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ABSTRACT

This study presents an analysis and expands the understanding of the characteris-
tics of the periodic response from an Automatic Phase Control (APC) system that may result
from:

a) A constant-frequency input signal within the system capture range

when the system gain is e;cessive (locked instability oscillations),
or

b) A pair of constant-frequency input signals, both of which occur

simultaneously within the passband of the APC system (forced oscilla-
tions).
The absence of any additive random signal, such as noise, is assumed.

The above cases are treated using the same technique., First, the nonlinear differen-
tial equation is determined which describes the APC system under excitation. Second, a
periodic system response function is assumed and is expressed as a Fourier series. Third,
this periodic series expression is inserted into the system differential equation and the
nonlinear term(s) is expanded. Finally, the dependence of the arbitrary coefficients of the
assumed response function on the system parameters is found by equating the equal-frequency
terms that result. Although only the constant and first harmonic terms of the assumed Fourier
series are retained for the complete set of calculations, the relationships thus determined

agree closely with experimental observations.

A principal result for the first of the two excitations is that minima of both
system gain and phase shift are required for oscillation, The oscillation frequency, if
oscillations occur, will be that (constant) frequency at which the transfer function of the
system's low-pass filter has a phase shift of -n/2 radians. The magnitude of the periodic
system response is an even function of the difference between the input signal frequency and
the system oscillator's open-loop frequency. Its maximum magnitude occurs when the difference
in these freguencies is zero, and decreases rapidly for increasing absolute values of the
difference frequency, It is also shown that the static system phase error always exceeds
in absolute value the error that would exist if no oscillations occurred. Finally, a tech-

nique is discussed for determining the APC system gain and the magnitude of the transfer
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function of the system's lowpass filter at the frequency of oscillation from threc easily
performed measurements,

Forced oscillations may occur in any APC system, and the analysis is considerably
more complex than with the single excitation. The frequency of oscillation is related to
the difference in the frequencies of the two input signals, e.g., it may be equal to an
integer multiple or submultiple of this difference, The magnitude of the response is a func-
tion of the system lowpass filter characteristic, the system gain, difference in the fre-
quencies of the two input signals and their amplitude ratio, and the difference in the
frequencies of the input signal having greater amplitude and the open-loop system oscillator
signal., This dependence is portrayed using several computer-evaluated examples since a
direct calculation is not feasible, The system phase error is affected somewhat by the
second input signal, but is primarily dependent on the initial frequency difference as in
the single excitation case.

The applications of this study are a) to provide the designer with a means for
analyzing the susceptibility of his APC system to a locked periodic response, and b) to pro-
vide guidelines for the control of the locked periodic response. An example of the former

is presented in detail in this study, and two examples of the latter are reviewed briefly.
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1, INTRODUCTION

1.1 Statement of the Problem

The response of the Automatic Phase Control (APC) system to certain classes of
input signals with and without additive wideband noise has been studied extensively. Never-
theless, the many nuances in the analysis of this relatively simple nonlinear feedback
system reveal why some questions remain to be answered in greater detail., This study presents
an analysis and expands our understanding of the characteristics of the periodic response
that may result from:
a) A constant-frequency input signal within the system capture range
when the system gain is excessive, or
b) A pair of constant-frequency input signals, both of which occur within the
passband of the APC system, i.e., the secondary-signal interference problem,
The absence of any random signal, such as noise, is assumed for the purposes of this
study,
Before expanding this statement of the problem, it is helpful to review briefly
the operation of the APC system. The elements of the system are shown in the block diagram

of Fig. 1.1, In the usual analysis, a single input signal (also referred to as the reference

V2 E, sin [w t+6 ()] Phase Lowpass €(t)
+ Detector
VTE sin [0 t+6 ()] (Multiplier) Filter
s 0 5
Voltage-
controlled
Oscillator
V2 E cos [th + Bo(t)] (VCO)
Ey

Fig. 1.1 The automatic phase control system

Manuscript released by author December, 1964 for publication as a RTD Technical Report,



signal) is multiplied by the voltage-controlled, system-oscillator signal to produce an error
signal proportional to the sine of the phase difference between the two phase-detector input
signals. This error signal may then be modified by a linear lowpass filter, and, along

with a constant tuning voltage, used to control the system oscillator. When the APC system
is operating ideally, the system response function, e(t), (i.e., the output from the lowpass
filter) is related linearly to the instantaneous frequency of the reference signal. Since
the system oscillator is designed to have its instantaneous frequency related linearly to
e(t), the instantaneous phase difference between the system oscillator and the reference
signals must be constant, Thus, the APC system response, e¢(t), is said 'to track,'" "to be

synchronized with,'" or '"to be locked to" the reference signal frequency., The characteristics

of the lowpass filter greatly influence the performance of the APC system, Among other
things, the filter limits the system bandwidth and restricts the type of input signals which
the system can track satisfactorily. For further details concerning typical APC system
operation, the reader is referred to Refs, 1-12,

It is easy to understand why the APC system may be unstable for large system gains.
Since the system oscillator already effects one ideal integration in the feedback loop, it
is only necessary for the remainder of the loop to provide, at a finite frequency, an
additional phase-shift of -n/2 radians to produce potential instability. Indeed, the low-
pass filter usually introduces a substantial fraction, if not all, of the required, addi-
tional, negative phase shift, Stray circuit and/or component capacitance can also be
counted on to provide negativé phase shift,

If the APC system does have a total phase shift of ~m radians at a finite frequency,
then the same system having sufficiently large gain will be unstable. It is easy to show
(see Section 2) that, for some APC system designs, the system gain is proportional to the
amplitude of the input signal, Hence, in these cases, the system is large-signal-unstable
when sufficient negative phase shift is present.

This study demonstrates that the instability described above results in a periodic
system response which will be referred to as '"locked-instability oscillations," The
relations are determined among this periodic system response, the system phase error, the

system gain, the lowpass filter, and the difference in frequencies of the reference and

the open-loop system oscillator signals.

A periodic response function is also obtained, in general, when a pair of

constant-frequency input signals is present in the passband of an APC system, This oscilla-

tion results from the two input signals, in contradistinction to the locked-instability



oscillation of the previous case and as such represents the response to a periodic forc-
ing function. Therefore, no specific amount of phase shift and/or gain is necessary for
the periodic system response to occur, It also follows that the response is dependent on

the particular lowpass filter transfer function used; as a result, the influence of

specific transfer functions must be studied individually,

Several questions concerning the behavior of the APC system to the double input
signal case quickly arise. How does the performance of the APC system compare with that of
the conventional FM detector (the limiter-discriminator)? Can a periodic response exist at
a frequency not equal to the difference in the frequencies of the two input signals? What
maximum amplitude (if it exists) can the periodic response have for various ratios of the
input signal amplitudes as the difference in input frequencies is varied? How is the
periodic response affected by variation in the system gain?

This study analyzes the forced periodic response of the APC system to a pair of
constant-frequency input signals and answers the questions raised above, This is accomplished
by determining the relationship of the periodic response to the various independent para-
meters.

1.2 Review of the Literature

In 1949, J. Granlund (Ref, 13) analyzed the interference resulting from the
simultaneous reception of two frequency-modulated signals by the limiter-discriminator

FM detector. He employed quasi-stationary analysis of this co-channel interference problem

to show thaE the interference signal frequency was equal to the difference in the frequencies
of the two input signals, The magnitude of the interference signal was also shown to be
proportional to the difference of input frequencies for any fixed ratio of input signal
magnitudes. Granlund proved, both analytically and experimentally, that with proper
limiter-discriminator design, the stronger signal could substantially suppress the weaker

signal (30-db suppression with a 0,5-db difference in input signal strength). Although

his paper does not directly apply to the APC system, it is a related device and affords an
interesting comparison (see Section 4).

Most of the early applications of the APC system focused on the horizontal-sweep
and color subcarrier synchronization circuits in television receivers., Consequently,
numerous papers appeared in the early nineteen-fifties treating the acquisition and tracking
ability of the APC system to pulsed television synchronization signals (Refs, 1, 2, 14 and

15). Later treatments were concerned with:



a. Precision frequency control of high-power oscillators,
b. spectral purity exceeding the reference; e.g.,, selecting one
of many reference frequency harmonics,

c. tracking frequency changing references,
Papers, which appeared after the mid nineteen-fifties, described the APC system response
to signal-plus-noise environments, threshold effects, additional work on acquisition and
tracking, and transient behavior (Refs, 3-12 and 16).

The first mention of potential APC system instability for a constant frequency
reference with excessive loop gain was made by A, J. Viterbi in 1959 (Ref, 4)., He found

that, for a lowpass filter transfer function of the form

H(s)‘l"'s?"’l')"" (1.1

s2
where a and b are appropriate constants, the system would become unstable for sufficiently
high values of b, However, he did not pursue the matter to investigate the nature of
the system response when it is thus unstable.
In 1960, T. J. Rey published a paper (Ref, 6) in which he demonstrated that a
periodic response did occur for a constant frequency input signal within the system capture
range. He derived a pair of equations characterizing this oscillation and indicated that

the response is nearly sinusoidal for a system gain just in excess of the critical level.

In this study the same analytical techniques as Rey used were employed, but a somewhat dif-

&
ferent pair of equations were found. The significance of these equations has also been expanded.

The secondary signal problem was briefly considered by C. S. Weaver (Ref, 7) in

1961, He asserts, without proof, that an interfering signal affects the APC system pre-

ceded by a limiter and a standard FM discriminator similarly, That is, the stronger signal
{even if only incrementally) will completely capture the APC system. He shows that when
the interference signal is weaker than the signal to be tracked, the loop tracking range

is reduced, His results are obtained using étandard linear operational techniques on a
linearized APC system model, The results here do not overlap his, and are principally con-
cerned with the characteristics of the output response as a function of the various systenm
parameters.

1,3 Method and Topics of Investigation

The following technique is used to analyze both of the problems discussed in this

study. First, the differential equation describing the loop operation is written for the



system shown in Fig. 1.1, Second, a periodic response function (in the form of a Fourier

series) is assumed and inserted into the system differential equation. Finally, the

dependence of the arbitrary coefficients of the respomse function (the form of which has

been assumed) on the system parameters is found by equating terms of equal frequency.

(T. J. Rey (Ref. 6) used this technique for a portion of his analysis.) The first and

second steps of the above-described mathematical formulation are discussed in Section Z,
Section 3 contains a treatment of the locked-instability problem as a special

case of the interference problem, i.e., the case where the magnitude of the second input

signal is reduced to zero, The necessary and sufficient conditions for the occurrence

of a periodic response are discussed. The magnitude of the response is shown to depend

on the system gain, the difference in frequencies of the input and oscillator signals when

the system loop is opened, and the frequency at which the lowpass filter has a phase-
shift of -m/2 radians. It is also shown that the static system phase error always exceeds
in absolute value the error that would exist if no periodic response occurred. The
theoretically derived results are then compared with experimental results for a particular
lowpass filter.

The two-input signal problem is examined in Section 4, Since the character
of the periodic response is dependent on the transfer function of the lowpass filter, it
is necessary to examine specific examples, First the ideal-integrator case is analyzed
by a graphical technique. The results of this aid in understanding the influence of other
possible loqpass filters. The influences of three other lowpass filters are studied
using a digital-computer solution of the coefficient equations derived in part in Section 2
and concluded in the earlier portion of Section 4, This solution is evaluated by means
of the Newton-Raphson method for simultaneous non-linear equations.

Sections 5 and 6, respectively, consider experimental details and data (including
a comparison between an experimental and analytical study of a fourth filter), and some

potential applications and conclusions based on this study.

Appendix A briefly describes the mathematical basis of the Newton-Raphson method
used for the computations required in Section 4, while Appendix B provides the implemen-
tation details of the particular routine employed in this study. In Appendix C, the

two sets of Fourier coefficients required in Section 4 are derived.



