POSITIVE PARITY LEVELS IN \(^{36}\)S OBSERVED IN THE \(^{37}\)Cl(d, \(^3\)He)\(^{36}\)S REACTION*

W. S. GRAY, T. WEI, J. JÄNECKE and R. M. POLICHAR
Cyclotron Laboratory, Department of Physics,
The University of Michigan, Ann Arbor, USA

Received 23 January 1968

Transitions to the \(^{36}\)S ground state and excited states at 3.30, 4.57, 6.51, 7.11 and 7.69 MeV were observed in the reaction \(^{37}\)Cl(d, \(^3\)He)\(^{36}\)S at a bombarding energy of 28.9 MeV. Using distorted wave analysis, \(l\)-values and strength coefficients \(C^2S\) were extracted from the measured angular distributions. The results are in reasonable agreement with calculations by Glaudemans et al.

The nucleus \(^{36}\)S\(^{20}\) is interesting from the shell model point of view. The neutron number 20 corresponds to a major shell closure, and one expects among the low-lying levels positive-parity states with configurations resulting from the coupling of four proton holes in the 2s-1d shell. The experimental information previously available for this nucleus has come from an unpublished investigation of the \(^{34}\)S(t, p)\(^{36}\)S reaction [1]. We have studied the \(^{37}\)Cl(d, \(^3\)He)\(^{36}\)S reaction in order to identify levels in \(^{36}\)S formed by the removal of an additional proton from the ground state of \(^{37}\)Cl, which presumably has a predominant three-hole configuration.

A carbon-backed target consisting of NaCl enriched to more than 99\% in \(^{37}\)Cl was bombarded with 28.9 MeV deuterons from The University of Michigan 83-inch cyclotron. In most cases, the \(^3\)He ions were detected either in nuclear emulsions following magnetic analysis, or in a surface barrier counter telescope used in conjunc-

* This work was supported in part by the U.S. Atomic Energy Commission.

Fig. 1. Angular distributions measured for transitions in the reaction \(^{37}\)Cl(d, \(^3\)He)\(^{36}\)S at \(E_d = 28.9\) MeV leading to states in \(^{36}\)S. The solid lines are predictions from the distorted wave calculation discussed in the text.
tion with a pulse multiplier for particle identification. Additional forward-angle data were taken with a position-sensitive detector placed in the focal plane of the magnetic spectrograph. We observe transitions to the 36S ground state and excited states at 3.30 ± 0.015, 4.57 ± 0.015, 6.51 ± 0.015, 7.11 ± 0.020 and 7.69 ± 0.025 MeV*. Our excitation energies are in good agreement with those obtained for the first two levels by Puttaswamy and Yntema in a recent 37Cl(d, 3He)36S experiment [2].

The measured angular distributions are shown in fig. 1. The solid lines are local, zero-range distorted wave predictions computed with the Oak Ridge code JULIE. The deuteron optical parameters were taken from the average set of ref. 4 and the 3He parameters are those of ref. 5 for 40Ca.

* These energies have been corrected from preliminary values reported in ref. 3.

Our results are summarized in table 1. For completeness the levels quoted in ref. 1 are included. Only the ground state and the level at 3.30 MeV are observed in both the (t,p) and (d, 3He) experiments. The extracted strength coefficients C^2S are listed together with the sums for pickup from the three $2s$-$1d$ orbitals. The single-particle cross sections were calculated with the usual bound-state radius and diffuseness parameters taken to be 1.20 fm and 0.65 fm, respectively. This choice of bound-state parameters and our use of the local and zero-range approximations lead us to expect that the strengths we obtain are upper limits to the true ones [7].

Levels with configurations $(2s_\uparrow)^n(1d_\uparrow)^m$ have been calculated for nuclei from 26Si to 40Ca by Glaudemans et al. [6]. For comparison the levels predicted for 36S are given together with the resulting strength coefficients C^2S for pickup of a $2s_\uparrow$ or $1d_\uparrow$ proton from 37Cl. The experimental

Table 1	Summary of the known level structure of 36S, compared with the predictions of Glaudemans et al. The probable dominant configurations and strength coefficients C^2S are deduced from the present experiment.							
34S (t,p)36S	37Cl(d, 3He)36S present work							
E_x, J^π	E_x, J^π	t_p	probable dominant configuration	C^2S	E_x, J^π	$C^2S(d_\uparrow)$	$C^2S(s_\uparrow)$	$C^2S(d_\uparrow)$
0.00, 0$^+$	0.00, 0$^+$	2	$(d_\uparrow)^{-4}$	1.41	0.00, 0$^+$	0.91		
2.00, 0$^+$	3.30, (1,2)$^+$	0	$(d_\uparrow)^{-3}(s_\uparrow)^{1}$	1.14	2.83, 2$^+$	1.04		
2.89, 2$^+$	3.30, (1,2)$^+$	0	$(d_\uparrow)^{-3}(s_\uparrow)^{1}$	1.14	4.28, 0$^+$	0.05		
3.38, 0$^+$	4.57, (1,2)$^+$	0	$(d_\uparrow)^{-3}(s_\uparrow)^{1}$	1.35	5.75, 1$^+$	0.70	0.03	
4.30					6.23, 2$^+$	0.12	0.13	
6.51, (1,2,3,4)$^+$	2	$(d_\uparrow)^{-3}(d_\uparrow)^{-1}$	0.28					
7.11, (1,2,3,4)$^+$	2	$(d_\uparrow)^{-3}(d_\uparrow)^{-1}$	0.61					
7.69								
$\sum C^2S(d_\uparrow)$	= 1.41	$\sum C^2S(s_\uparrow)$	= 2.49	$\sum C^2S(d_\uparrow)$	= 0.89			
We are grateful to R. M. Drisko for making the distorted wave code JULIE available to us. Useful discussions with K. T. Hecht and P. J. Ellis are gratefully acknowledged.

References