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Abstract—In calculating resonance absorption for one resonance, the effect of neighbouring
resonances is usually neglected. It is, therefore, customary to assume that the slowing-down flux
takes its asymptotic value above the resonant energy and becomes independent of both lethargy
and space. However, when the resonances are not widely separated, a resonance may lie in the
region of energy oscillation due to other high-energy resonances. In this region the flux may depend
on both lethargy and space. In the present paper a method has been developed for estimating this
error. In this calculation the higher energy resonance has been replaced by a delta function sink,
and the age-diffusion equation with modified source term has been solved to obtain the lethargy
and space-dependent flux. The resonance integrals have then been calculated in the presence and in
the absence of the higher energy resonance in an effort to estimate the importance of this effect.
Various calculations of the effect of resonance interference have ignored spatial effects, but these
may be important, particularly for tightly packed lattices.

1. INTRODUCTION

IN RESONANCE escape calculations, it is usually assumed that the flux feeding neutrons
into the resonance is constant in space and lethargy. In the case of closely spaced reso-
nances, the flux may not recover completely before reaching the next lower energy
resonance and thus the flux may depend on both space and lethargy. When a resonance
is in the transient region of the flux due to the presence of a higher energy resonance,
the resonance integral of the lower energy resonance may differ from that calculated
with the flat flux assumption.

A good deal of work has been carried out in the past for the case of overlapping
resonances, both for the homogeneous and heterogeneous mixtures. For example,
ScHeErRMER and CORNGOLD (1959) investigated the interference between resonances
in an infinite homogeneous medium using a variational technique and concluded that
the interference is negligibly small. The effect of overlapping resonances has been
investigated by FOELL ef al. (1963). Experimental work in this direction has been
carried out by BROWN ef al. (1962). An analytical expression has been derived by
AMSTER (1965) to estimate the level separation corrections to resonance integrals.
Copp and CoLLins (1963) calculated the influence of resonance overlapping on the
Doppler effect in dilute fast reactors. The same effect has also been treated by
HwaANG (1963) and GREEBLER (1963). HWANG (1965) has considered the interference
effect of overlapping resonances of a system having two or more resonance absorbers
in evaluating the Doppler coefficient. STEVENS and SMitH (1965) have written a
code—GAROL—for evaluating the resonance absorption taking into consideration
the effect of resonance overlap. Kier (1966) calculated that resonance integrals of
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mixtures of 28U and 232Th for the energy range 1-1000 eV using the RIFF-RAFF code
developed by Kier (1965). He found the resonance integrals of the mixtures were
2-4 per cent lower than the weighted resonances of individual absorbers. More
recently, DE LoACH and SuicH (1966) and CoHEN (1966) have studied the effect on
resonance capture of non-uniform spatial distributions such as might be introduced
by a nearby resonance at higher energy.

Our work is different from those referenced above as we neglect the overlapping
effects. In our investigation we study the interference between non-overlapping close
resonances in a heterogeneous lattice and try to present a unified analytical technique
for studying all aspects of the problem. Our procedure has been first to find the neutron
flux, as a function of energy and position, in the energy region near a given resonance
due to the ‘negative source’ contribution of a higher energy resonance. This is
done by utilizing the solutions of the age—diffusion equation.

Since we consider the interference only between two close resonances, it is assumed
that the flux takes its asymptotic value before reaching the first (higher energy)
resonance. Thus, the ‘flat source’ assumption is used in the calculation of the first
resonance integral. The second resonance (lower energy) integral is evaluated in the
absence and in the presence of the first resonance. The lethargy and spatially depend-
ent flux due to the presence of the first resonance and the corresponding first-
collision probabilities are used in the calculations of the second resonance integral.