2, MATHEMATICAL FORMULATION OF THE

SUSCEPTIBILITY PROBLEM

2.1 Derivation of the APC System Defining Equation

The well-known APC system model shown in Fig. 1.1 is characterized by an ordinary,
nonlinear, differential equation of arbitrary order, and hence its complete analysis is
impossible with present mathematical methods., The characteristics of the lowpass filter
can be shown to determine the order of the system differential equation., Thus, system

behavior is primarily a function of the lowpass filter,
Let us now consider the form of the system equation when the input signal

to the APC system consists of a phase-modulated reference signal of Er2 watts and a
phase-modulated secondary signal of ESZ watts, The combination may be, in general,

represented by

V2 Er sxn[wot+er(t)] +~/5'ES sin[w°t+es(t)] , (2.1)
where we, is the radian center frequency of the APC system oscillator under open-loop condi-
tions (when the oscillator input voltage is simply Et)' er(t) and es(t), respectively, are

phase functions of the reference and secondary signals, Tor example, if the reference signal

has a constant radian frequency of Wy with an initial phase angle of er, then
er(t) = (wr - wo) t+6 (2.2)
Es is set equal to nEr and the input signal is rgwritten as
V2 E. {sin[mouer(t)] +n §in[wqt+es(t)]} . (2.3)
The APC system oscillator signal may be expressed by

fo-Eo cos[u t+6_(t)] (2.4)



where ao(t) is the system phase error. This locally generated signal is multiplied by

the input signal in the phase detector to yield a voltage expressed by

k EE {}in[zwot + 0.(t) + 8 (t)] + nsinf2ut + 6 (t) + 8 (t)]
+ sinfe_(t) - o (t)] + n sin[e (t) - eo(t)]} , (2.5)

where km is the gain (or loss) constant of the multiplier and is dimensionally (voltage)'l.
Typically, the phase detector output is filtered (prior to the system lowpass filter) to

the extent that the sum terms in expression 2,5 may be neglected, It is thus convenient,
although not necessary, to view the phase detector as having an ideal lowpass filter output
with a gain km and a cutoff frequency higher than the highest difference frequency but lower

than the least sum frequency. In this event, the APC system lowpass filter input may be

expressed by

mro

kEEg {sin[er(t) - 0,(t)] + n sinfe (t) - eo(t)]} +K'EE (2.6)

where the last term is used to account for any constant offset generated in the multiplier,
k! is also dimensionally (voltage)-l.
Let the system lowpass filter have a transfer function H(w). Then the system

response, €(t), is, in practice, given by
e(t) = kaErEOH(O) + kmErEoH(w) {}in[er(t) - eo(t)]
+n sin[es(t) - eo(t)]:} . (2.7)

The system response is added to a constant bias voltage, Et; the resulting sum
voltage controls the instantaneous frequency of the voltage-controlled system oscillator
(see Fig. 1.1).‘ Since it is possible to design an oscillator whose frequency is linearly
proportional to the applied voltage, such a relationship will be assumed. Thus, the
instantaneous radian frequency of the system oscillator may be expressed as (from expres-

sion 2.4)

w * éo(t) =k [E, + e(©)] 0} , (2.8)



where ko is the gain constant of the system oscillator expressed in radians/volt and wé is

the zero-bias, radian frequency, Consequently, Wy the radian frequency of the system

oscillator under open-loop conditions, is equal to

wy = koEt + w(') R (2.9)
and so
eo(t) = koe(t) . (2,10)

Substitution of Eq. 2.7 into Eq. 2.10 produces
a = 'EF - : -
eo(t) kokmErEOH(O) + kokmErEo”(w) {sm[er(t) eo(t)]
+ 1 sin[es(t) - eo(t){} . (2.11)
If a differential phase function, ¢(t), is defined by
o(t) = 6.(t) - 6,(t) (2.12)
then Eq. 2.11 can be expressed alternately as

ér(t) - k k'E EH(0) = o(t) + k ok EE H(w) {sin[ut)]

+ nosinfe(t) + 6_(t) - er(r)]} ’ (2.13)

and, further defining,
G = kkEEHO |, (2.14)
Mw) = H@/MO) , (2.15)

ien Equation 2.13 becomes

kl
6.(t) - F:"G = 4(t) + G ﬁ(m){sin[:ﬁ(t)] + nsin[e(t) + 6(t) - er(t)]} . (2.16)



Equation 2,16 is the fundamental differential equation for the operation of the APC system
when all noise effects except the interfering secondary signal are neglected.

In concluding this section, it is useful to point out that the order of Eq. 2.16
exceeds by one the degree of the denominator of H(w). Thus, the second-degree transfer
function given by Eq. 1.1 and analyzed by Viterbi (Ref, 4) results in a third-order dif-
ferential equation, Even this complexity precludes analysis by the conventional phase-plane
technique. The APC system properties with various lowpass filter combinations and with n
equal to zero have been extensively studied (see, for example, Refs. 3, 4, 5, 9 and 17).

2.2 Alternate APC System Defining Equations

In certain applications of the APC system, a balanced phase detector is used
which is nearly insensitive to input-signal amplitude variation (Refs. 1 and 2). In this
case, Eq. 2.16 is invalid because the loop gain constant expressly contains the reference-
signal amplitude, and the secondary-signal amplitude is seen to modulate the loop gain
periodically, To account’ for these effects, another trcatment of the input signal can

be employed; this is shown by the following development,

The input signal given by expression 2.3 is repeated here for convenience

V2 E {sin[mot +6 (t) + n sinfut + es(t)]} . (2.17)

By applying trigonometric identities, it is not difficult to show (see, for example, Ref. 18)

that Eq. 2.17 is equivalent to
&

5 - . -1
~/7'ER‘/1+n +2n cos[es(t) er(t)] s1n{§°t + er(t) + tan

nsinf[6_(t) - 6_(t)]
2 3 } (2.18)

1+ncos[es(t) - er(t)]

This expression for the input signal is illuminating in two ways. First, the dependence
of the input signal amplitude variation onn and on the instantaneous phase difference of the
two signals is seen more specifically than in expression 2.17. Second, the instantaneous
frequency of expression 2,18 is obtained by differentiating the argument of the sine
function to yield

n o+ cos[es(t) - er(t)]

W+ 6._(t) + n[6_(t) - 6_(t)] . (2.19)
o r s r 1+n242n cos[es(t) - Br(t)]




Expression 2,19 indicates that the instantaneous frequency is influenced, as is the amplitude,
by n and the differences in phase and frequency of the input signals. These observations

suggest introducing another phase function y(t) defined by

v(t) = e (t) - 6.(t) (2.20)

which permits rewriting expressions 2,18 and 2.19, respectively, as

V2 Erv/ﬁ+n2+2n cosy(t) sin [}ot + 6 (t) + tan~! %:%3%%é%%?72] (2;21)
and
wy * 6_(t) + nj(t) LZcosu(t) : (2.22)

1+n2 + 2n cosy(t)

If the APC system is made insensitive to the input-signal amplitude, expression 2,21
may be replaced by
. -1 n siny(t)

V2 sin Bot + 8,(t) + tan T+ n cosy(t) |° (2.23)
where\/f'is retained for subsequent convenience. Observe that this modified input-signal
expression is equivalent to a single, phase-modulated reference signal expression. The
implications of this equivalence are discussed in Section 4,

The two input-signal expressions, 2,21 and 2,23, can now be used in conjunction with
the APC system oscillator signal expression (2.4) to obtain alternate system equations. Since
the procedure of these derivations is identical to that of the derivation given in Section 2.1,

only the results are presented here.

The defining equation for an input-signal-amplitude insensitive systenm is

. kﬁ . -1 n siny(t)
er(t) - F’;G' = ¢(t) + G' H(m) sin| ¢(t) + tan '1_+_n_co_s-ﬂﬂ' N (2.24)
where
G' = k kEHO) . (2.25)
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and km and k& are dimensionless.
The defining equation for a system with gain proportional to the input-signal
amplitude is

kl
ér(t) - % G = ¢(t) + G w1 +n2 + 2n cosu(t)

. sin [%(t) + tan" ! T—B-EEEELE%-ij , (2.26)

+ n cosy(t

which is equivalent to (repeating Eq. 2.16)

. k'
6.(t) - Eﬂ G=4(t) +G ﬁkw){}in¢(t) + nosinf¢(t) + w(t)i} . (2.27)
m

In concluding this section it is worthwhile to review briefly the assumptions
implicit in Eqs. 2.24, 2.26 and 2.27,
1. The phase detector has a constant gain over the entire frequency
range of the system response.
2, The system response consists only of the difference-frequency-
signal terms resulting from the multiplication action of the
phase detector, This may be thought of as a consequence of
the phase detector and/or the system lowpass filter character-
istics,
3. The voltage~controlled system oscillator has a linear frequency
variation as a function of applied voltage.
These assumptions are neither particularly restrictive nor difficult to achieve in practice,

2.3 Development of the Interference Susceptibility Equations

Under certain conditions, a periodic response occurs in the APC system while the
system is locked in average frequency to the reference signal. The characteristics of the
steady-state solution can then be determined from the system equation in the following way,

Let

00

e(t) = e, * ;z;ep cos (pwft + ep) , (2,28)

where we is the fundamental radian frequency of the periodic response and the ep and ep

are constants to be determined from the system equation., Dimensionally, the ep are expressed

11



in volts and the ep in radians. From Eq. 2.10, it follows that

eo(t) =ke +Kk :E: ep cos (pmft + ep) R (2.29)

and, upon integration,

e
eo(t) = eo + ko eot + ko ;2; E%; sin (pmf; + ep) . (2.30)

where 60 is the integration constant,

From this point on, it is mathematically convenient to restrict the two input

signals to sinusoids. Let
ﬁar sinfut + 6_(t)] =J2’Er sinfut + 6] (2.31)

J2? E, sinfut + 0_(t)] =,/7'Es sinfugt + 0], (2.32)

where W, and wg are the respective radian frequencies, and 6. and 95 are the respective

phase angles of the two input signals. This requires that
er(t) = (mr - wo) t + er , (2.33)
es(t) = (ws - wo) t + es . (2.34)

Thus, in this case, the instantaneous phase difference between the two input signals

becomes (see Eq. 2.20)

W(t) = But + 6 - 0 (2.35)

r »

where
Aws B, o= W, . (2.36)

S r

A linear transformation in the independent variable t simplifies some of the subsequent

12



equations. Let

t' =t + L (2.37)
where to is such that
' = 1 - - t
V(t") Aws(t t) + 6 -6 = fut (2.38)
or
B (2.39)
o Aw ' *
s
Equation 2,33 then becomes
' 2 S
= - Ve | ce—————— -
0.(t") = (v, wo) t I, (o er) + 6, (2.40)
or
' = - 1] ]
er(t ) (mr wo) t' o+ er . (2.41)
where
w, - w
'ep o L2 -
8 6. T, (6 - 0) . (2.42)

In the following equations, the system time reference will be t', though the prime will
be dropped from t' for convenience.

From EqS. 2.12, 2.30, and 2.41, ¢)(t) is found to be
o0
= - + 0' - - - E _P_. i + 4
d)(t) (w Ww ) t 6 6 k et k s1n(pwft [¢] ) » (2. 3)

from which é(t) is obtained by differentiation

1Note that Eq. 2.30 may be substituted here without a time translation, since its coefficients

.are yet to be determined.
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¢(t) = w.o= Wy = koe° - ko o ep cos(pmft + ep) . (2.44)

When the APC system is locked in average frequency to the reference signal, it follows,

from Eq. 2,44, that
e, =~y . (2.45)

Under this last condition, Eqs. 2.38, 2,43, and 2.44, and the derivative of Eq. 2.41 may

be substituted into Eq. 2.27 to yield

00

Awr = -ko ::ZI ep cos(pwft + ep)

e
+ G A(w) {sin[Aer - ko Z 5%; sin (pmft + ep)]
p=

e
. _ E P s
+ 7 sm[Aer ko £ P sin (pmft + ep)+ Awst] , (2.46)
where
k'
Mo, = w_ - w - =G (2.47)
T T (¢} Em ’
- ]
Aer = er - 60 . (2.48)

The same substitutions into the equivalent equation (2.26) lead to

2
Awr = -ko pZ; ep cos(pwft + ep) + G H(w) Jhn +2n cos(Awst)

n sin(Amst)

> e
. i - P < -1
sin| 46 ko I; Pug s1n(pmft+ep) + tan m ' (2.49)

and into the input-amplitude-insensitive system equation (2.24) lead to

14



00 00 e
"= ok : ok
Buy = =k I; ep cos (pugt + ep) + G H(w) sm[Aer }‘o leF%;

n sin(Awst)

« S1n (pwft + ep) + tan T:TI—CTSE(»-S—{) » (2.50)
where
kl
Mw! = w_ - 0 = =G (2.51)
r “r” % F;\ : :

Equations 2,46, 2.49, and 2,50 are the general, interference-susceptibility equa-
tions for the APC system, It will be recalled that the arbitrary constants, ep and 6_, are
to be determined by equating equal-frequency terms of these equations, Note that e has al-
ready been found (Eq. 2.4§) and that 8 is contained in 46, Further consideration of these
equations will be presented in Sections 3 and 4,

The additional assumptions implicit in Eqs. 2,46, 2,49, and 2,50, relative to the
more general system equations 2.24, 2,25, and 2,27, are:

1, The possible existence of a steady-state system response.

