas dynamics consider multi-dimensional radia- 
tion effects and place no restriction on the 
absorption of gas, studies on boundary layers 
(which are mainly on forced convection), are 
restricted to one-dimensional radiation effects, 
evaluated on the basis of thick gas and thin gas 
approximations. In thin gas, the absorption of 
gas is neglected in the boundary layer; in thick 
(Rosseland) gas, the wall effect is excluded. 
Although the assumption of one-dimensional 
radiation can be justified on grounds of bound- 
ary-layer physics, the existing thin gas and thick 
gas approximations need improvement in order 
that the effect of radiation on boundary layers 
may be shown for all values of the absorption 
of gas. So far as the author is aware, no published 
work exists on free convection except a recent 
attempt by Blake [3] which rests on the 
approximations above and that by Cess [4] 
involving the cases of hot gas or slightly 
absorbing gas. 

A preliminary study is made here to under- 
stand the non-equilibrium interaction between 
thermal radiation and laminar convection for 
all values of the absorption of gas, using a 
heated vertical plate in a stagnant gas as a 
vehicle. The main objective of the work is to 
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consider a model for thin gas absorbing inside, 
as well as outside, of the boundary layer, and 
that for thick gas including the wall effect. Thus 
it becomes possible to represent the local 
Nusselt number evaluated on the basis of these 
approximations, as well as velocity and tem- 
perature profiles, in terms of common dimen- 
sionless numbers, and to interpret the gas 
domains from transparent to opaque and from 
cold to hot. Furthermore, the behavior of Rosse- 
land gas at boundaries is clarified. 

FORMULATION 

Consider a heated, semi-infinite, vertical 
plate in an infinite expanse of stagnant, radiating 
gas. To simplify the problem and isolate the 
influence of radiation, the following assumptions 
are made : the gas is perfect and gray ; radiation 
scattering, radiation pressure, and the contribu- 
tion of radiation to internal energy are negli- 
gible; the effect of radiation is included to the 
energy equation as a one-dimensional heat flux ; 
the plate diffusely radiates as a gray body ; 
non-equilibrium effects other than diffusion 
and radiation are negligible. 

On the foregoing basis, the usual integral 
formulation of the problem is modified to 
include the effect of radiation. This gives 

PC,; u(T - T,)dy = -k 

0 

where the radiant flux (see, for example, Blake 

C31) is 

qR = 24&72E,(rl) + b T4(v’) E,(rl - q’) dd 
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CJ being the Stefan-Boltzmann constant, q = cry, them on different grounds. Noting, however, 
q’ = ay’, a the absorption coefficient of gas, that the present problem requires the approxi- 
cW and p,,, the diffuse emissivity and diffuse mation of E3(y) only, and that the use of the 
reflectivity of the plate walls, respectively, and correct value of E3(0) is important for boundary- 
E, and E, the special cases of the integro- layer problems, the Lick approximation [7] is 
exponential function of n, defined by employed. This gives 

E,(y) = it.-‘exp(-y/t)dt. (4) 
0 

A full discussion of this function and its proper- 
ties may be found in Kourganoff [5]. 

Equation (3) may be integrated by parts for 
later convenience (see Vincenti and Baldwin [6] 
for similar manipulations on the divergence of 
radiant heat flux). The result is 

E,(Y) = exp (- 3~/2)/2. (7) 

Inserting equation (7) into (6), introducing the 
Bouguer number B = aa, and the dimensionless 
variables 5’ = $/B and [’ = 1 - <‘, the radiant 
flux may be arranged to give 

qR 1: = 4o(i T3(aT/a[‘) exp (- 3Bc/2) dc’ 

- { 1 - p,[ 1 - exp (- 3B/2)]} exp (- 3B/2) 

x i1T3(aT/ai’) exp (+ 3Bi’/2) dr}. (8) 

Now the solution of equations (1,2, 8) presents, 
at least in principle, no difficulties in terms of 
polynomial profiles. However, the integrals 
associated with the radiant flux yield rather 
lengthy expressions for any practical use. This 
difficulty will be circumvented by evaluating the 
radiant flux for small and large values of B. 
Hereafter the conditions B $ 1 and B % 1 will 
be referred to as the definition of thin gas and 
that of thick gas, respectively. 