The resonance integral, I, is defined as

I= 511-0 f ®,(u)o,(u) du (1)

where @y, is the flux in the fuel element which would exist at the resonance energy
in the absence of the resonance. @,(v) is the (spatially) averaged flux in the fuel
element in the resonance region. The lethargy integral in equation (1) is over the
resonance interval. In order to obtain an expression for ®@,(x) in the resonance, we
write the integral equations for ®(v) in two media, following CHERNICK (1956),
in the form given below (we assume a cell consisting of only two regions, fuel and
moderator):
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The summations > and Y are over the atoms in the fuel and moderator respectively.

3 . ¢ J . . . .
Z* and X/ are the total and scattering macroscopic cross sections respectively of the
i-th atom, while ¢,(x) and ¢,(1) are the fluxes in the fuel and moderator respectively.
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The maximum fractional energy loss of a neutron in an elastic collision with an atom
of mass 4, is (1 — o) where

) A — 1\2

[R— i 3
* (Ai + 1) ®
A, = In (1/a?). (4)

The collision probabilities P;(u) and P,(x), which enable us to relate the collision
densities X,(u)¢, (1) and Zy(u)dy(u) to the previous collisions at higher energy, are
defined as the probability that neutrons of lethargy u originating in region k(k = 1
for fuel, k = 2 for moderator) will make their first collision in the same region &
(probably after traversing other regions).

In order to obtain ¢,(u) from equations (2), so that the expression for I [equation
(1)] may be evaluated, it is customary to use either the NR or IM approximations.
In either case, the contribution to the integrals on the right side of equations (2)
Jrom the resonance region itself is ignored. Thus, the flux on the right side of these
two equations is replaced with its value above the resonance, i.c. the unperturbed
flux. If isolated resonances are considered, this unperturbed flux is a constant in
both space and energy (the potential scattering cross section in both fuel and
moderator is assumed constant). This leads to the ‘normal’ expressions for NR or IM
resonance integrals as given, for example, by DRESNER (1960). In our case, the
flux at the lower resonance is assumed not to have recovered from the perturbations
introduced by the higher resonance. Thus, a spatial average must be used and, in
addition, the spatially averaged flux is manifestly energy dependent. Expressions for
this spatially averaged, energy-dependent flux are derived in Sections 2 and 5. The
corresponding expressions for 1, both in the NR and IM cases, are derived.

Our case differs from the ‘normal’ case in still another respect. Namely, the
first-collision probabilities P (1) which appear in equations (2) are, in the ‘normal’
case, those derived from a spatially flat source distribution and tabulated, for example,
by CASE et al. (1953). In our case the collision densities are not flat, so that the
Py (u) must be calculated for the actual source distributions. These quantities, using
the fluxes calculated in Section 2, are presented in Section 3. In Section 4, the
effective ‘negative source’ strength, i.e. the reduction in slowing down density due to
absorption in the higher energy resonance, is obtained. In Section 6, the results of the
collision probabilities, the source strength, and the resonance integral calculations
are combined numerically to obtain interference corrections to the resonance integrals.
We find, in certain cases, the interference effect can be quite large.

It must be stressed again that a major effect is the distortion in the spatial distribu-
tion of neutron flux feeding the resonance due to the high-energy resonance. Correct
results cannot be obtained by treating the problem zero dimensionally.

Although our numerical results are restricted to one-dimensional lattices, similar
results can be obtained for the two- and three-dimensional cases by utilizing the
higher-dimensional solutions of the age equation given by MANNAN (1963) and
ZwEIFEL and MANNAN (1967) plus the approximate expressions for the first-collision
probabilities.
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2. SOLUTION OF THE AGE-DIFFUSION EQUATION WITH DELTA
FUNCTION SOURCE AND SINK OF NEUTRONS
Let us consider a slab cell of width 2b with a central fuel lump of width 2a. A
delta function negative source, S, at lethargy u = u, is added to the source term in the
age-diffusion equation. We also assume that there is no absorption except the
resonance. Thus, we write the age-diffusion equation as

u

— (P9 5% 00) = BB + 550 — S w9

The one-dimensional case can be treated either by the method used in the two- and
three-dimensional cases (MANNAN, 1963; and ZweIFEL and MANNAN, 1967) i.e. by
integrating over the singularity in dD/0x, or alternatively by measuring the distances
in units of diffusion coefficients, D(x). We adopt the latter approach. Let usintroduce
a new variable