2, The ability to express the steady-state solution in terms of a Fourier series.

3. Restriction of the two input signals to sinusoidal (constant frequency) wave-

forms,

4,. The ability of the APC system to lock to the reference signal in average fre-

quency simultaneously with the occurrence of a periodic response.

The third assumption above is imposed to facilitate the mathematical formulation, Granlund
(Ref, 13) used the same technique in his treatment of the interference problem for the
conventional FM discriminator, The first and fourth assumptions will be discussed in Sections
3 and 4, The second assumption follows from the first and the fact that the system response

is continuous,

15



3, LOCKED INSTABILITY OSCILLATIONS OF THE APC SYSTEM

3.1 Theoretical Determination of the Instability Characteristics

The existence of a periodic response, when only a single, constant-frequency input
signal is present, is dependent on both the APC system lowpass filter characteristic and
loop gain. This dependence is characterized in this section by analyzing first the conditions
necessary for system instability (failure to maintain a constant voltage proportional to the
constant frequency of the input signal), Then it is shown that, for small oscillations and
with a particular filter, the same conditions are compatible with a stable periodic response.
In the process, the characteristics of the APC system periodic response are found, and the
general technique for determining the stability of a periodic response is discussed,

3.1.1 Instability Considerations. Under the condition that the input signal to the

APC system is a constant frequency sinusoid, the system defining equations, (2.26) and (2.27),

both reduce to
b, = o(t) + G M(w) sing(t) , 3.1)

where bu,, is obtained from Eqs. 2.41 and 2,47. For the analysis in this section the gain,
G, may bekthought of as either dependent or independent of the reference-signal amplitude
since only the value of gain and not its origin is significant. In this sense, Eq. 2.24
is equivalent to Eqs. 2,26 and 2.27 and also has the reduced form given by Eq. 3.1.

When the lowpass filter transfer function has a finite value at zero frequency,
Eq. 3.1 has singular points at (all) the solutions of

-1 Awr
¢ = sin - (3.2)

and with all of the derivatives of ¢ identically equal to zero. Let the principal value,

¢p, of Eq. 3.2 be defined by the requirement that

l¢p\ <m/2 . (3.3)
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Define ¢np as the only nonprincipal value of Eq. 3.2 that satisfies the conditions

; :-I¢np| <m or b= . (3.4)
All other nonprincipal values of Eq. 3.2 are then displaced from either ¢p or ¢np by plus

and minus integer multiples of 27, Thus, to demonstrate system instability, it is sufficient

to show that both ¢p and ¢np are unstable singularities, It is convenient to define
B(t) = o(t) -0, (3.5)
Substitution of ;he equation into Eq. 3.1 yields
bu = %(t) + G H(w) [sin $(t) cos ¢p + cos ¢(t) sin ¢p] . (3.6)
Note that cos ¢p is nonnegative due to the inequality (3.3). The equation analogous to
Eq. 3.6 for ¢np has a factor cos ¢np which is nonpositive.

At this point it is necessary to assign a particular form to the lowpass filter

transfer function. Initially, let

1+ y1s
“(S) -1—‘_—-1—5—- » (3.7)
where y is 4 dimensionless constant constrained to values
0<y<1l , (3.8)

and T is an arbitrary, positive time constant. This transfer function represents a filter
with a real zero to the left of a negative real pole, The limiting cases,y equal to 0 and 1,
respectively, correspond to a simple RC integrator and no filter at all, Substitution of

Eq. 3.7 into Eq. 3.6 results in the following second-order differential equation

b = (L) + r;(t) + G(sing(t) cos ¢p + cos ¢(t) sin ¢p

+ yT cos $(t)B(t) cos ¢p - vt sin ¢(t)P(t) sin ¢p) . (3.9)
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For §(t)<<1, this equation is equivalent to
() + (3 + O cos )(t) + £ cos 6 T(t) - Gy sin ¢ FeIF(e) = 0 . (3.10)

The question of the stability of the solution

T = W) =) =0, _ (3.11)

for nonlinear differential equations such as Eq. 3,10, is discussed in Chapter 13 of

Ref. 19. The following theorem is proven in that reference.

Theorem: Let at least one characteristic root of the characteristic polynomial of the
linear portion of the differential equation have its real part positive, Let the nonlinear
portion have an order not greater than the linear portion and be real, continuous, and

of "order zero" as its arguments approach zero, Then the identically zero solution is not

stable,

It follows that the conditions for instability of Eq. 3.10 depend on values of A which are

solutions to

2 l .(.;. =
Ac o+ (T + Gy cos ¢p)A + - cos ¢p 0 (3.12)
or
1+Gyrtcos ¢ 1+Gy1cos ¢ \2
. P _p) .G
A= - VE 3 A\/// - — cos ¢p . (3.13)

Since cos ¢p is nonnegative, both roots are clearly negative for all values of y and 1, and
the singular point ¢p is not unstable. Indeed, it may be shown to be asymptotically stable
for all ¢p <|n/2|. Notice also that the singular point ¢np is always unstable when

¢p <|n/2| since cos ¢np is then negative, and one root will be positive, One concludes from
the above discussion that no filters of the form given in Eq. 3,7 will exhibit instability

oscillations for any value of loop gain.

As an extension of the lowpass filter transfer function given by Eq. 3.7,

consider the class of filters with an additional pole
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1+ yrls

H(s) = +T15 e

g . (3.14)

where y, as before, is defined by Eq. 3.8, and 3 and T, are arbitrary, positive time con-

stants, In this case, the equation analogous to (3.10) is

e T,+T - 1 + Gyt,cos ¢ . G cos ¢
T+ 23] Ty + ! ) ¢ | ——R) T
N2 172 %2
Gy sin ¢ - -
- —T-z-——P- 5(t) $(t) =0 , (3.15)

with the third-degree characteristic polynomial

T, +T 1 + Gyt,cos ¢ G cos ¢
A3+ -T-l-—z- A2+ 1 A+ . (3.16)
172 1% )

By applying Routh's criterion to this polynomial, it may be shown that instability at the
¢p singular point requires that
T1 472

G > > (3.17)
cos ¢p [a-v) T YT ]

and that the factor in brackets be positive. The singular point, ¢np’ is again unstable for

all values of G. Thus, APC systems with filters of the form given in Eq. 3.14 will exhibit

instability oscillations, provided y is not too large and the loop gain is sufficient,

The most significant point of the above discussion, and the examples, is that the
question of APC system stability for a constant-frequency, sinusoidal input signal can be

determined solely from the linear portion of the system equation, provided the appropriate

linear portion exists, This fact permits the use of all the various linear techniques on
the characteristic polynomial for the determination of system stability. Consequently, the
Nyquist requirement discussed intuitively in Section 1.l is appropriate; i.e., if the
lowpass filter contributes an additional phase shift of -n/2 radians, the APC system is
potentially unstable,

The instability question is essentially the same if the lowpass filter transfer

function is infinite at zero frequency. In this case, the input to the lowpass filter must
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be identically zero when the system is stably locked to a constant-frequency reference.
Notice that this requires k& (see, for example, Eq. 2.6) to be zero and zero phase difference
between the reference and local signals, Thus, in Eq. 3.1, Awr is zero, and the singular

points occur at values of ¢ equal to 0, *w, #2w, ... . llere,
¢ =0 and =T (3.18)

For the class of filters given by

H(s) = -ILZ-;—S- , (3.19)

where y and 1 have the same definition as in Eq. 3.7, the equation analogous to (3.10) is
» = Cu
o(t) + v G o(t) + —o(t) =0 , (3.20)

where G_ = k k E E_ for amplitude-sensitive phase detectors or G_ = k k E_ for amplitude-
® omo'r w omo
insensitive phase detectors. Clearly, the system is stable for positive y, When y is zero,

the characteristic polynomial has two purely imaginary roots, For completeness, the singular

point, ¢np’ is unstable for all values of y. It follows that periodic oscillations may
exist for the H(s) given in Eq. 3.19 when y is zero. Again, the possibility of instability
oscillations can be determined readily from linear analysis.

'3.1.2 Characteristics of the Locked Oscillations, In this section, periodic

response, e(t), will be assumed for all APC systems whose equations have an appropriate
linear portion and do not have any stable singular points, The frequency of this response
will be assumed equal to the frequency at which the system has a total phase shift of = radians,
The justification for the existence of such a stable periodic solution is postponed until
Section 3.1.3, In this section, the characteristics of the assumed periodic response
characteristics are determined,

In Section 2.3, three equations were developed from the system defining equations
under the condition that e(t) has the general periodic form given in Eq. 2,28, For the
case of a single input signal, (recall that here G includes G') the Eqs. 2.46, 2,49 and 2.50

reduce to
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Amr = -ko Z ep cos (pwft + ep) + G H(w) sin [Aer

p=1
2
- k0 & Pog sin (pwft + ep)] , (3.21)

where we is the fundamental radian frequency of the oscillation. Implicit in Eq. 3.21 is

the condition that the average frequency of the periodic response is equal to the reference
frequency (see Eq. 2.45). This may be justified in the present case if the periodic solution
is indeed stable, Clearly, if some average frequency difference existed, the consequent
change in phase would preclude the continued encirclement of a singular point. Thus, the
legitimacy of the results of this section rests solely on the stability of the periodic
solution.

The presence of the final term of Eq. 3.21 makes the solution of this equation using
the general periodic form extremely difficult, When only the first term of the sum is retained,

Eq. 3.21 becomes

k e
_ o'l
bw_ = -k e, cos (wgt + 8;) + G H(w) [Aer -

- sin (ugt + 0))] . (3.22)

Since the choice of the origin of the time scale is entirely arbitrary here, we selected t

such that 6, is zero. Also, let

B =2t (3.23)
“f
Equation 3,22 can be written as
bu = -wcB cos (wft) + G H(w) sin [Aer - B sin (wft)] . (3.24)

The Bessel function expansion of the sine factor yields
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sin [Aer - B sin (wft)] =

sin (Aer) [JO(B) + ZJZ(S) cos (met) + o] (3.25)

- cos (Aer) [ZJI(B) sin (wft) + 2J3(B) sin (Swft) + ..

Only the constant and fundamental terms of this expansion may be retained meaningfully when

substituting back into Eq. 3.24, since higher-order harmonics were dropped previously,

The following pair of equations results, for filters with a finite gain at zero frequency

bu = G J (8) sin (s8) , (3.26)°
weB = 26 |TT@uf)| J,(8) cos (80)) (3.27)

when the constant and fundamental terms of Eq. 3.24 are equated. Recall that ﬁ(wf) has, by
assumption, an amount of phase shift consonant with equating the fundamental coefficients as
indicated.

For filters with an infinite zero frequency gain, Awr and Aer are equal to zero

and the single equation required is

we = 2 G, ]H(wf)l J . . (3.28)
Since Eq. 3.28 is a special case of the finite-gain equations, consider now the information
available from the pair 3.26, 3.27. When the APC system is locked to an unmodulated sinusoidal
reference signal (recall that these equations were derived under this assumption), and is not
oscillating (B=0), only Eq. 3.26 has any significance, For this special casg,

Awr = G sin (Aer) . (3.29)

Notice that, here, Aer is equal to ¢p in Section 3.11; i.e., a6, is the static, system phase

error, This equation shows that the phase error is dependent on the zero frequency loop gain,

2 s s . Lo . L.
Rey (Ref. 6) indicates that sin (Aer) is identically zero; however, this is necessary only
when Bu,. is zero.
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G, and reference frequency offset, Amr. Several authors (e.g., Refs, 1, 2, 4, 6) have shown
that the loop will remain locked under the above conditions for 86, < n/2 radians, Hence,

Bw , must be less than G to insure maintenance of lock, and 2G is defined as the loop "holding

range," It follows that the greater G is made, the greater the holding range becomes, This
is true up to a point for lowpass filters which provide a total system phase shift of n radi-
ans, at a finite frequency, For these filters, the system will begin to oscillate as G is
increased.