@ = -SG[/ T3(aT/&j’) E,(q - q’) drj’ 

+ 3 T3@T/aq’) E,(q’ - q) d$ 
r 

- &‘wE,h) 1 T3@T/~tl’) E,(rl? WI. (5) 

The difference between the values of qR evaluated 
at the boundary layer and the plate walls may 
readily be found from equation (5) to be 

qR 1: = fWi T3@7Wt)CE3k4 

- E,(ad - q’)] dr,J’ - p,[l - 2E,(a6)] 

x i T3(10’/@‘) E,(q’) dq’}. (6) 

Next the solution of the problem is considered. 

SOLUTION 

The solution of equations (1, 2, 6) presents, 
even in terms of simple profiles, considerable 
mathematical difficulties for the intended in- 
vestigation. In view of this, the integro-exponen- 
tial function is approximated in the usual 
manner by a simple exponential of the form 

E,(y) = a exp (-by). 

The appropriate choice of the constants a and b 
depending on the values of n is not unique, and 
a number of values have already been used for 

(a) Thin gas (B 4 1) 
Replacement of the exponential terms in 

equation (8) by the first two terms of their 
Maclaurin expansions gives 

qR 1: = 4a(3B/2) [(1 + p,) a T3(aT/ai’) d[’ 

- 2 1 T3(aT/c?jr) i’ di’ + O(B)], (9) 

where 0 implies the order. 
Recalling the preliminary nature of the present 

investigation, the selection of the velocity and 
temperature profiles may be confined to the 
first order profiles, 

u = W/WI - Y/V, (10) 

(T - ~mmv - TaJ = (1 - YPJ2T (11) 
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previously used by Squire for the same problem 
in the absence of radiation (see, for example, 
Howarth [S]). 

Expressing equation (11) in terms of c and 
then introducing into equation (9) yields 

qR 1: = 41oT4,B[$, + O(B)], (12) 

where 

ijl = $[(l +p,) (1 + 31/2 + 1’ + L3/4) 

- 4($ + 3L/5 + 31217 + A3/9)], 

and L = (T, - T,)/T,. 
Inserting equations (10-12) into equations 

(1) and (2), and neglecting terms of order B2 
and higher results in 

&(U2a) = &g/3(T, - T,)S - v ;, (13) 

(14) 

where a = k/pc, is the thermal diffusivity. Note 
that for the limiting case (rT$ -+ 0 (cold gas), 
equations (13) and (14) reduce to those ob- 
tained by Squire, as expected. 

Clearly, B = aij 4 1 suggests the solution 
procedure for equations (13) and (14) as that 
of a regular perturbation on the Squire problem. 
Thus multiplying equations (13) and (14) by 
6, introducing the mean Bouguer number 
B = aS (in terms of a mean boundary-layer 
thickness which will drop out later), and using 
the first two terms of the expansions 

u = 2 (B2/9),)” u,, 6 = 2 (B2/~J6,, 
n=O n=O 

(15) 

where 8, = akT,/4aT~ is the ambient Planck 
number, yields for (B2/ 9,)’ 

and for (B2/8,)’ 

= &U’w - Tm)&,& - vu,, ( 18) 

= *,$. ( 19) 

Squire obtained the solution of equations (16) 
and (17) by assuming the velocity and the 
boundary-layer thickness of the form 

u, = coxmo, 

The result is 

6, = D,x”? (20) 

Uo = 4%P(T, - K,)lfx+ltit, 

6, = (2a)*IC/2x*l[gB(T, - T.,)l*~ (21) 

where ti2 = 2*(100/7 + 15P)* and P is the 
Prandtl number. 

In general, the form of first approximations 
does not necessarily imply the form of second 
approximations. On the contrary, second ap- 
proximations often remain in differential form 
when they are expressed in terms of first 
approximations. However, the inherent nature 
of the present problem allows the solutions 
of similar nature, 

u, = CIXrn’, 6, = D1x”‘, (22) 

for equations (18) and (19). This gives 

u1 = a*1~~ti~~~xl~2~ (23) 

6, = (2a)%+~1C/3x*/lM~ - L)1*~2~ (24) 

where 
$3 = (8/3 + P)/4(68/21 + 3P), 

$4 = 8(P - 4/21)/(8 + 3P)(20/21 + P), 

and other $‘s were defined following equations 
(11) and (21). 

