A Necessary and Sufficient Condition that an Operator be Normal

R. G. Douglas* and Peter Rosenthal

University of Michigan, Ann Arbor, Michigan 48104
and
University of Toronto, Toronto, Ontario, Canada

Submitted by Gian Carlo Rota

If A is a normal operator on a Hilbert space and if P is a polynomial in A and A^*, then P is normal. Thus, if r denotes spectral radius, $\| P \| = r(P)$ for every operator P that is a polynomial in A and A^*.

Our interest in the converse problem was stimulated by a conversation with C. R. MacCluer.

THEOREM. If A is a bounded operator on a Hilbert space, and if $\| P \| = r(P)$ for every operator P that is a polynomial in A and A^*, then A is normal.

PROOF. Translating A by an appropriate scalar we can assume that $\text{Re } A = (A + A^*)/2$ and $\text{Im } A = (A - A^*)/2i$ are strictly positive operators. It then follows by a well-known result (see [1]) that the spectrum of the product operator $B = (\text{Re } A)(\text{Im } A)$ is contained in the positive real axis. To show that A is normal it suffices to show that $\text{Re } A$ and $\text{Im } A$ commute, and this will follow immediately if we show that B is Hermitian.

If p is any polynomial in one variable then $\| p(B) \| = r(p(B))$ by hypothesis. Thus by the spectral mapping theorem

$$\sup_{\sigma(B)} |p(z)| = \| P(B) \| .$$

It follows, since $\sigma(B)$ is real, that

$$\sup_{\sigma(B)} |u(z)| = \| u(B) \|$$

for all rational functions u having no poles in $\sigma(B)$. Therefore $\sigma(B)$ is a spectral set of B, and hence so is the real axis. This implies that B is Hermitian (see [2], Section 155), and thus that A is normal.

Research supported in part by the National Science Foundation.