The characteristics of the periodic system response can be determined from the

dependence of 8 and A6  on Auw_, G, and [Awg) Equations 3,26 and 3.27 cannot be solved
directly for 8 and Aer, but these equations can easily be solved for the independent variables

in terms of g and Aer as shown below:

_ 8
H* G = 2J1(B) cos (46.) (3.30)

and

BJO(B) tan (Aer)
2J1(B)

HY du = , (3.31)

where the factor H* is a constant completely determined by the specific lowpass filter used

and is defined by

L
L

. (3.32)

The solution of Eqs. 3.30 and 3.31 is accomplished graphically. (See Figs. 3.1 and 3.2, for

plots of these equations.) Observe that Fig, 3.2 is an enlarged plot of Fig. 3.1 near the

origin, From these plots, for example, curves showing the dependence of 8 and 46, on

H*Amr can be determined for constant values of H*G, This is done by selecting a value of
H*G and reading the values of B and H*Amr for each value of Aer from the curves in Figs, 3.1
and 3.2, One example is given in Fig. 3.3 for H*G equal to 1.75, Only half of the curve
is shown here since the curve is symmetric about the B a#is. The dashed line indicates the

values that Aer would assume for this gain if no locked instability oscillations existed.
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Fig. 3.3. B and Aer versus H*Awr for H*G = 1,75,
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It is worthwhile at this point to write the system response and system oscillator

phase in terms of 8 and 46, For the assumptions made in this section, Eq. 2.28 becomes

Wwe = Wy wa
E(t) = -—Fo—— + R-o—— cos wft (3.33)
and Eq. 2.30 becomes
6,(t) = 6, = 80 + (u. - w)) t+ 8 sinut . (3.34)

Note that here Br is equal to e;. Since B and 48, are functions of Buw., G, and H*, the
APC system's oscillation is completely characterized in terms of the independent variables.

We conclude this treatment of the case of finite system gain at zero frequency

with some observations on Figs. 3.1 - 3.3, The peak value of the locked instability oscil-

lations occurs for Awr eqdal to zero (see Fig. 3.3). For increasing |Awr|, g decreases

and eventually becomes zero, For still greater |Awrl,the system remains stably locked until
IAerI reaches 90°, just as if no oscillation had existed. Notice the abrupt transition in

the 46 vs. [H*Amr| curve just as 8 becomes zero., For the larger values of IH*Aer’ the

A8, curve is simply the inverse sine relation (Eq. 3.29), whereas for the smaller values of
the independent variable the effect of Jo(s) (see Eq. 3.26) is quite pronounced,

By reference to Figs. 3.1 and 3,2, the question of when oscillations begin can be
answered readily. Since the peak value of 8 occurs when Aer(Awr = 0) is zero, clearly 8 must

be zero for all values of H*G less than unity. Once H*C exceeds unity, B varies continuously

with Amr. It should be remarked that the holding range continues to increase as H*G increases
above unity. The first-order theory developed above indicates that for any finite gain, G,
there should be a finite region of H*Amr in which the locked instability oscillations cease
before the loop loses lock. This can be seen from the following, From Eq. 3.31 the frequency
at which 8 goes to zero is simply

BJ (8) tan (Aer)l

*
H Awr

= tan (A8 ) . (3.35)
550 ANG) |60 r

From Eq. 3.30 the gain, H*G, at this point is
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B [ 1

* = = .
H*G B0 ZJI(B) cos (A6 ) cos (46 ° (3.36)
T T
g0
Hence,
1
* = *( . .
H*Aw 0 tan (46.) =TT 7o, = H C|B+0 (3.37)

The implication of these observations is that the holding range can be made arbitrarily

large at the expense of loop oscillation, with the magnitude of oscillation decreasing to
zero prior to the loop losing lock, Due to the truncations made in developing the first-
order equations these large-gain results are of questionable validity. Furthermore, this
result has not been observed experimentally; actually, abrupt jumps are observed between
locked and unlocked oscillations,

Finally, a few brief comments are in order concerning the behavior of systems

with filters having infinite gain at zero frequency. When H(w) has a unique frequency at

which the APC system has a total phase shift of m radians, the value of g is found from
the G _H* product and the curve for Aer = 0 in the way discussed previously. llere, of course,
there is just the single value of B which is independent of the reference signal frequency.
Ideally, the holding range is infinite,

For H(s) = 1/1s, the system has a phase shift of 7 at all real frequencies and

Eq. 3.28 becomes

G
o 6 2
-* mwf . (3.38)

The indication is that as the magnitude of oscillation increases, the frequency of oscillation
decreases for a constant value of G_.

3.1,3 Stability Analysis for the Locked Oscillations, The validity of the analysis

made in Section 3.1.2 is primarily dependent on the existence of a stable periodic response

around the unstable singular point at ¢ = ¢p (or any of the other singular points displaced
from ¢p by an integer multiple of 2m). Although the mathematical theory necessary to

investigate this validity is available, the required calculations are very lengthy for

all but the simplest filters, In this section, the general stability analysis technique is
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outlined briefly, An example calculation is also carried out for the lowpass filter transfer
function given in Eq. 3.14.

The question of orbital stability may be examined by the first variation technique
(see Ref. 19 for additional details). The theory for this analysis, discussed in the litera-
ture, is concerned with a system of n first-order differential equations, The same formula-
tion is presented here. If the column vector ;(t) is a real solution of the system of

equations

o
-

x = F(t.g) (3.39)

< oo A . s
for 0 = t < =, where the column vector F is analytic in x for each t, then the first variation

equation is
y = Flt, s)]y (3.40)

where Fx[t, ¢(t)] is a matrix composed of the columns aF/axi (i=1,2,..., n). A special
case of Eq. 3.39 occurs when F does not depend on t, In this case, the first variation

equation becomes

y = Fx[$(t)] y . (3.41)

Notice that both Eqs. 3.40 and 3,41 are linear equations with, in general, time-dependent
coefficients., The APC system equation for the case of a single input signal of constant
frequency does not depend on time and hence takes the latter form,

If ;(t) is a periodic solution of Eq. 3.39, it follows that Eq. 3.41 represents a
system of linear differential equations with periodic coefficients, The stability character-
istics of the solutions can be shown to depend on the real parts of the characteristic
exponents for this system. Since ;(t) satisfies the variation equation, the characteristic
exponent associated with it may be taken as zero. Thus, for an n-th order system, the
remaining n-1 characteristic exponents determine the orbital stability of ;(t).

The solution ; = ;(t) may be regarded as a closed curve, or orbit in ; space with
t as a parameter. If n-1 characteristic exponents of Eq. 3.41 have negative real parts, then
the closed orbit is asymptotically stable in the sense that any solution of Eq, 3.39 which
comes near a point of the orbit tends to the orbit as t approaches infinity. This is called

asymptotic orbital stability, The following theorem is proved in Ref. 19,
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Theorem: Let n-1 characteristic exponents of Eq. 3.41 have negative real parts. Then, there
exists an ¢ > 0 such that if a solution ¢*(t) of Eq. 3.39 satisfies |¢*(t2) - ¢*(t1)|<e.for some
t. and tz, there exists a constant ¢ such that

1

lim [¢*(t) - ¢ + )| =0 . (3.42)
oo
Thus, not only is there asymptotic orbital stability but each solution near the orbit pos-
.sesses an a;symptotic phase c,
Although the technique just outlined provides the desired answer to the stability
question, its application is hindered by the two requirements:
1. That a periodic solution already has been found.

2. That the remaining n-1 characteristic exponents can be found,

For the present application, the first of these is at least approximately met, The second

requirement can be fulfilled only with considerable effort. However, a method does exist

that permits determining each characteristic exponent from the known elements of the matrix,
Fx[¢(t)]. This method is described in detail in Chapter XVII of Ref, 20 and applies to

those cases where each element of Fx[¢(t)] can be expanded in the power series form

.

F(4(t)] = A + Z PO Bonk (3.43)
X k' X

where A is a constant matrix independent of u, and p is sufficiently small, A perturbation

technique is employed to determine each characteristic exponent in the form of

= Q.(O) + D-(l)u + Di(Z)UZ + s . (3.44)

Pi i i

A noteworthy feature of this method is that any one root can be approximated to an arbitrary
degree without carrying along any approximations to the other roots.

One additional fact is helpful in determining the characteristic exponents,
There is an associated multiplier, Ai’ for each characteristic exponent, Oi» defined by

A, me -, (3.45)

where T is the fundamental period of ¢(t). It is proven in Ref, 19 that
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T

n R
E Ai = exp trFx[¢(s)] ds . (3.46)

i=1 o

Since one of the Ai is known to have unity value, only n-2 characteristic exponents need be
found by the perturbation method. The remaining Ai can be found from Eq. 3.46. The character-
istic exponent associated with the unity value A equals zero. The requirement that each
of the remaining Py have a negative real part is equivalent to requiring that each associated
Ai be less than unity in absolute value,

The remainder of this section, an example of the above stability analysis is
carried out for the lowpass filter transfer function given in Eq. 3.14. The third-order

differential equation that results for this choice of filter is
19120(8) + (1) + 7)) o(t) + [1 + Gyry cos ¢(t)] (1)
+ G sin ¢(t) = TlTZAwr . (3.47)
For simplicity, Awr will be assumed to have zero value. This avoids making the change of

variables defined by Eq. 3.5, but does not limit the generality of the following results.

Using the definitions

a, = —1——2 a. = -1_-
1 T, 2 T
G Sy
A, = e—— a, = (3.48)
3 ) 4 )
and
8,1 = o(t) (3.49)

then, Eq. 3.47 reduces to the following system of equations:
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Bo(1) = ¢(t)
$() = o)(1)
sz(t) = -ag sin ¢ (t) - [a, + a, cos ¢ (t)] ¢,(t) - a,¢,(t) . (3.50)

This system has the form of Eq. 3.39. The first variation equation is thus

y, () 0 1 0 y,(®)
y,(t)| = 0 0 1| |y,®
ys(t) -a;cos ¢o(t) + a,sin ¢°(t)¢l(t) =2, = a5C0s ¢°(t) -3, ys(t) . (3.51)
The next step in the stability analysis is to insert the known solution into this coef-
ficient matrix. From Eqs. 2.12, 2,41, and 3.34, it may be shown that
¢(t) = =B sin mft (3.52)

for any lowpass filter, Substitution of this solution into the coefficient matrix of Eq. 3.5l

yields the periodic matrix:

0 1 0
0 0 1
-ascos[Bsin(mft)]-a4sin[Bsin(mft)]Bwfcos(mft) -a, - a, cos[esin(mft)] -3, (3.53)

This matrix has a period of n/wf. If the periodic terms are now replaced by their Bessel

function expansion and the Bessel functions are, in turn, expanded in terms of 8, the matrix

takes the required form, i.e., that of Eq. 3.43 with u = gZ. The constant matrix A and

the first Fik)[;(t)] matrix are
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A = 0 0 1 (3.54)

F(l) = 0 0 0
X

as a4wf a4
T (1 - cos(wat)] - —— sin(met) I'(l - cos(wat)] 0 . (3.55)

The method given in Ref. 20 for determining the characteristic exponents may now
be initiated. Before this is done, however, recall that one of the p; may be taken as zero
since ¢(t) is a solution of Eq. 3.51. Let oY equal zero and hence Al is unity, From Eq.
3.46,

/W

XZAS = exp -3y ds = exp|{ -

. (3.56)

Since we is the radian frequency at which the APC system has a phase shift of -7 radians, we
is uniquely determined by the lowpass filter time constants. Indeed, it is easy to show

that Eq. 3.14 (the transfer function of the lowpass filter) will provide the necessary ad-

ditional phase shift (-m/2 radians) in the APC system when

. (3.57)

W = 1
f'\/(l = Y) TITZ - Yle

Substitution back into Eq. 3.56 yields (see also Eq. 3.48)
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(t; +1,)./0 - y) 1,1, = y1,2
= exp | -7 1 2 \/,7 12 1 . (3.58)

Tsz

A

23

It will be recalled from Section 3.1.1 that the expression under the radical sign must be
positive for system instability. It follows that the product A2A3 is equal to some number
less than unity. Since both |A2[ and |A3| must be less than unity, it is necessary to find

only one or the other to answer the question of orbital stability,

In determining any characteristic exponent using the method given in Ref, 20,
the initial step is to find the roots of the characteristic polynomial of the constant

coefficient matrix, A, This polynomial is simply the polynomial 3.16 with cos ¢p equal to

unity. Let G be chosen so that the loci of two of the roots of this polynomial are imaginary,

in the light of their dependence on G, This requires that

T + T
G = 1 2 (3.59)

[(1 = Y) T11.2 = YT12] ’

and the three roots for this gain are

' (0) = = j = j
py = 3/ag/a =i ey v e, = e,

oD e a,

p§0) . -2 (3.60)

1 .