A parametric study of the velocity and tem- 
perature profiles would be rather space con- 
suming due to the number of parameters 
involved. Because of this fact the study will be 



confined to the local heat flux only. The local 
heat-transfer coefficient may now be defined, 
including the radiant as well as convective 
effects, as 
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a6 = *,!W,/Pi, 

where 

qw = h(T, - T,) = 4: + qcw, (25) 

where qi being the convective flux, 

4: = - k@T/~?y), = 2k( T, - T,)/d, (26) 

evaluated by equation (11). In terms of the 
exponential approximation given by equation 
(7), the radiant flux is obtained from equation 
(5) to be 

B, = ax (the local Bouguer number) and G, 
= g/Ip2( T, - Tm)x3/p2 (the local Grashof num- 
ber). Finally, rearranging equation (30) in 
terms of equation (31) and (32) results in 

NJ(G,l4)* = 2P%W + U,/%,) 

WI - ti2+5 w~x/~co)~mIp+l~ (33) 

The use of GJ4 in equations (31) and (33) 
rather than G, is for customary reasons only. 
In the limit as r,/g,+O, Y-+1 and equation 
(33) approaches the Squire solution, 

q: = 406, exp (- 3B/2) 1 T3(aT/a<‘) 

x exp (+ 3B5’/2) d<‘. (27) 

For small values of B, retaining again the first 
two terms in the Maclaurin expansion of the 
exponentials, equation (27) may be reduced to 

q; = 40&J a T3(aT/at’) d5’ - (3B/2) 

x i T3(aT/dt’) (1 - 5’) d<‘]. (28) 

Insertion of the temperature profile given by 
equation (11) into equation (28) yields 

4: = 4&H:[$, - B$s + G(B’)], (29) 

where 

NJ G,/4)’ = (2P)*/( 100/7 + 15P)*, (34) 

provided 0 < gb, < CCL The physical implica- 
tions of rX/gm + 0 and $‘a + 0 are identical to 
those discussed following equation (14). Al- 
though the limit 9r’W --) cc is not permissible, by 
keeping r,/gb, + 0, 9, may be increased to a 
reasonably large value. This corresponds to a 
reasonably opaque, cold gas. Equation (33) will 
be plotted together with the similar expression 
to be obtained from the thick gas approxima- 
tion that we consider next. 

$0 = 1 + 3R/2 + A2 + L3/4 
(b) Thick gas (B %. 1) 

and 

$5 = 3 + 9L/20 + 3J2/14 + A3/24. 

Introducing equations (26) and (29) into 
equation (25), and neglecting terms of order B2 
and higher, the local Nusselt number is found 
to be 

The details of the thick gas solution are left 
out because of their similarity to those of the 
thin gas solution. 

Noting that exp (- 3 B/2) -+ 1 for B + 1, the 
radiant flux given by equation (8) may be 
rearranged as 

N, = hx/k = 2(x/6) + c,,,(ax)(+,, - $SaS)/9’,, 

where x/6 and a6 may be obtained from the 
second expansion of (15), the second term of (21) 
and equation (24) as 

(30) 

qzi = 40[ [ T3(aT/a~‘) exp (- 3B(‘/2) dc’ 

- eW exp (- 3 B/2) [ T3(aT/JC’) 

exp (+ 3X 72) d[‘]. (35) 

(31) In terms of the temperature profile selected, and 

875 
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by the successive use of integration by parts, 
equation (35) becomes 

&j = - 8n~T,~(l/B) (3 c,,,( 1 + A)3 - (l/B) 

‘pi + 0[(l/B)21), (36) 

where 

‘PI = $[l + c,(l + 71)(1 + A,‘]. 

The momentum equation resulting in equa- 
tion (13) remains valid for the thick gas ; equa- 
tion (14) is modified, however, in terms of 
equation (36). This gives, after neglecting terms 
of order ( l/g2 and higher, 

where cpo = 1 + 2~,,,(1 + A)3/38,, and 

(37) 

cpl was 
defined following equation (36). The limiting 
case Poo+co, which corresponds to CI--+CO 
(opaque gas) or to @,-to (cold gas), is the 
Squire problem, as expected. 

