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Characteristic Manifolds in Nonequilibrium 
Hydrodynamics* 
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1. INTRODUCTION 

We shall discuss two points: (I) a mathematical theory for determining the 
characteristic manifolds in nonequilibrium (relaxation) hydrodynamics, 
which is based on the Lichnerowicz concept of (0, Cm) functions (cf. p. 5[1]), 
rather than the ad hoc conditions A and B of our previous paper 
(cf. p. 113, [2]); (2) the correction of an erroneous statement in our previous 
work (cf. p. 117 [2]). 

2. THE THEORY OF CHARACTERISTICS 

We define the (P, Cm) L’ h rc nerowicz class of functions by 

DEFINITION la. A function F(xj, t),j = 1, 2, 3, will be called a (Cn, Cm) 
function (with m > n) in the neighborhood of a three-dimensional differentiable 
manifold, S, , qf a Euclidean four-dimensional space, E, if: 

(1) the kth derivatives Ftk), k = n + l,..., m are continuous at all points of 
two open sets E - S&+j, E - Sk-J, and are uniformly continuous in the correspond- 
ing closed sets with finite jumps along the common boundary S, of these two sets 
(i.e. FfB), k = n + I,..., m are piecewise continuous OY F is piecewise Cm in E); 
(2) the kth derivatives F(“), k = 0, 1, 2 ,..., n are continuous in E, or F is Cn in E 
(note, F(O) = F). 

DEFINITION lb. When conditions (1) and (2) are satisfied, we write 

FE (Cn, Cm). 

Now, we shall express the basic partial differential equations of relaxation 

* This work was done under grant GP 5758 of the National Science Foundation 
administered by the office of Research Administration of the University of Michigan. 
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hydrodynamics. Let p, q, s, vj , T denote the density, relaxation variable, 
entropy, velocity vector, and temperature, respectively. Also, we introduce 
A, B, C, F, G which are known Cl functions of p, q, s (cf. p. 271[3]). Note T 
is a known C2 function of p, q, s. Again, let xi(j = 1, 2, 3) denote a system of 
Cartesian orthogonal coordinates in Euclidean three-space, I?s ; let t = x0 be 
the time variable, ~(a = 0, 1,2,3) denote all these variables and 

We introduce the variables 

DEFINITION 2. 

q* = at9 + d a,q, p* G atp + V$ ajp, (2-l) 

s* = as+v*as t 3 ’ Or = atvj + vkakvj, (2.2) 

g,9* 
K’ 8 s a,vj, (2.3) 

where K is the relaxation scalar. These variables will belong to the rollowing 
classes. 

DEFINITION 3. 

vj , p1 9, s E (Cl, C3), 

vi*, p*, 4*, s*, v”, K E (CO, P), 4” E (Cl, C2). 

(2.4) 

(2.5) 

REMARK. The class of q*, s*, 6, p*, vi* is consistent with that of q, s, vj , p 
(cf. Definition 2). 

By differentiating the basic equations of continuity, motion, and energy of 
a nonheat conducting, perfect fluid of relaxation hydrodynamics (cf. p. 106[2]) 
and using Definition 2, we obtain the quasilinear second-order system. in 
I’, 92 so Vj P P*7 9*, s*, @, g 

a,p* + a,(pq = 0 (2.6) 

qpq-) + qA ajP + B ajs + c a,q) = 0 (2.7) 

a,(Ts*) - 4* a,q - 4 auq* = 0 (2.8) 

a, r(P)* + $ P* + I’%* + Gq*l = 0. (2.9) 
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In order to determine the characteristic three-dimensional manifolds S, 
of (2.6)-(2.9), we shall briefly study the Cauchy problem for this system 
along some given S, . By such a study, we will determine the relation 
between the various unknown normal derivatives of 

First, we introduce 

p, q,s, v;, p*, q*, s*, i&r". 

DEFINITION 4. If 3, is given by the C2 function qf xa 

$(x3 = c, 

where c is a constant then the space-time and space unitized normals, n, and 
fij of S, , respectively, are 

REMARK. Note, by definition, & is @/axi, x0 is t and, & is @/axe (see the 
notation introduced before Definition 1). Further, if gjk is the metric tensor 
of E, , then 

CD Es (# + gj”c#j$k)l~2 (2.11) 

6 5% (gjyj$p. (2.12) 

Again, if tJa = 1, 2, 3) denote any three mutually orthogonal unit vectors 
a 

which span 3, at any point and if g,, is the metric tensor of E, then 

g+Qz,, = ton0 + gjkfjn, = 0. (2.13) 
a a 

We decompose the partial derivatives of any of the quantities of Definition 3 
(represented by U) into their normal and tangential components by means of 
the following relations 

DEFINITION 5. 
(‘U, ‘F, y , ‘y 

(2.14) 

(2.15) 

REMARK. ‘U, ‘Cg, and their tangential derivatives tQ,‘$7, t”a’UB , are 
a a ama 
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known along & in the Cauchy problem. Further, if u E (CO, Ca) then 
‘U, ‘U, are unknown along sa; if u E (Cl, C3) or u E (Cl, Cs) then ‘U (the 
normal derivative of U) is known but ‘Us (the normal component of the 
second derivatives of u) is unknown (cf. Section 3[4]). 

Further, we introduce 

DEFINITION 6. 

(2.16) 

(2.17) 

Now, we find the relations between the derivatives of u and u*. 