The superscript zero is used here to denote the zero-order approximation to Pye

The next step in the method is to select a particular G and solve the appropriate

(0)

system of linear, constant-coefficient equations to determine the associated Yi e For P3s

this system is
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ORI OBIN Oy

alyl ’
§§O) . a1y§0) . y§0) =0 , (3.61)
§§0) + a3y§0) + (a, + a,) Yéo) =0 .

The superscript zero again indicates that this system is the zero-order approximation., The

general solution of this system has the form

j t
0) (a; + jug)
b4 ‘n 12 €13 n ¢
(a, - ju)t
0l=|. . . 1 £
yé ) J0eC1 “IegCin <313 n2 ©
(0) 2 2 2
3 “We 11 TYE S22 ¥ 3 3 , (3.62)

where the n; are arbitrary constants. It is necessary, however, that the ng) be periodic,
and consequently, N and n, are set equal to zero. Since 3 is also arbitrary, let ns be

unity in value, whereupon

0
Y§ > ‘13 ¢
0
Vg ). “8;€13
0 _ .2
Y3 o= 3%z - (3.63)

The next step in the perturbation method is to solve the appropriate first-order system, The

result for our example is given below:

+ (1) (1 1) 1

Yi -8y "V¥Yz =Pz C3
*(1) 1) 1y _

Y Tt 8y, - VY3 TRz 31Cs
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o (1 1 1 1 s
y§ = asy§ = (a, + a,) Y§ ). '°§ ) a2 5 + 7= [1 - cos(2ugt] cpy
a,w a
4vf 4 (3.64)
- sin (wat) 3 - I_'[l - cos(wat)] 3¢5 -

Notice that the zero-order solutions, together with the nonzero elements of the Fil) matrix,
are used as forcing functions on the ygl) system. This system may now be solved, and the
(1)
3

values of p and the ygl) determined as periodic functions of time as well as functions of

the constants of the A matrix, This general procedure is repeated for higher-order approxi-
mations to the characteristic exponent and to the associated periodic Yi functions,
For the purposes of this study, only pgl) will be determined, This is accomplished

through solution of Eq. 3.64, using the variation-of-parameters technique, It is not difficult

to show that

(1 _ %37 4%

o3 . (3.65)
2
4(uuf *a, ) .
Thus, pgl) is positive provided
a; - a,a, > o, (3.66)
which requires that (see Eq. 3.48)
Tlrz(l-y) - yrlz >0 (3.67)

This last condition is also necessary for the instability of an APC system subject to a
constant-frequency input signal (see Eq. 3.17).

From Eq. 3.44, the value of P3 is given by

a, - a.a
03 = -2 + —-——}-'i‘ 62 * e . (3-68)

2,. 2
4(wg+a; %)

Clearly, L becomes less negative as B increases, and Az becomes larger. Consequently, Ay

must decrease (from Eq, 3.58), It can also be seen that AZ is equal to unity (since

050) equals -jwf) when B is equal to zero. Both Ay and Ay are less than unity, for positive
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B8 which provides the criterion for orbital stability when this filter is employed.

The purpose of this section has been to establish the conditions for orbital sta-
bility. As is apparent, the required calculations are lengthy, particularly for higher-
order APC systems where it is necessary to calculate several of the roots, All of the details
for handling the perturbation calculations may be found in Chapter XVII of Ref, 20,

3.2 Experimental Comparisons with the Theoretically Determined Oscillation Characteristics

Experimentation with an APC system has confirmed the analysis of locked instability
oscillation characteristics presented in Section 3.1.2, Experimental data pertinent to these
instability oscillations are given in this section for an APC system having finite gain at
zero frequency. Details concerning the experimental circuit and procedure are discussed in
Section 5.

According to the theory of Section 3.1.2, the APC system response, €(t), is given by

w. < Wy weB

ge(t) = L + £ cos t 3.69
TR R (509
for small values of B and for all lowpass filters providing sufficient phase shift, The

response, ¢(t), may easily be measured experimentally for various input conditions. Since

the instability oscillation frequency, Wes and the system oscillator gain constant, ko, may
also be found easily, g may be calculated directly from the experimental data, Assuming
that the periodic term of Eq. 3,69 is measured with an rms-reading voltmeter, then g is
found by

K
g = (1.414) T;:' e(t) o s (3.70)

where e(t)rmS is the measured rms value. When this equation is used, a plot of g8 versus

the frequency offset, Awr, can be drawn from experimental data on any APC system, The reader
will recall that g is a function of G and ]H(wf)l, as well as du.. |M(ug)| is a constant
for any given APC system, Thus, a family of B vs. Aw,, curves may be drawn for a specific
system with the system gain, G, as a parameter,

The angle Aer may also be found experimentally, A direct way to determine Aer
is based on Eq, 2.48, which indicates that LM is the difference in phase of the reference

and system oscillator signals., An alternate method, based on Eq. 3.26, is as follows, Let
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Awrc be the smallest frequency offset at which B is zero. This value may be found accurately

by experiment. From Eq. 3.26, Aerc is given by

Amrc = G sin (Aerc) . (3.71)

Dividing Eq. 3.26 by Eq. 3.71 yields

Awr sin (Aer)
mr_c- = JO(B) mp . (3.72)

Finally, solving for Aer yields

sxn(Aerc) Awr

. =1
A8 = sin —_I_T— N (3.73)
r Jo 3 Awrc

This last equation permits Aer to be plotted, given the e(t)rms values. Again, a family
of 46 vs. Awr curves exists, with parameter G, for each APC system,
Another useful relationship may be found from Eq. 3,30, B assumes some maximum

value when 46, is equal to zero, Let this value be defined as Bnax" Thus,

Bmax

H*G = m—T . (3.74)
1

max
Since B/ZJI(B) equals unity when 8 equals zero, it follows from Eqs. 3.30 and 3.74 that

ZJI(Bmax)
Smax

cos Aerc = (3.75)

This permits determining Aerc without measuring the system gain, Furthermore, if Eq. 3.75

is used to find Aerc' then Eq. 3.71 can be used to determine G, since

Aw

rc
G =am—e-r—(-:y . (3.76)

Finally substitution of Eq. 3.76 and Eq. 3.75 into Eq. 3.74 yields

wamax sin Aerc w

2 Awchl(B ) dw

|1T(wf)l = tan A6 . (3.77)

max re

These relations among the system parameters are useful in checking the results of various

measurements and evaluating those quantities that are difficult to measure directly.
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Three sets of values of e(t)rms versus Awr were obtained, for three values of
reference-signal magnitude, on the APC system shown in Fig. 5.2 of Section 5. Because this
system is sensitive to input amplitude, the three sets of data correspond to different values
of system gain, G, As shown in Fig, 5.4,the system oscillator gain, ko, has a value of
42,8 kc/volt., The instability frequency was measured to be 12,94 kc. The values of B8 as a
function of buw , were found from Eq. 3.70 and plotted in Fig. 3.4, Also shown in Fig, 3.4

are the Aer curves which were found with aid of Eqs. 3.73 and 3.75.

The three theoretical curves shown in Fig. 3.5 were constructed for comparison,
H*G was determined from Eq. 3.74 for each value of system gain, The curves shown in Fig, 3.2
were then used to find B8 and Aer in the manner that the curves in Fig., 3.3 were constructed.
The close agreement between the two sets of curves shown in Figs. 3.4 and 3.5 is demon-
strated in Fig. 3.6 which further substantiates the validity of the theoretical results,
In Fig. 3.6, the solid curves are taken directly from Fig, 3.5 (the theoretical prediction
for the highest value of input signal) and the points represent actual data values from

which were constructed the experimental curves in Fig. 3.4,

The three photographs shown in Fig. 3.7 portray the periodic portion of the system
response, Notice that though the first two of these responses are essentially sinusoidal with
time in appearance, the third definitely contains some energy in the higher-order harmonics.
The high-frequency ripple evident in these photograéhs is introduced by the system oscillator
and is at the reference-signal frequency of approximately 450 kc,

A*check on the experimental values of g found from ko' ey and e(t)rms can be made
by measuring JO(B) [or Jl(B)] directly, This can be done conveniently with an appropriate
spectrum (or waveform) analyzer. As an example, the three values of B nax found with the aid
of Eq. 3.70 (see Fig, 3,4) are 0.69, 1.01, and 1.38. The corresponding values of B nax found
from Jo(Bmax) are 0,70, 0,96, and 1,33,

Finally, the experimentally determined values of H*G, G, and ln(mf)l, found from

Eqs. 3.74, 3,76 and 3,77, respectively, are listed below for the three gain levels.

Input Signal Level H*G G IT(wp) |
(volts rms) ) 7 (ke)
0.320 1,06 32,75 0.427
0.350 1.14 34,0 0.434
0.400 1.28 38.5 0,430

39



1. 40

1. 30

1. 20

1. 10

1. 00

.90

. 80

.70

B (Radians)

. 60

. 50

. 46

. 30

.20

. 10

Input Signal Level
0. 400 volts rms

. 4000 volts rms
0. 350 volts rms

0. 350 volts rms
0. 320 volts
rms
0. 320 volts
rms
L 1 1 1 L 1 A 1 L 1 1 1

(degrees,

AB
r

g0°

A0

R 600

430°

200

4100

00

3 6 9 12 15 18 21 24 27 30 33 36 39
Aw, (kilocycles/second)

Fig, 3.4 Experimental curves of B and 48, versus Aw,

for three input signal levels,

40



B3 (Radians)

. 40

. 30

. 20

. 10

.00

.90

. 80

.70

5. 60

. 50

. 40

.30 }

.20

. 10

-

1. 14

1. 06

-

.06/ /1 14
H*G 1. 28

I 1 Il 1 1 i 1

1. 28

1

Aer(degrees)

1
'S
(=)

20°

L

410

9 12 15 18 21 24 27 30 33
Aw (kilocycles/second)

Fig. 3.5. Theoretical curves of B and 46, versus b,

corresponding to the curves in Fig. 3.4,

41

36

39



B8 (radians)

[y

[y

o

0.10

. 20

.90

. 40}—

.30

. 10~

. 00—

. 80
]
. 60—
. 50—
. 40—
. 30—

. 20—

H*G 1.28
Input Signal Level

0. 400 volts rms

|

B I A Y (NN I S— I
3 6 9 12 15 18 21 24 27 30 33

A wr (kilocycles/second)

Fig. 3.6.
points shown for the largest value of input signal level
in Figures 3.4 and 3,5.

42

36

Direct comparison of the theoretical curve and experimental

90

80

70

60

50

40

30

20

10

A 6 (degrees)



a) Input signal level 0,320 volt rms
Zero frequency offset
Vertical scale 0,20 volt/division
Horizontal scale 20 us/division

b) Input signal level 0.350 volt rms

Zero frequency offset
Vertical scale 0,20 volt/division

Horizontal scale 20 us/division

c) Input signal level 0,400 volt rms

Zero frequency offset
Vertical scale 0,20 volt/division
Horizontal scale 20 us/division

Fig, 3.7. Periodic system response waveforms.
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Notice that iH(wf)I is nearly independent of the input signal level, as was expected. The
values of G shown above also represent the maximum frequency offset at which the APC system
will remain locked (see Section 3.1.2), Although a linear relationship between G and the
input signal level was assumed in the analysis, this is not quite appropriate to the
experimental circuit, The nonlinearity was introduced by the experimental phase detector,
where diodes were employed as envelope detectors. These diodes influence -‘the phase detector
gain. Since the diode characteristics are sensitive to the input signal level, then the

phase detector gain and, hence, G, varies nonlinearly with the input signal level,

3.3 Comments and Conclusions

The most significant result of this section is the relatively simple expression
for system response for the locked instability oscillations given by Eq. 3.33. This equation
relates e(t) to the input signal parameters and the appropriate APC system constants, The

simplicity and general applicability of Eq. 3.33 stems from the fact that knowledge of only

the constant H* is necessary to predict behavior, rather than detailed knowledge of the system
lowpass filter characteristics., This fact permits the designer of APC systems to determine
rapidly the possibility of instability oscillations as a function of system gain, G.