Inspection of equations (13) and (37) by the 
consideration of B = a6 g 1 suggests again a 
perturbation procedure for the solution. Thus 
multiplying equation (13) by 6 and equation (37) 
by h2, and using the first two terms of the 
expansions 

u = f U,fB”, 6 = 5 &/I? (38) 
n=O n=O 

gives for l/B0 

and for l/B’ 

= MK - To)~o4 - vu17 (41) 
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Since equations (16) and (39) are identical, 
and equations (17) and (40) differ by a parameter 
only, the particular forms similar to those of 
equation (20) 

u, = Cix”o, a0 = D;x"o, (43) 

may be used for the solution of equations (39) 
and (40). (Clearly, the effect of radiation is 
included in the coefficients CG and Di, the 
exponents m. and no remaining identical to 
those found in the absence of radiation.) The 
result is 

uo = 4O[gB(T, - T,)lfxflcpzzl 

6, = (2acpo)+x*l[gB(T, - T&l*, (44) 

where (p2 = 2*(100/7 + lSP/cp,)*, and cpo was 
defined following equation (37). Note that 
402+ti2 as qo-‘l for 9, -+ cc. 

Inspection reveals that equations (41) and 
(42), in a manner similar to the solution of first 
approximations, assume solutions of the form 

ui = c;xm:, d1 = D;x"f. (45) 

This gives 

u1 = - WacpoY~lcp2cp3cp4~ 

[gB(T, - L)]*xf/C,, (46) 

6, = - (P1(P3v?09?0~ (47) 

where 

(p3 = (32~,/21 + P)/(24~,/7 + 110, 

qL= ($ + 14P/(p,)@O + 21P/(p,)(32&21 + P), 

and other cp’s were defined following equations 
(36, 37, 44). 

The wall radiant flux given by equation (27) 
is also valid for the present case. This equation 
yields, in terms of the temperature profile 
assumed, 
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4; = snoT4,(1/B){~E,(l + A)3 - :cps result previously obtained by Squire. The physics 

+ G[(l/B)*11, (48) 
associated with the limit grn + co was dis- 
cussed following equation (37). The other 

where (p4 = 4(1 + 7nXl + 2)2/9. limit S, + 0 cannot be materialized because of ._ ._ 

Finally, combining equations (25,26,48), and 
the restriction g,J’, + co. However, by keeping 

neglecting terms of order (l/q3 and higher, 
pJx large, 8, may be reduced to a reasonably 

yields the local Nusselt number, 
small value. This corresponds to a small a 
(nearly transparent gas) or to a large aT4, (reason- 

N, = hx/k = 2(x/S)(cp,, - ~,cp,/alW,), (49) ably hot gas). 

for which x/6 and ai? may be evaluated from the 
Note that the local Nusselt numbers evaluated 

second expansion of (38), the second term of (44) 
on the basis of thin gas and thick gas approxima- 

and equation (48) as 
tions, and given by equations (33) and (51), 
are in terms of common dimensionless numbers, 

d/x = @/(W4)+, ad = @r,, (50) and are expressible in the form 

where Cp = ((po/P)*cpz - qI(p3/qo~m~x. Inser- 
tion of equation (50) into equation (49) results 
in 

W(G,/4)* = f [A, 6, P, g,, W(GJ4)*]. 

W(G,/4)* = (2/W% - wM@‘,P,). (51) 
Figure 1 shows N,/(G,/4)* vs. B,/(G,/4)* for 
values 0 < 8, < co; the three dimensionless 

Note that the limit B,P,+ co gives the asymp- numbers remaining are held constant, assuming 
tote of equation (51) depending on 0 c B < co. a typical value of Prandtl number for gases, 
As cYJ, --) co, @ --+ (cp,/P)*cp, and equation P = 0.733, black walls for the plate, cW = 1, and 
(5 1) becomes A = 0.1 which may be interpreted as the walls 

WW4)+ = %@)%2, 0 < Pm G a. (52) 
being 54 degF above the ambient gas at 77°F. 

An important problem of gas radiation, the 
Furthermore, as 9, + co, ‘pO + 1 and cp2 + 1c12, behavior of thick gas near boundaries, may be 
and equation (52) reduces to equation (34), the discussed now by comparing the present model 
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for thick gas with the Rosseland gas : rearrange- 
ment of equation (5) in terms of r’and < = q/B 
yields 

qR = - 4e10 T3(aT/@‘)exp[-3B(< - c’)/2]dr’ i 

+ iT’@T,Mc’) exp [ -3B(c - <)/2] dt’ 

- p,exp(-3B5/2)j T3(aTiX’) 

x exp(-3%‘/2)dt’). (53) 

Expressing the assumed temperature profile, 
equation (1 l), in terms of 5, r’ and inserting 
the result into equation (53) results in 

qR = (16ailT4,/3B) {2(1 - 4) [l + A(1 - c)“]” 

- (1 + p,)(l + n)3exp(-3EY/2) 

+ O(l/B$ (54) 

Evaluation of the heat flux in terms of the 
Rosseland gas, q&= - (16a/3a) T3(aT/ay), and 
the same temperature profile gives 

q& = (l~~T~/3~2(1 - r)[l + A(1 - @2]3. 