= dx’
= . 6
=1 e ©
The boundaries x = a and x = b correspond to
y=o=-"
D,
and
a ,b—a
=f=—=4 7
y=48 ». "D, (
respectively. The flux is expanded in the following way:
$0) =22+ 3 0,w) cos . ®
n=1

We put the above value of ¢(y,u) in equation (5) and multiply by cos mmy/f and
integrate over the cell. Taking the Laplace transform with respect to u (4 = transform
variable), we obtain the matrix equation for the expansion coefficients as

3 8om - 3, o)A+ W] = S(m) — Selm) exp (~hug)  (9)

where
A — W(E)z [(wl ~ oy {sin {(m 4 n)m/B} n sin {(m — n)mx/ﬂ}} n w2ﬂ6mn}
B m-+n m-—n
(10)
_2 (S _ S \sin(mmf) 25 , "
S(em) ™ (51251 & 2232) m * 93P o (b
m=0,1,2,...,¢tc.
w, = A — &) (12)
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So(m) has exactly the same form as S(m) except that Sy, is the sink strength in the
fuel and Sy, = 0, where the subscripts 1 and 2 stand for the fuel and the moderator
regions respectively.

Solving equation (9) for 4,(%) and taking the inverse Laplace transform, we
obtain the expansion coefficients for the case in which there is no absorption during
slowing down. Since at high energies resonance absorption is the most dominant
absorption term during slowing down, the neglect of non-resonance absorption is a
good approximation.

We note that the roots of the following determinant, equation (13), multiplied
by u or (u — uy) will appear in the expansion coefficients a,(n) as negative exponents:

4 Ap Apz e Aoy,
0 Ay +4 Ay e Ay
0 Ay Ay + 2 T Ay

...................... =0 (13)

0 Anm Az o Ay + '1_

Equation (13) is an infinity by infinity determinant. Taking different values of n,
we have solved equation (13) for A. Table 1 shows that the roots converge rapidly

TABLE 1.—ROOTS OF DETERMINANTS OF SEVERAL NATURAL URANIUM—GRAPHITE
SLAB LATTICES*

Half-width of fuel = acm
Half-width of moderator = (b — a) cm
o,% = 10-75 barns  0,° = 45 barns

a b A A, 2y A
1126-789
0-5 1-0 1114-54 5905-7
1093-19 5905-1 10999-9
109275 58659 10954-9 218760
281-7
1-0 2 2786 1476:4
2733 1476-2 27499
2732 1466-4 27387 5469-0
125-2
15 3 123-8 656-2
121-5 656-1 12222
121-4 6517 1217-2 2430-7
70-4
20 4 69-6 369-1
68-3 369-0 687-5
68:29 366-6 684-7 1367-2
331
2:5 6 317 143-5
316 140-7 301-5
31-2 140-6 2981 571-8

* The first row for each value of (a, b) corresponds to usinga 2 X 2 approxima-
tion for equation (13). The second corresponds to a 3 x 3 approximation, and
$0 on.
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and the smallest root may be approximated by A4,;, i.e. by the solution of a 2 X 2
determinant. The actual value of the smallest root, 4;, is about three per cent less
than 4;;. Let us also note that the next higher root, 4,, is about five times as large as
4. Since the A; appear in the expansion coefficients as negative exponents, we can
neglect all the terms involving A; except for i = 1. In addition, we have found by
considering the one-speed case (MANNAN, 1963) that the first two terms in the trigono-
metric series give an excellent representation of the flux. Thus, only ay(x) and a,(x)
are needed:

(v, u) ~ ‘15(“—) + ay(u) cos ’;% (14)

where

i, for—a<x<a
Dl

y= _ (15)
—a——l—x a, for a<<x<b.
Dl D2

The expansion coefficients are*

ag(u) = S©) — A—*;?@ (1 — exp —(iyu)

11

— H(u — ug) {SO(O) — 208 (1 — exp [—au — ugl)  (16)
and
a,(u) = S(1) exp (—Au) — H(u — ug)Sy(1) exp [—2,(u — u,)] an
where

0, for u < u,

H(u — ug) = {1, foru >u, (13)

is a unit step function.

The terms containing exp (—Au) can be neglected. The term containing
exp [—4,(u — u,)] will be important only when A;(u — 4,) is small. For widely
separated resonances, A,(u — #,) at the second resonance would be large, and
consequently exp [—A4,(# — #)] — 0, i.e. a, — 0 and as expected the flux would be
constant in lethargy and in space. The flux above the second resonance becomes
space and lethargy dependent due to the presence of a close first (higher energy)
resonance only.

*As u — o0, a,(u) should approach twice the result of equation (35), as can easily be seen from
neutron conservation agreement. The difference between that equation and our solution

Ao, S(1)
Ay

is due to that approximate (2 X 2 matrix) solution of equation (9).

S0) —
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3. CALCULATION OF THE FIRST-COLLISION PROBABILITIES

The first-collision probabilities are usually calculated assuming a flat source
distribution. We derive expressions for the first-collision probabilities for source
distributions represented by the spatially dependent flux, ¢é(y, #), shown in equation
(14). The probability, P;(u), that a neutron of lethargy u originating in the lump
(—a < x" < a) of region 1 will make its first collision anywhere in the same region 1
of the slab lattice has been calculated by MANNAN (1963), who obtains (neglecting
flux anisotropy)

+3 ﬁ“mwmwmwam—zww»+%m»

=)
+ o sin («a){yy'(n) — p/(m}] (19)
where E,(x) is defined as (CASE et al., 1953)

E.(x) =J;lu"“2 exp —(x/u) du (20)
and
dy = 2a

d, = 2 —a)} @0
1y exp (lm/t) dt

’/’1(") = /2t2 (22)
1* exp —(Linft) dt

pi'(n) J ST (23)

' __ 7TD2
"~ Dya + Db — a) (24)
b= 1" srax (25)

Lin=(n+ DdyX, + nd, X,
i = (n + 1)(d:Zs + di2) . (26)
lin = (ndy 2y + (n + DdiZ,

Similarly, we find the probability, P,(1), that the neutrons of lethargy u originating

in the moderator lump (a < x’ < 2b — a) of region 2 will make their first collision
in the same region 2 anywhere in the lattice.
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1 _ ao(u) , ’ ,
Py(u) =1 2d222$2,: ,,2 {E3(lln) 2E4(1y,) + Es(l,, )}:I
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+ go“l—(z“zi)j‘zs—e [Safcos B(2b — a) + cos fa}{II,(n) — 2M,(n)

+ Iy(m)} + p'{sin p'(2b — a) — sin f'a}{Il,'(n) — II;'(n)}]
4y AOELY [Sy{sin f'(2b — a) + sin Ba}{IT,(n) — 20T,(n) + My(n)}

n=0 2d2$2
— B'{cos B'(2b — a) — cos Fa}{Ily(n) — Ty (m)}] @7)
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=5 (5, 28
ﬂ (Dl Dz) ( )
P= /% (29)
2b—a
b = 2(b 1— a) f $(x') dx’, (30)
wofgspe o
1,2 o
I0,/(n) = J; t e;p2 —i_(l[;,:g/ti) dt , .
and

L, =@m+ 14X, + ndy2,
) = (n + D(d 2, + ds2s) (33)
i, = ndZ, + (n + 1d,Z,

It may be noted that the first two terms of P;(u#) and P,(u) are exactly the same as

derived by ROTHENSTEIN (1959, 1960) with a flat source assumption. The remaining
terms are due to the presence of the cosine term in the flux.
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4. CALCULATION OF THE STRENGTH OF THE SINK

The strength of the sink, S, is given by the rate of adsorption of neutrons per unit
volume in the fuel element due to the first (higher energy) resonance.