It is worthwhile to compare here the requirement found in Section 3.1.2, i.e.,
that H*G must be greater than unity for oscillation to exist, with the gain requirements
necessary for system instability with an input signal of constant frequency as found in

Section 3.1.1, This can be done conveniently, for the example lowpass filter transfer

function given by Eq. 3.14, by setting y equal to zero, In this case, H* is given by

T +T

H* = 1 °2
2 2y42 2. 2.4
1 (" 2 et + 1yt (3.78)
w=w
£,
where we is found from Eq. 3.57 as
wg = ._}__.T . (3.79)
1%2
Hence, the product H*G is given by
1,1,(t, + 1,) G 17,7, G
H*G = o2 1 2 .12 . (3.80)

2 2 T, + 1
3 +21112+12 1 2



Since lI*G must have a value greater than unity for oscillations to exist, it follows that

G > e (3-81)

As expected, inequality 3,81 is identical to inequality 3.17 in Section 3,1,1 when y and 6
are zero, It is also possible to show that the same result holds for nonzero vy and 6_;

»

however, the calculations are considerably more involved,

Note that, although the theoretical development of this chapter is premised on an
input signal of constant frequency, the results appear to apply also for slowly modulated

input signals, That is, it has been experimentally observed that the same instability

oscillations occur when the input signal is (slowly) modulated. Indeed, if an audio modula-
tion signal is present and the system gain is then increased until oscillations result,

the audio signal may still be successfully demodulated. 1In this case, the system response
consists of the audio signal and some oscillations., Assuming that the oscillation frequency
is sufficiently high, it may be filtered out without appreciably affecting the audio informa-
tion. Since the system holding range increases with gain, a trade-off between the oscillation

amplitude and the system bandwidth may be considered.
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4, SECONDARY SIGNAL INTERFERENCE SUSCEPTIBILITY

4,1 Introduction to the Interference Problem

In contrast to the specific requirements for the occurrence of locked instability
oscillations, the simple existence of a second periodic input signal leads to a periodic
response of an APC system, Although neither special gain nor phase conditions are necessary

for the existence of oscillations, both the system gain and phase shift substantially in-

fluence the character of the periodic response. In fact, the frequency dependence of the

transfer function of the lowpass filter over a wideband must be accounted for in the analysis

presented in this section. In the treatment of locked stability oscillations in Section 3,
it was sufficient to know only the value, IH(wf)I. Indeed, as will be demonstrated, pro-
vision for the effect of the secondary signal in the interference susceptibility equations

precludes a relatively simple analytical treatment of this problem,
In this section, an extension of the theoretical techniques of Section 3.1.2, which

yielded the dependence of the periodic response on system parameters and input signal character-

istics, are applied to the Secondary signal problem, The initial work makes use of the

first of the three interference susceptibility equations derived in Section 2, i.e., Eq. 2.46.
The reader will recall that this equation is premised on the assumption that the APC system
is sensitive to the input signal amplitude. A set of three equations in three unknowns is
found by equating the appropriate coefficients of Eq. 2.46, These 'coefficient equations"
are used to determine the dependence of the periodic response on the various significant
system and signal parameters. This dependence can be examined in detail only for particular

choices of lowpass transfer functions.

The initial choice of lowpass transfer characteristic selected is that of the
ideal integrator. The three coefficient equations for this characteristic reduce to a
single equation which can be solved graphically. This éxample provides useful insight
into the general character of the solutions for more practical system filters. Next,
three other APC systems are studied for selected lowpass transfer characteristics., For

these studies, the three coefficient equations were solved using a digital computer,
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This section continues by considering briefly the stability question of these
"forced" oscillations., The procedure is very similar to that presented in Section 3, Also
included is a discussion of an alternate approach to the determination of the response charac-
teristics in terms of the input signal and system parameters using the second of the inter-
ference-susceptibility equations. This section concludes with a short treatment of the case

when the system is insensitive to input signal amplitude,

4.2 Derivation of the Interference Susceptibility Coefficient Equations

In Section 2,3, three equations were developed from the defining equations of the

system under the restriction that e(t) has the general periodic form given by Eq. 2,28,
The first of these, Eq. 2.46, will be considered further in this section, and is repeated

below for the reader's convenience.

bu = -k g§1 e, cos (pugt + ep)

o e
+ GH(w) {sin[Aer - kg 21 1-31:7; sin (Pugt + 0] (4.1)
p=

© e
+n sm[Aer - kg pzil 5%; sin (pugt + ep) + Awst]}

Implicit in Eq. 4.1 is the condition that the average frequency of the periodic response is

equal to the reference frequency (see Eq. 2.45), As in Section 3, this assumption is jus-
tified when‘the periodic solution is stable. Clearly, if some average frequency difference
existed, the consequent increasing (decreasing) phase value would cause a spiraling solution
path‘as opposed to the required closed-loop path, The validity of the calculations made in

this section thus rests solely on the stability of the periodic solution,

Following the same approach as employed in the last chapter, we will simplify
Eq. 4.1 by retaining only the first term of the sum expressions; i.e., we assume that the

waveform of the periodic response is sinusoidal, The simplified equation may be written as
Awr = -Bwf cos (wft + 91) + GH(w) {:sxn[Aer - 3 sin (mft + el)]
+ n sin [Aer - B sin (wft + 91) + Awst]:} , (4.2)

where 8 is defined as before by Eq. 3.23. If we replace the independent variable t by
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and define

after the prime notation is dropped, Eq. 4.2 becomes

The

sin [Aer -8

[sin (Aer)

[cos (Aer)

[sin (Aer)

[cos (26,)

Awr = -8 we €OS (uuft) + GH(w) {sin[Aer - B sin (wft)]

+ n sin [Aes + but - B sin (mft)i} .
Bessel function expansion of the sine terms in Eq. 4.5 is

sin (wft)] + n sin [Aes + Awst - B sin (wft)]
+ n sin (AeS + Awst)] cos [B sin (wft)]

+ n cos (Aes + Awst)] sin [B sin (wft)]

+
-
+

sin (Aes Awst)] [JO(B) + ZJZ(B) cos (wat) + el

+ n cos (Aes

+

Awst)] [ZJI(B) sin (wft) + 2J3(8) sin (Swft) + ...

Substitution of this expansion into Eq. 4.5 yields

Awr

+ Bmf cos (wft) = Gﬁ(m){:[sin (Aer) + n sin (Aes + Awst)]
’ [JO(S) . 23,(8) cos (2ugt) + eoe]

- [cos (Aer) + n cos (Aes + Aws@]

* [23,() sin (ugt) + 2J5(B) sin (ugt) + ...]j} .
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Again following the procedurcs employed in the last chapter, we retain only those terms in
Eq. 4.7 which are constant or vary with the fundamental periodic response radian frequency,
Wee This truncation is justified for APC systems having sufficient attenuation of higher
frequencies. The decision of which terms of Eq. 4.7 are to be retained is based on the
relationship between Bug and wee

In Ref, 21, Stoker states that four relationships may exist between the forcing-
function frequency and the natural system frequency in nonlinear systems, In general, one
may expect that

wg = o dug (4.8)

where m and n are integers. When m and n are both unity, the system response oscillation

is said to be harmonic. When m equals one and n is greater than one, the oscillation is

termed subharmonic, When n equals one and m is greater than one, the oscillation is called

ultraharmonic. When neither m nor n are equal to unity, the system oscillation is said to be
ultra-subharmonic,

In the experimental circuit discussed in Section 5, all but the last of the above
forms of oscillation have been observed, However, the harmonic and subharmonic cases pre-
dominate, For this reason, the relations between We and Bug in the remainder of this

analysis is assumed to be given by

Aw nw ns= 1’ 2, 3. “ve . (409)

Substituting Eq. 4.9 into Eq. 4.7, and retaining only the constant and fundamental terms, we

obtain
A“’r + Bmf cos (mft) = GH(m){Jo(B) sin (Aer) - 2J1(B) cos (Aer) sin (wft)
+n (3 _;(B) sin (ugt + 86) + J (8) sin (6)
- Jn'l'l(B) sin ((l)ft - Aes)]} ns= 1' 2. 3’ e . (4.10)

Separately equating the constant and fundamental terms of Eq., 4.10 yields the following pair

of equations
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Aw

r = G[I,(8) sin (86) + n J (B) sin (a6.)] , (4.11)

Bwf cos (wft)

Gﬁ(mf) [-27,(8) cos (86) sin (wgt)

+

n Jn_l(ﬁ) sin (wft + Aes)
-n Jn’l(B) sin (wft - Aes)] . (4.12)

It is now noted that for small B, Jn#lcs) is small compared with Jn_l(s). Thus, Eq. 4.12

can then be approximated by

Bue cos (uct) = GM(wy) {[-2\11(3) cos (88)) + nJ _(8) cos (26.)] sin (ugt)
+ [nJ,_(8) sin (46.)] cos (wft)} . (4.13)
Now, if ﬁ(wf) is written in the form
H(wp) = [H(ug) | exp [j2(ug] (4.14)
Eq. 4,13 can be written as
Bug cos (wet) = Glﬁtwf)l{:[-Zdl(B) cos (86.) + nJ _,(8) cos (A6))]
* sin [mft + Q (wf)]
+ [nJ _;(8) sin (88.)] cos [uw t + @ (wf)]} . (4.15)

Equating coefficients in Eq. 4.15 yields the following two equations

n 3,1 (8) sin (86

cot & (ug) = 3 J—(6) cos (86_) - 2 (B) cos (A6 * (4.16)
Bug = GlH(ug) | (49,2(8) cos? (46,) - 4J,(B) cos (46)
© nJ, () cos (ae) + n? J%_I(B)]1 2, (4.17)
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Equations 4,11, 4,16 and 4.17 are the coefficient equations from which the dependence

of Aer' A6, and 8 on n, bw, bug, G and H(w) can be found, This dependence information in

turn permits predicting the secondary signal interference susceptibility characteristics of

the APC system, at least for small B, Unfortunately, these three coefficient equations are
quite complex and cannot be solved conveniently even by graphical techniques. In Sections
4,3 and 4,4, solutions of these equations will be found for various lowpass filter character-
istics.,

In concluding this section it is necessary to emphasize a fact that is implicit

in the development above. The reader will recall that there are neither special gain nor

phase-shift requirements for the existence of oscillations in the present case. Nevertheless,
the applicability of this study is limited to values of APC system gain such that locked
instability oscillations will not occur, This restriction prevents the simultaneous
occurrence of two distinct modes of oscillation and, consequently, permits writing the form
of the oscillatory system response in terms of a single Fourier series, as was assumed
originally,

4,3 Susceptibility Characteristics of the Ideal Integrator

In the previous section, three coefficient equations in three unknowns were

derived for those APC systems whose gain is proportional to the input signal level, If, in

s . . 3. c e
addition, an ideal integrator™ is assumed for the system's lowpass transfer characteristic,

then these three equations reduce to the following single equation,

Ce 8 (4.18)
ontmm———n = - s .
'rwf2 J1 BY ¥ n-1 8

where G_ is equal to kokmEOEr as before (see Eq. 3.20) and v is the integrator time constant,

This single equation follows from the fact that Aes must be equal to either 0 or = radians

3In Section 3.1,1 it was shown that the assumption of an ideal integrator lowpass filter

characteristic produced an unstable system and, consequently, the coefficient equations
developed in Section 4.2 do not apply. With an arbitrary, small amount of damping, how-
ever, the integrator system is stable (see the comments following Eq. 3.20). The reader
may choose to view this section as either an approximate solution to an almost-ideal
integrator case, or an exact solution to the ideal integrator case with an approximate
model, In either case, the purpose of this section is to illustrate the basic suscepti-
bility characteristics for this particularly simple case. In the following section, rigor
is achieved at the expense of considerable additional complexity.
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as required by Eq. 4.13 whenever the lowpass transfer characteristic has a phase shift of
n/2 radians, and the fact that Aer must be equal to zero, since bu,, is zero (see Eq. 4.11),