(55) 

After neglecting the terms of order (1/B)2 and 
higher in equation (54), the ratio of equation 
(54) to equation (55) may be written as 

qR/q& = 1 - (1 - &/2) (1 + A)3 

x exp(-3X/2)/(1 - <)[l + A(1 - 5)2]3. 

(56) 

Noting that near boundaries 5 Q 1, and that 
E = cry, equation (56) may be approximated 
to yield 

x exp (-$y) 1 T3 g. (57) 

When a becomes large while y remaining small 
but not zero, equation (57) approaches the 
Rosseland gas ; when y = 0 and a is large but 
finite, equation (57) reduces to 

the result previously obtained by Deissler [93. 
Since for the latter case exp ( - 3ay/2) = 1 rather 
than being zero, the omission of wall effect in 
the Rosseland gas leads to an erronious result 
near boundaries. It is apparent now that the 
expansion employed for the Rosseland approxi- 
mation is not uniformly valid in the domain 
0 6 y < crj, and it can only be an outer expan- 
sion for the thick gas model. An inner expansion 
valid within the radiant attenuation depth where 
y = 0( l/a) should be considered for the be- 
havior of thick gas near boundaries. This problem 
is presently under investigation. For the time 
being however, equation (57) may be utilized 
in the solution of other boundary-layer problems 
because of its apparent independence from the 
present solution. 

In Fig. 2 the effect of 1 on the local Nusselt 
number is shown by holding 9, constant at 
0.1; note that higher values of J, cannot be 
allowed because of the constant-property basis 
of the present formulation. The thin gas and 
thick gas approximations plotted in Figs. 1 and 
2 are joined, arbitrarily to some extent, by their 
common tangent for a continuous representa- 
tion. 

Since the thin gas approaches the Squire 
problem as BJ( G,/4)* -+ 0, the effect of wall 
emissivity on Fig. 1 may be best understood 
by considering the limit of thick gas for 
B,/(G,/4)% + 00 given by equation (52). Figure 
3 shows the local Nusselt number of this equa- 
tion versus t, for 0 < 8, d m, keeping 1 and 
P constant. 

The sketch of Fig. 4 summarizes the physics 
of the problem, by showing the effects of the 
temperature and absorptivity of gas, the emis- 
sivity of plate walls, and the ratio of the tem- 
perature difference between plate walls and 
ambient gas to the ambient gas temperature 
on the local Nusselt number. 

A direct comparison of the results obtained 
from the present thin gas solution with those of 
reference [4] is not possible because of the 
different Prandtl numbers considered. An order 

4f: = - dWW TZW/Ww, of magnitude comparison, however, shows that 
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the two solutions do not deviate more than 5 per 
cent. 

CONCLUSIONS 

An attempt has been made to understand 
qualitatively the heat transfer from a heated 
vertical plate to a stagnant radiating gas. The 
study rests on the use of exponential approxima- 
tion for the attenuation factor E,. In accordance 
with this approximation, the integral formula- 
tion of the problem is considered, and first 
order profiles are employed. 

It becomes apparent, after some attempts, 
that solutions of boundary-layer problems with 

t 

B,I(G,14+ 

Fig. 4. 

2K 
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no restriction on the absorption of gas are ACKNOWLEDGEMENTS 
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on the basis of thin gas and thick gas approxima- 
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tions, and except that the results will be in- for numerical calculations 

formative for the entire range of the absorption 
of gas. The Rosseland gas falls short in corn- 1. 
plementing the thin gas, and implies its over- 
simplified nature for boundary-layer problems. 2. 
This difficulty is eliminated in the present work 
by including the wall effect in thick gas, and 3, 
also that the absorption of thin gas in the 
boundary layer. 