So = Nlg,ey 34

where N is the number of absorber nuclei per unit volume of the fuel; 7, the resonance
integral defined in equation (1); and ¢,y is the asymptotic flux.

— q(Vy + 1)
fuss Vi€iZp1 + VoboZips (33)

where ¢ is the slowing down density, ¥, Xp; and V,, Zp, are the volumes and macro-
scopic potential scattering cross sections of the fuel and the moderator respectively.

The resonance integral I, for the two extreme cases, can be found easily. When the
maximum energy loss in a collision with an absorber atom is greater than the practical
width, the interval over which the resonance cross section is larger than the potential
cross section of the resonance, the narrow resonance approximation is used. In
this case the energy-dependent flux inside the integral is taken outside the integral
sign and the asymptotic value is used. Let us assume that the fuel elements may
contain U, Th, and O atoms only. The resonance integral for the i-th absorber,
Iz}, is found as (MANNAN, 1963)

o, (w)Py(u) du
Bs (Y + 2™ 4 2%

—f 0, (u)P:%(u) du +J o, (w)du. (36)
RES RES

When the practical width is larger than the maximum energy in a collision with
the absorber atom, the infinite mass (IM) approximation is used. But the NR

approximation is used for oxygen and the moderator atoms. For this particular case,

it is assumed o¥, o™ — 1 and we find

EV+ZT +2) - P W)(Es T+ ZgY)
_ f (EY + ™o, (u)Pr'(u) du
=+ T 30— Plo(u)(ZSTh 120" 37
In equations (36) and (37) the reciprocity relation (CAsE et al., 1953)
V1Z1(1 - Plo) = szz(l — on) (38)

has been used to eliminate P°(u). Here P,° and P,® are the collision probabilities
with a flat source assumption. Let us note that when i = Th, ZU = XY and when
i = U, 2™ = 3, upless there is an overlapping of resonances.

Ing' = (Zs¥ + =™ + ZSO)L

5. CALCULATION OF THE RESONANCE INTEGRAL OF THE SECOND
(LOWER ENERGY) RESONANCE
In order to calculate the second (lower energy) resonance integral in the presence
of the first resonance, we consider the first resonance as a delta function sink. The
solution of the age-diffusion equation with this approximation has been obtained
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in Section 2. The average fluxes ¢,(u) and @,(«) in the fuel, moderator, respectively,
are used in the calculation. The average first-collision probabilities P;() and P,(u),
derived in Section 3, due to the spatially dependent source distribution are used in
this case. In the absence of the first resonance, the uninterfered second resonance
integral will have the same form as shown in Section 4.

If the first resonance is at lethargy u,, the average fluxes ¢,(x) and $,(1) above the
second resonance are

951(") = ‘.ﬁo + ¢/ exp [—Au(u — o)), for u > u,

= Qasy, for u < uy (39)

52(“) = ¢o + ¢, exp [~ Ay (u — )], foru >u,
= Pasy, for u < u, (40)

where

1 _ Ay, S(1) _ N _ AuSy(1)
do = 2[8(0) 2~ H uo>{so<0) yS }] 1)
$' = —H(u — u )[A‘;j‘l’fl) + S:(:) sin (o oc):' (42)

P _ ApSe(1) _ SeDB_ . e

= = | 2220 SO, () ] @)

[The average fluxes ¢, and #," have been obtained by averaging the expression for
the flux given in equation (14).]