Thus, Eqs. 4.11 and 4,16 are identically equal to zero, and Eq. 4.17 reduces to Eq. 4.18,

Notice also that Eq. 4.18 reduces to Eq. 3.38 when n becomes equal to zero,
The solution of Eq, 4.18 for B can be obtained graphically for each value of n,

Figure 4.1 is a plot of B versus Gm/rmf2 for various values of n and for n equal to one

(the harmonic solution), The three values of n shown (0.1, 0,2, and 0.355) correspond,
respectively, to secondary reference signal power levels of -20 db, -14 db, and -9 db,
Three aspects of these curves warrant comment. The first, which aids in constructing these
curves, concerns the intersection of all curves for the various values of n, It is easy to

determine the point of intersection., Let 8* be the value of the ordinate at this point and

equate

B* 6*
= 4,1¢
AN G R 0 Bl SN (O BV CRO N 19

The solution of this equation for nonzero n requires that JO(B*) equal zero. The first zero
of JO(B) occurs for B* equal to 2.4048, The corresponding abscissa value is given by
B*/ZJI(B*) and is equal to 2.317,

The second aspect concerns the curves in Fig, 4.1 that result from subtracting the

nJo(B) term in the denominator of Eq. 4.18, All of these curves have a minimum value of

Gw/rwfz. The coordinates of this minimum point may be determined by equating the following

expression to zero

d[G,/twg?]l  3,(8) - nJ (8) - 8[2J (8) + nJ,(8)]

=0 (4.20)
< [23,(8) - I (8)]2

and solving for n

2[2J,(8) - BI (8]
H A O RN ) ’ (4.21)

A graphical solution of Eq. 4.21 is presented in Fig, 4,2, As n increases, the value of
8 at which the minimum value of Gm/mf2 is reached also increases, The corresponding value

of G@/waz is again found from Eq. 4.18 once the value of B has been found. The locations
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2.0

1.6

B
(Radians)

12

0.8

0.4

0.0 0.2 0.4 0.6 0.8 1.0

Fig, 4.2, The g values for which G_/tw;? is minimum,

f

of these minimum values are useful for constructing the graph shown in Fig. 4.1. A further
significance to these minima is that as Gm/mf2 is decreased, B must exhibit a jump dis-
continuity for each fixed value of n. This point will be seen more clearly in the construc-
tion of Fig. 4.5 below,

The third aspect concerns the limiting value of the curves in Fig. 4,1 for high

values of G_/1w From Eq. 4.18 it is clear that this occurs for values of 8 such that

2
£
2‘]1(8) - nJo(B) = 0 . (4022)

The solution of B as a function of n for this equation is given in Fig, 4,3, Again this

information is useful in constructing the original graph shown in Fig, 4.1,
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The next step in determining the interference susceptibility characteristics of
an APC system with an ideal-integrator lowpass filter is to plot B versus Gw/waz for various
values of n, and for n equal to two (the first subharmonic solution). These curves, shown
in Fig. 4.4, lack distinctive features due to the relatively simple form of the denominator
in Eq. 4,18, In principle, one next can construct the appropriate curves for n equal to
three, etc,; however, the contribution from these.higher order subharmonic solutions will be
relatively negligible. This statement follows from two facts, First, the secondary signal
will now be essentially outside the passband of the APC system, and second, the shape of
the higher-order theoretical curves restricts any appreciable contribution.

Using the curves given in Figs, 4.1 and 4,4, B can be plotted as a function of
Bug (the difference in the frequencies of the reference and sccondary signals) with n as

a parameter, The dependence of Abg, A6, and B on bug, buwy, n, G, and H(w) is then

LOF

0.8 F

B
(Radians)

0.6 |

0.4F

0.2 F

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.3. The limiting values of 8 for infinite G_/tu.?.
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It
.

2.0

Gw/T = lsec'2

1.6 T

B X
(Radians)

1.2 ¢

0.8

0.4

| i A i 1 I Il 1 1 1 1

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Aw (radians/second)

Fig. 4.5. The B characteristics for an APC system with an ideal-
integrator lowpass filter,

established for this particular lowpass filter, From A6, 86, and 8, the values of 610 Og»

and e, can be determined to complete the solution, The reader will recall that both

1
buw,, and A, are zero for the ideal-integrator lowpass transfer characteristic, while A8,
is equal to either zero or m radians. The value of L is dependent on Aw , as will be
seen shortly,

Figure 4.5 shows B versus bug for the three values of n., It was constructed as
follows, The ratio G /t was assigned unity value, and bug was allowed to range between 0

and 2.8 radians per second. With Aws equal to Wey Fig. 4.1 was used to find B as a function

of Aw, over its range for each value of n, The limiting values of 8, for Bug equal to zero,

were read from Fig, 4,3, Superimposed on this plot (the second group of peaks) are the

values of B obtained from Fig, 4.4 (first subharmonic solution) with Awg equal to wa. The
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periodic system response frequency is equal to Ams except within the range of the second

peaks, where we is half of Bug .

In Section 3, it was sufficient to plot B, 2 being known immediately since B and
e, are proportional when the system oscillation frequency is constant (see Eq. 3.23), In

the present case, We is not constant. The curves of koe1 versus Ams, shown in Fig, 4,6,

are obtained directly from Fig. 4.5 by multiplying each ordinate value by the appropriate
value of Wee These two sets of curves differ in one importanf aspect--the periodic system

response amplitude decreases to zero (nearly linearly for low frequencies) with decreasing

Aw_, whereas B approaches a limiting value,
S .

The variable Aes is equal to 0 radian for the negative sign in Eq. 4.18 and 7 radians

for the positive sign. Translating this to either Fig, 4.5 or 4.6, it can be seen that Aes is

equal to zero for values of Ams from zero to the occurrence of the first jump, i.e., 0.8 cps

for n = 0.355. For all higher frequencies, AeS is equal to m,

2.0}
G /1 = 1 sec™2
%\ o]
&
o
[}
[}
0
~
n
g
8
S
&
Rl
i
Q
o
v
2.4 2. 8

Aw S (radians/second)

Fig. 4.6, The system response characteristics for an APC system with

an ideal-integrator lowpass filter,
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In conclusion, the reader is reminded that the purpose of this section has been to

introduce the basic characteristics of secondary-signal susceptibility interference., As will
be seen theoretically in Section 4.4, and experimentally in Section 5, these results, al-
though somewhat extreme, show qualitative similarity to the results for other transfer
characteristics. One indeed finds essentially abrupt jumps in the system response amplitude,
and rapid changes in a8, for certain lowpass filters,

A more complex graphical analysis of the three, original, coefficient equations

can be carried out for any H(w) that has a negative n/2 radian phase shift at a finite fre-
quency. This analysis is applicable to only a narrow range of frequencies about the critical

frequency above, Here the original three equations reduce to

M(up)G _ 8 (4.23)
G 23 (8) cos (86 ) v no__ (B)
and
n‘(wf)m.,r . BJ (8) sin (46.) .2
oy D) cos (Ro ) ® (8 (4.24)

The procedure for solving these equations is very similar to that used previously in this

section and in Section 3.

4.4 Suscepfibility Characteristics of Three Other Lowpass Filters

In this section, we return to the problem of the effect of more practical lowpass
filter characteristics. For such filters, none of the three coefficient equations developed
in Section 4,2 is identically equal to zero, The first step in the analysis procedure for
any given filter is the specification of H(w) in terms of a magnitude and phase function of
frequency. The sequence of subsequent steps is somewhat arbitrary. We have chosen to

specify next the system gain, G. Finally, the three dependent variables (46 Aes, and B)

T
are solved for in terms of Awr and Aws, with n serving as a parameter.

The technique for solving the three coefficient equations used in this study is
an extension of Newton's method for finding the zeros of a function in one variable, This
extension, known as the Newton-Raphson method, is discussed in Appendix A. Both of these

methods are iterative procedures and thus are easily implemented for solution on a digital

computer, A flow chart for the Newton-Raphson method solution to Eqs. 4,11, 4,16, and 4.17,
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along with the derivation of the required matrix coefficients for the method, are presented
in Appendix B. In the remainder of this section, the computer solution for three specific
lowpass filters are presented as examples.

The first solution is for a stable APC system with a lowpass filter having a
single real pole at -6,06 x 104 radians/sec, This value corresponds to the design value
for the particular lowpass filter incorporated in the experimental circuit shown in Fig. 5.2,
The square of the magnitude of the filter transfer function and the cotangent of the filter
phase characteristic were computed, and are plotted over a portion of their range in Fig. 4.7.
These two filter properties are required in the program based on the Newton-Raphson method
(see Appendix B), Notice that the system is necessarily stable, since the cotangent never
reaches zero at a finite frequency.

The three sets of curves shown in Figs., 4,8-4,10 correspond, respectively to

three distinct selections of system gain., Each of these sets shows koe1 (equal to AwSS)

plotted versus Aws, for bu,, equal to zero and for the values of n indicated. Only the
harmonic solution has been calculated from theoretical considerations and plotted here. All
of these curves are far less peaked, and lack the abrupt jumps, obtained with the ideal
integrator characteristic, Nevertheless, there is a maximum value to the periodic system
response, which increases both in amplitude and frequency with increasing loop gain, for
each value of n. The same general characteristics are observed for nonzero values of Amr,

as will be seen in a later example,

For the second example solution, a zero located at -19,15 x 104 radians/sec. is
added to the pole of the first example in the filter characteristic., This type of filter
frequently is found in practical APC systems, the zero being located to optimize the
system's signal-to-noise characteristics (see Ref, 4 for the appropriate design equations),
The squared magnitude of the transfer function, and the cotangent of its phase angle for
this filter are shown for this in Fig. 4.11, This system is also stable; indeed, it is

more so since the cotangent always has a smaller value than in the last example,

The same system gains were chosen for this example to facilitate comparison, The
Figs. 4,12-4,14 are the curves of koe1 versus Aws with Awr equal to zero. The curves are even
less peaked and of lower amplitude in this example thaﬂ in the previous one, Notice, however,
that as before, the maximum system response amplitude, and its frequency of occurrence along

the Ams axis, increase with increasing system gain,
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( 104 Radians/Sec)
N

(104 Radians/Sec)

!

2
16 Awg/2m  (kc/s) 4

Fig. 4.8. System response for the single pole filter with

G equal to 0.956 x 105

radians/second,

| I l

2
16 Aws/21r (ke/s) 4

Fig. 4.9, System response for the single pole filter with

G equal to 1,20 x 105 radians/second,
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(104 Radians/Sec)

0 | |
8 16 | 24
Aw S/ 2 (ke/s)

Fig. 4,10, System response for the single pole filter with

G equal to 1,35 x 10° radians/second.

In the third example solution, the zero in the filter characteristic of the second
example is replaced with a pair of complex conjugate poles, The filter transfer function is

then given by

1.984 x 10%°

(5+6.06x107) (5+1,207x10°+j 1,348x10°) (s+#1,207x10°-5 1,348x10°) (4.25)

H(s) =

This particular filter characteristic was originally chosen as an approximation to the
composite lowpass filter characteristic of the experimental system shown in Fig, 5, Con-
sequently, a relatively complete theoretical study of this case was performed and is pre-
sented here for its general interest., Subsequent experimental studies indicated, however,
that the actual filter characteristic was not as accurately approximated in the example as was
thought.

Once again, the square of the filter transfer characteristic magnitude, and the
cotangent of the filter phase angle were computed and are plotted over a portion of their

range in Fig, 4,15, It is interesting to compare the three sets of filter curves for

these three examples. The magnitude curves are nearly identical, particularly the first
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0 8 16 24
Aws/21r (ke/s)
Fig. 4,12, System response for the single pole-single zero filter
with G equal to 0,956 x 105 radians/second.
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Fig. 4.13 System response for the single pole-single zero filter with
G equal to 1,20 x 10° radians/second.
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Fig, 4,14, System response for the single pole-single zero filter
with G equal to 1.35 x 10s radians/second,

and third, while the phase curves differ considerably. In fact, in the present case the
phase shift is equal to -m/2 radians at a frequency of 12,9 kc. As a result, this system

is potentially unstable. This means that the system gain must be limited in order for
the forced oscillation analysis to apply.