The most critical approximation in the 4’ 
present work is that of the gray gas. Since the 
dependence of absorption on the frequency 5. 
is rather strong in actual cases, the problem 6, 
should be reconsidered by including this de- 
pendence before any serious attempt to check 
the analytical results against experiment. Mean- 

7, 

while the gray gas analyses should continue, 
at least in the near future, to provide further *. 
insight into heat-transfer problems in radiating 9, 
gas. 
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R&um&Un essai thCorique est effect& pour comprendre I’inttraction en non-Cquilibre entre le rayonne- 
ment thermique et la convection naturelle laminaire dans le cas d’une plaque verticale chauffh dans un 
gaz rayonnant au repos. L’effet du rayonnement est pris en compte dans la formulation intCgrale du 
probleme comme un flux de chaleur unidimensionnel, Cvalut en comprenant I’absorption dans l’approxi- 
mation du gaz mince et l’effet de paroi dans l’approximation du gaz Bpais. Les nombres de Nusselt locaux 
obtenus ainsi aident g interpreter les domaines du gaz entre les cas transparent et opaque et entre le froid 
et le chaud. 

Le modtle actuel du gaz &pais donne le flux rayonnant d’une faGon approchCe sous la forme : 

dont la limite pour de grands a et des valeurs de y faibles mais non nulles est le gaz de Rosseland, 
qgs = -(16a/3a) T3(aT/ay) et celle pour y = 0 et pour des valeurs de a grandes mais finies est 

4: = -c,(Su/3a) Tb(aT!@),. 

Zusammenfassung-Es wird der analytische Versuch gemacht, die Nicht-Gleichgewichtswechselwirkung 
zwischen WIrmestrahlung und laminarer freier Konvektion in der gewohnten Art fiir eine beheizte 
senkrechte Platte in einem ruhenden, strahlenden Gas zu bestimmen. Der Strahlungseinfluss wird als 
eindimensionaler WLrmestrom in der Integralformulierung des Problems angesetzt und gel&t unter 
Beriicksichtigung der Absorption in der Nlherung fiir optisch diinne Gase und des Wandeffekts in der 
NBherung fiir optisch dicke Gase. 

Mit Hilfe der so erhaltenen Nusselt-Zahlen, lsst sich der Einlluss von Durchllssigkeit und Temperatur 
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des Gases ersehen. Das gegenwlrtige Model1 fiir ein optisch dickes Gas liefert fiir den Strahhmgsstrom 
nlherungsweise die Gleichung 

deren Grenzwert fiir grosses a und kleines aher endliches y das Rosseland Gas ist, 

& = -(16a/3a) T’(d7’/2y) 

und fiir y = 0 und grosses aber endliches a 

qt = -~~(8~/3a)7’~(1W/~y), ergibt. 

AHHOT&bI(ESI-CAeJfaHa ffOIfbfTKa aHaJIHTWfeCKH OIIElCaTb HepaBHOBeCHOe BaaHMOJ&etCTBHe 

Me?KAy TeIIJfOBbfM IlWfyYeHffeM II CB060~~0B~faM1lHapHOti KOHBeHlJffei Ha IlpHMepe HarpeTOltf 

BepTHKaJfbHOti IfJfaCTElHbf B HeffOABA)KHOM lf3JfyqafOfQeM ra3e. Bnmffsfe Zf3JfyqeIfHFl yWfTbf- 

BaeTCff llpll HHTerpaJfbHOt @OpMyJfOpOBKe 3anaW qepe3 OAHOMepHd TeIfJfOBOfi IIOTOK, 

paccsf4TbfBaeMbftc yYeToM a6cop6qm npa~0~~0fi annpoKcHMaI~aH raaaff BJIIIHHEIH CTeffKIf 

IIpll rpy6ot aIIIfpOKCHMafJffillra3a.~OJfy~eHHbfeTaKIlM o6paaoM 3HaYeHlfHJfOKaJIbHbfXWfCeJI 

HyCCenbTa ffoMorafoT 0mcaTb ~~CT~HHEIR raaa OT npoapawforo ~0 Kenpoapawforo M OT 

xono~Horo A0 rOpJWer0. HaHHaJf rpy6aK Monenb ra3a AaeT Cne~yfo~yfO ffpH6JfIVKeHHyIO 

I$OpMJVIJ’~JIX JfyWCTOrO ffOTOKa 

KOTOpaFi B ffpeAeJfe AJfH 6onbm&rx a EI MaJfbfX, HO paBHbfX HyJffO )J ffepeXOAffT B +OpMJ’Jly, 

cnpaBeAmfBym Ann ra3a Poccenaffna q& = - ( 16u/3a)T3(2T/2~) EI AJIR y = 0 II 6onbmxx, HO 

KOHeqHbfX LlHaqeHlfZta HMeeTBlfA 

q: = - E,(~u/~cz) T;(2T/2y),. 