Let us assume that the second resonance is at lethargy u,. In the NR approxima-
tion we find the interfered resonance integral for the i-th absorber as

(Ingint = T )[ESURU(ur) + 2" Ren(u,) + Ze'Ry(1,)]
P (w)o,’(u) du i — Pyu))o,'(u) du ,
XJ‘RES (ZU + zTh + ZO V1$1 ;z [ESR ( r)]f (ZU + zTh + ZO)
(44)
where
_ (AN ) exp [—Ay(u — up)]
R@=ht () 1 Tt @

when In (1/af) > u, — u,.

— exp [—(u — uo)]}

Ry(u) = dusy{exp [—(u — uo)] — «

, exp [—(u — ug)] — exp [—An(u — up)]
+ (A — Ay — 1) o)
when _ In (1/af) < u, — u,.

R,(1) has the same form as R,(u) except that ¢,’ should be written in place of ¢,’.
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In the IM approximation, we obtain the interfered resonance integral for the
i-th absorber as
(IIMi)int — ZS()}EO(ur) Pl(u)o'a’(u) du

¢ rus (Y + =™ 30 — Pl(u)(ZSTh +3Y)

Vs ; (1 — Py(w))o,(u) du
Vidy 2 R"("')]f EV A+ L) — P)Es + Z6Y)

6. CALCULATION AND DISCUSSIONS

The cross sections at the resonances have been calculated using the Breit-Wigner
one-level formula. The integration over the resonances have been performed numeri-
cally using Simpson’s rule. The range of integration has been taken six times in
practical width of the resonance. No correction has been made for the adsorption
in the wings of the resonance. It has been shown (NORDHEIM, 1961) that even when
the range of integration is five times the practical width the wing correction is less than
a few per cent. The potential scattering cross sections and resonance parameters used
in the calculations have been taken from Nordheim. All the numerical results were
obtained on The University of Michigan IBM 7090 computer.

In Tables 2-6 we have shown the resonance integrals of several pairs of resonances
for different lattices. The second (lower energy) resonances have two values for the
resonance integral, one assuming no absorption of neutrons during slowing down
before reaching the resonance and the other assuming a delta function sink above it.
Therefore, the absorption rate by the second resonance in the absence of the first
resonance is

+ “n

pr = 1N {(Dunint (48)
where ¢, is the asymptotic flux above the second resonance, which has been reduced

TABLE 2.—RESONANCE INTERFERENCE BETWEEN THE 116:5 eV AND 102-5eV
RESONANCES FOR 23*U-GRAPHITE CELLS

Thickness of the absorber lump = 2a4. Thickness of the moderator lump = 2(b — a)

2a 2(b - a) EO (I)unlnt (I)int (I)int — (I)unint x 100
(cm) (cm) V) (barns) (barns) (Dint P

1165 0-136624
10 9-0 2900018 —0-032023
102-5 0-175556 0-180799

1165 0-117069
20 18-0 6-197581 —0-062636
102-5 0-134082 0-142941

116:5 0-117076
2:0 28-0 6:592241 —~0-103103
102:5 0-134096 0-143560

1165 0-106046
40 260 0-220431 —0-098395
102:5 0-126165 0-138980

116-5 0-106046

40 360 11-637581 —0-096810
102-5 0-126164 0-142780
1165 0-103780

50 450 18:543231 —0-036179
102-5 0-150339 0184563




150 M. A. MaNNAN and P. F. ZwErFEL

TABLE 3.—RESONANCE INTERFERENCE BETWEEN SEVERAL PAIRS OF RESONANCES
IN A 23¥[J-GRAPHITE CELL

Thickness of absorber = 2 ¢m. Thickness of moderator = 18 cm

E, (I)unint (I)int (I)int - (I)unlnt % 100
V) (barns) (barns) (Ding P
90-0 0015188