THEOREM 1. If u E (Cl, P) w u E (Cl, C2), then 
dap* =L'ugnB+CLfTians+Ivia,u a a 

(2.18) 

(2.19) 

PROOF. The proof follows by direct expansion of a,@, + via,) u, use of 
Definitions 5 and 6, Young’s theorem (cf. p. 145 [5]), and the determination 
of the scalar products of the resulting equation with np, 28. 

c 
We are now in a position to discuss the discontinuity theory for the deriva- 

tives of the variable u. First, we assume the variable u is such that along some 
three-dimensional surface S, , u E (Cl, C2) or u E (Cl, Ca). We introduce 
(where brackets denote the jump) 

DEFINITION 7. (U, U, , y, yfl) 

u SE% [r-q, u, SC [‘Up], (2.20) 

pr’p ykl Es ry. (2.21) 

In discontinuity theory the nonvanishing jumps are associated with the 
unknowns of the Cauchy problem. From our previous theory and Definition 3, 
we obtain 

THEOREM 2. If u E (Cl, C’s) or u E (Cl, Cz), then 

u=u=u,=o (2.22) 

ram24:j = I,. (2.23) 

PROOF. Relations (2.22) follow from the fact u E (Cl, C3) or II E (Cl, C2), 
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DEFINITION 7, and the fact that only ‘Us is unknown for the corresponding 
Cauchy problem. Equation (2.23) follows from (2.22), after forming the 
jumps of (2.18), (2.19). 

3. THEJUMP RELATIONS IN RELAXATIONHYDRODYNAMIC 

We shall now form the jumps of (2.6)-(2.9). 
First, we note that p, q, S, vi are (Cl, C3). We define (cf. (2.15), Definition 

7, and (2.22) of Theorem 2) 

DEFINITION 8. 

w,Pl = nosfi (3.1) 
[t3,iQ] = n,+Sa (3.2) 

P&d = naQp (3.3) 
[&&p,] z naVaj. (3.4) 

Hence, by use of (2.23), and Definition 3 we find that (2.6)-(2.9) become 
(as [a&/)*] is L[&J] and p is q*/K) 

LP, + pVjn, = 0 (3.5) 

pLV,j + (APj + BSj + CQj) n, = 0 (3.6) 

L(TS, - 2qQJ + g2[8,K] = 0 

KC&, - q*[8,&] + F (9 + FS, + GQB) = 0. 

We show that 

(3.7) 

(3.8) 

THEOREM 3. If the classes of p, s, q, uj , K, etc. are determined by Dejnition 
3, then scalars k, P, Q, S, V exist so that 

[&K] = kn, (3.9) 
P, = Pn, ) Qti = Qn, 9 s, = sn, (3.10) 

V-j = VTl$j. (3.11) 

PROOF. By use of Definition 3, we obtain (3.9). Use of Young’s theorem 
leads to 

P&l4 = P,k~l, 
where u is p, q, s, wi of Definition 3. Hence, by (2.14), (2.22) 

n,Ua = naUw (3.11a) 
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Forming the scalar product of (3.11a) with P, we obtain (3.10). Substituting 
(3.9), (3.10) into (3.6) leads to (3.11). 

By use of Theorem 3, the system (3.5)-(3.8) reduces to 

LP + pV(nj?z~) = 0 

pLV+AP+BS+CQ=O 

L(TS - 2cfQ) + q2k = 0 

LQ-qk+;(F+FS+GQ)-0. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The system (3.12)-(3.15) is a linear homogeneous set of four equations in 
the five unknowns P, Q, S, V, k. 

Now, we show 

THEOREM 4. If g(or q*/K) is of class (Cl, Cz) then 

LQ = qk 

PROOF. The proof follows directly from 

(3.16) 

(3.17) 

by use of (3.9), and (2.23), when U, is replaced by (3.10). 

REMARK. The assumption of Theorem 4 is part of the Definition 3; the 
assumption merely further restricts the class of permissable q. 

Next, we define the coefficients 8, 6 by 

DEFINITION 8. 

d=GT 

6 ES gF. 

Further, we define the speeds (cf. p. 115[2]) ca2, cm2 and c2 by 

(3.18) 

(3.19) 

DEFINITION 9. 

3 = A - EC m- p2F ’ co - 2,A-- c2 
p2G’ 

c2z5E-. 
ninJ 

(3.20) 

REMARK. By use of (2.11), (2.12), (2.16), we see that c2 is 

(dt + v%W* 
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Finally, we prove 

THEOREM 5. If the classes of p, q, s, vi , s*, q”, K, q aregiven by Definition 3, 
then the characteristic manifolds S, of relaxation hydrodynamics are determined 

by 

tqc” - co2) + 6(c2 - c,2) = 0. (3.21) 

PROOF. By substituting (3.16) into (3.14), (3.15), we obtain 

F+FS+GQ=O (3.22) 

TS-cJQ =O. (3.23) 

Using this last relation to eliminate S in (3.22), we find 

F+(+,-+G)Q=O. (3.24) 

Eliminating V from (3.12), (3.13), we obtain 

L2P - (n$)(AP f BS + CQ) = 0. (3.25) 

Replacing S by gQ/T and (-P) by p2Q(GqF/T-l) C-l in (3.25), we find 

( L2 
7 - A) (TG + qF> + qE + E = 0. 
njn3 P’ P2 

(3.26) 

By factoring q and T from the proper terms of (3.26) and using Definitions 
8 and 9, we obtain (3.21). 

4. A CORRECTION 

In our previous paper [2], we stated (on p. 117 below (2.58)) “where ‘c, 
is obtained by replacing A by -A in c, of (2.47”. This statement is in- 
correct; ‘c, is c,. The error is due to the fact that the first term of (2.59) 
should be (L2 - A@) P. It follows that the characteristics are the manifolds 
along which the Cauchy problem has no unique solution, as in the usual 
theory. This means that two of the statements on p. 103 must be revised 
(lines l-3, 25-29). 
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