0-493352 —0-013194
813 0-088780 0-089220
208-5 0-068054

4-862141 —0-037883
189-6 0-059805 0-062861
274-0 0038607

1-393043 —~0-056080
264-5 4-757314 x 1073 4-835669 x 10~
411-0 0-01833

0-801507 —0-027134
3985 0015957 0-016086

TABLE 4.—RESONANCE INTERFERENCE BETWEEN SEVERAL PAIRS OF RESONANCES IN A
UQ,-HEAVY WATER CELL

Thickness of absorber = 1-0 cm
Thickness of moderator = 3-0 cm

E, (Dunint (Dine (Diat — (Dunint % 100
V) (barns) (barns) (D P
90-0 0:022161
—3-796641 —0-036736
81-3 0-138441 0-133377
208-5 0-102702
—4-759987 —0-046174
189-6 0-112919 0-107788
291-6 0-048700
—2:251708 —0022454
274-0 0-058837 0057541
411-0 0-028091
—1-085112 —0-011338
398-5 0-024579 0-024315

by an amount equal to absorption by the first resonance, and N; is the density of the
absorber atoms in the fuel. The absorption by the second resonance in the presence
of the first resonance is

Py = $2N (Dt (49)
where &, is the average flux which would be present at the second resonance if the
resonance were not there. (/) is the interfered resonance integral given by equations
(44) or equation (47). Let us define

py — p’
b h 50
P o (50)

as the ratio of excess capture due to the interference to non-interference capture.
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TABLE 5.—RESONANCE INTERFERENCE BETWEEN SEVERAL PAIRS OF RESONANCES IN
A 22Th—GRAPHITE CELL

Thickness of absorber = 2 cm
Thickness of moderator = 18-0cm

E, (Dunint (Dint (Dint — (Dunint % 100
(V) (barns) (barns) (Dint p
23-48 0-650028
43-312819 —0-081550
21-84 0-568972 1-003704
121-0 0-189870
4763815 —0-065327
113-15 0-174218 0-182933
129-4 0-079632
7-213855 —0-007347
128-5 0-012501 0-013473
203-0 0-087732
3-601960 —0-045953
199-8 0-067155 0-069664
4134 0-033996
1-23086 —0-015349
402-8 0-023351 0-023642
465-0 0-033140
1-277404 —0-016149
4564 0:029775 0-030160

TABLE 6.—INTERFERENCE BETWEEN RESONANCES IN A 2*2Th-HEAVY WATER CELL

Thickness of absorber = 2:0cm
Thickness of moderator = 6-:0 cm

Eo (I)\mint (I)lnt (I)l.nt - (I)unint % 100
(V) (barns) (barns) (Dint P
23-48 0-630786
—2-837988 —0-03323
21-84 0-551959 0-536727
121-0 0-187481
—1-723837 —0-018950
113-15 0-171990 0-169076
129-4 0078597
0-483584 —0-003332
128-5 0-012371 0-012432
203-0 0-086629
—0-410150 ~0-008242
199-8 0-066294 0-066023
371-0 0-038097
—0-270201 —0-004902
366-0 0-043781 0-043663
4134 0-033575
—0-728074 —0-008029
402-8 0-023053 0-022887
465-0 0-032739
—0-522162 —0-006460

456-4 0-029407 0-029254
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From the tables we may observe that the interference is larger in thicker lumps.
It is also found that the interference depends upon the resonance integral of the higher
resonance, which is proportional to the strength of the sink, and also upon the lethargy
separation between the first and second resonance. It may be observed that the
interfered resonance integral is larger than the resonance integral with a flat flux
approximation in the graphite moderated cells, i.e. defining

AI = (I )int - (I)unint'

A is positive for the graphite-moderated lattices, while for the heavy-water lattices
Al is generally a negative quantity. But this should not give one a wrong impression.
The presence of a higher energy resonance decreases as expected the absorption by
the second resonance in both the graphite and heavy-water-moderated lattices
as the negative value of p shows clearly.
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