The three values of gain selected for this example are the same as the values
used in the first two examples. In this case, they correspond respectively to 3 db, 1 db,

and 0 db less gain than is required for locked instability oscillations to exist. Figures

4,16-4.18, are again plots of.koe1 versus Aw, for 8w, equal to zero and for the values of
n previously chosen. Again, only the first harmonic solution has been computed and graphed,
These curves are much more peaked, and are considerably. greater in amplitude, than in the
earlier examples, The general appearance of the system response in this case is somewhat
similar to that of the ideal-integrator case in the last section, particularly for the

highest system gain.,
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Fig., 4,16, System response for the threec pole filter with
G equal to 0,956 x 10° radians/second,
n=.355
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Fig. 4.17. System response for the three pole filter with
G equal to 1,20 x 105 radians/second.

68



OW
o
[o ) -
[

(104 Rad{ans/ Sec)
[«2]
|

| ] | ] 1

0 8 16 AwS/Zﬂ (ke/s) 24

Fig., 4,18, System response for the three pole filter with
G equal to 1.35 x 105 radians/second,

For this filter the variables a8 and A6  have also been plotted versus Aw , for
buw, equal to zero. Each of the two sets of curves shown in Figs. 4,19 and 4.20 is for
the greatest value of system gain, Similar curves, of less amplitude, occur for lower
values of system gain. Observe that A8, has the general appearance of a step function, as

was found for the ideal integrator. Also, Aer is nearly equal to zero except in the

immediate vicinity of 12,9 kc, the frequency at which the filter has a phase shift of -7/2
radians. Notice further that the required values (Aes = 7 radians and Aer = 0 radian) of
these two dependent variables at 12,9 kc has been found by the computer solution, which

serves as a check on the computational method.
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Figures 4,21-4,26 (each at a constant value of Aws) demonstrate the behavior of
the three dependent variables as a function of Bu.. All of these curves are for the inter-
mediate value of system gain and for n equal to 0.2, In these curves g, rather than koe1
(equal to AwsB), is shown. Since Bug is a constant for each of these curves, koe1 also can
be found readily, Comparison of the Aes curves should be performed cautiously since the
scale for Aes is not always identical between curves.

One observes from these curves that 26, varies with Au,. in much the same way that
it does when instability oscillations occur, i,e., with an almost inverse sine relationship.
Nevertheless, 46, deviates from this single input signal relationship whenever g is non-
zero, Furthermore, Aér generally is not equal to zero for Amr equal to zero, This means that
As,, is not symmetric about the origin and, consequently, 8 and Aes are not even functions,

For relatively low values of n (such as n = 0.2), however, both 8 and Aes are almost even and
Aer is almost odd about Amr equal to zero and so little can be gained by also plotting these

curves for negative values of Awr.

Finally, for this filter, Fig. 4.27 represents the system response plotted as a
function of both positive Amr and B for n equal to 0.2 and G equal to 1.2 x 105 radians/sec,
the intermediate gain value. From the previous discussion, it follows that this surface is
essentially symmetric about the koe1 - o plane. It also can be shown that this surface is
symmetric about the koe1 - Awr plane, For these reasons,it is sufficient to examine only

the first quadrant, The maximum system response is seen to occur for Awr equal to zero

and for A@S/Zn equal to approximately 12 kc (see also Fig, 4,17)., As bu, increases, the
peak decreases slightly, spreads out, and occurs at lower values of Bug .«

| The above description represents the general behavior of the harmonic solution for
all filters., The peaking exhibited in Fig, 4.27 always exists but is of lesser magnitude

for the inherently stable filters, To a great extent the over-all system response character-

istics can be found from the Awr-equal-to-zero graphs shown extensively throughout this

section,

In this section, the interrelations of the various system and input signal para-
meters to the system response have been presented with the aid of three examples, since any
general direct interpretation of the coefficient equations appears impossible, One final

interesting observation can be made from these three examples, For all filters and system
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gains evaluated, the system response amplitude is equal to nAms for small Ams, when Amr is
equal to zero, Granlund (Ref, 13) found an identical relation for the interference response
in a conventional FM discriminator circuit,

4,5 Stability Analysis of the Forced Oscillations.

The validity of the analysis performed in Section 4.2 is primarily dependent on

the existence of a stable, periodic, system response when the secondary interference signal

is present. The stability theory for this forced case does not differ greatly from the
locked oscillation case of Section 3.1.,3. Once again, although the mathematical theory for
answering the question of stability is available, the required calculations for each case
are very lengthy. The general theory is presented briefly below. (For a more complete
discussion see Section 3.1,3),

The orbital stability of the forced oscillations may be established by the first
variation technique, The theory for this analysis (see Ref. 19) is described in terms of a
system of n first-order differential equations. Let the column vector ;(t) be a real

solution of

X = F(t,% (4.26)

for 0 = t < =, where the column vector F is analytic in x for each t, Then the first

variation equation is

c\ y=Flt,em]y , (4.27)

where Fx[t,;(t)] is a matrix composed of the columns aﬁ/axi(i=1,2,..., n). In the event that
o(t) is periodic of least period T, and F is periodic of period T in t, then Eq. 4.26 has

a periodic coefficient matrix of period T. This is precisely the form assumed by the APC
system equation when a secondary interference signal is present,

The following orbital stability theorem is proved in Ref., 19 for this case.

Theorem: If the characteristic exponents associated with the equation of first variation

(Eq. 4.27) all have negative real parts, then the periodic solution ¢(t) of Eq, 4.26 is
asymptotically stable as t approaches infinity.
The application of the stability theory just outlined is identical to that carried

out in Section 3.1.3 except that for an n-th order system it is necessary to find all n
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characteristic exponents instead of n-1, Since each must be found separately, this increases

the work for a system of given order,

4,6 Alternate Analytical Approach

In this section, the second, interference-susceptibility equation, Eq. 2.49, is
examined further, This equation is equivalent to Eq. 2.46 (also Eq. 4.1), but it does differ
substantially in form, The difference in form turns out to be a mixed blessing. The co-

efficient equations that result from this latter susceptibility equation are even more

complex than those found in Section 4.2, On the other hand, an estimate of the system re-

sponse can be made directly from this form for low values of Aws and bu..
When all but the first term of the sums in Eq. 2,49 are neglected, following the

technique employed in the earlier work, it may be written as

Awr = -Bwf cos (wft + el) + Gﬁ(m)‘v/l + n2 + 2n cos (Amst) sin

n sin (Awst)
(4.28)

46 - 8 sin (uct + 0)) * tan T+ ces (ho,D)
where B is defined by Eq. 3.23. The next step is to expand the two periodic functions
of bu t into their respective Fourier series representations, It is then possible to obtain

the desired coefficient equations.

The Fourier series expansion of the seemingly innocuous function,,/1+n2+2ncosAmst,
is difficulti Since it is an even function, the expansion contains only cosine terms,

The first three coefficients are derived in Appendix C, The results are

\/1 + n2 + 2n cos (Awst) = -21}- (1 +n) {E(k,n/Z)
+ 2 [F(k,n/2) ¢ (k2 - 2) D(k,71/2)] cos (bu,t)

+ %5- [15k2E(k,n/2) - 8(1 + k2) F(k,m/2) + 16(1 - k? + k“) D(k,7/2)]
* cos (28K t) + ..{} s (4.29)

where
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k=3m (4.30)
E(k,n/2) = The complete elliptic integral of the second kind, (4,31)
F(k,m/2) = The complete elliptic integral of the first kind, (4.32)
D(k,n/2) = [F(k,n/2) - E(k,n/2)]/k%2 . (4,33)

The higher order coefficients become progressively more complex expressions in terms of
the first two kinds of elliptic integrals.
The second function in bu t has a relatively simple Fourier series representation.

It is convenient to differentiate the function first,

d a1 " sin (Awst) n cos (Amst)+n2
T | T om | T s (4.3
n Wy 1+n2+2n cos (Awst)

The Fourier series expansion of this latter function also is given in Appendix C, with the
result that for n? less than one,
n cos (Amst)¢n2

Bu = -Aw_ (-n)n cos (n Awst) . (4.35)
1#n%42n cos (Bugt) n=1

Integration yields the desired series

-1 nsin (Awst) L (_n)n
tan m =T - n§1 - sin (n Amst) . (4,36)

When the constant and fundamental terms of Eqs. 4,29 and 4,36 are substituted

into Eq. 4.28, the harmonic solution becomes

- T 2(1+n)
Awr + B Aws cos (Awst + 91) GH{w) —_— E
+ 3 [F+ (k2 - 2)D] cos (Aw t))y sin[se, (4.37)

+ (n - B cos el) sin (Amst) - B sin 6, cos (Amst)] ,

1
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where
E = E(k,n/2), F = F(k,n/2), and D = D(k,n/2) , (4,38)

It is now possible to expand the sine function in terms of Bessel functions, and then equate
coefficients as was done in Section 4,2, The result of this operation is an even more com-
plex set of coefficient equations than the earlier ones, i,e., Eqs. 4.11, 4.16, and 4.17,
Since these sets of equations should yield essentially the same result, this development

will not be conducted further,

Some interesting relations can be found from Eq. 4.37, For low values of Aws and
bu, the dependent variable N is essentially zero as can be determined from the analysis in
the earlier section of this chapter. The product GH(w) is nearly equal to the real number G
for low values of Bug and for the commonly used lowpass filters. Finally, it may be shown

that for small n

ﬁ-}}-ﬂ {E + % [F + (k2 - 2)D] cos (Amst)} =

n
1 +n+ STTy cos (Awst) . (4.39)

Thus, for small Aws, Amr, and n, Eq. 4.37 takes the form
Awr + 8 Ams cos (Awst) =G [} +n o+ T%F cos (Awstij sin[Aer
+ (n-B) sin (Amst)] . (4.40)
The Bessel function expansion of the sine term is
sin[Aer + (n-B) sin (Amst)] = sin (Aer) cos[(n8) sin Awst)]
+ cos (28) sin[h-8) sin (Aw t)]
= sin (Aer) [Jo(n-a) + 2J2(n-6) cos (ZAmst) + .l

+ cos (Aer) [ZJl(n-B) sin (Amst) + o0l (4.41)
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Substitution of the first terms of this expansion into Eq. 4.40 yieclds
_ n
Awr + 8 Aws cos (Amst) = G[1+n+ Sy cos (Amst)]
+ [sin Aeflo(n-e) + cos AerZJl(n-B) sin (Awst)] . (4.42)

From this last equation it follows, by equating the constant and periodic terms separately,

that
bu, = G(1+n) Jo(n-s) sin 46, (4.43)

and

B Aws cos (Awst) = G(1+n) cos AerZJl(n-B) sin (Awst)

+ Gn
Ten

Jo(n-s) sin 46 cos (Awst) . (4.44)
The requirement for Eq. 4.44 to hold is that the first term on the right-hand side have
a zero coefficient, This means that Jl(n-B) must be zero which, in turn, implies that B is

equal to n. Hence, from Eq. 4.43,

Aw
. T
sin A6 = e (4.45)
and from Eqs. 4.44 and 4,45,
n Awr n Awr
B Aw_ = 1 . (4.46)
S a2 T

Note that since Eq. 4.44 is not applicable when bug is equal to zero, Eq. 4.46 contains only
the system response's dependence on Awr. Because B is essentially equal to n for low values

of bw, and Ams,one can write more generally
n Awr
koel = B Aws =n Aws + _T-lﬁ' n N (4.47)

where the second term on the left-hand side has significance for only nonzero values of Bug.
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These relations can be confirmed from the curves given in Section 4.4, Indeed, both Eq. 4.45
neglecting the n term and Eq. 4.47 with bu equal to zero previously were observed and remarked

upon. The dependence of koel on Amr can be seen in Fig. 4,21, for example.

4.7 Case of System Insensitivity to Input Signal Amplitude

The third interference susceptibility equation (Eq., 2,50) developed in Section 2,3,
pertains to APC systems designed to have a fixed system gain, i,e., systems which are in-
sensitive to input signal amplitude. In this section, the coefficient equations appropriate
to this case are developed. Once again, the complexity of these equations requires a

computer solution,

Here, as before, only the first term of the sum expressions in Eq. 2,50 will be

retained. Employing this simplification, the equation may be rewritten as

buwy, = -Bug cos (wgt + 0;) + G'M(w) sin [Aer

nsin (fw_t)

. -1
- B sin (wft + 91) + tan m N (4.48)

Substitution of the first term of the expansion given in Eq. 4.35 into Eq. 4.46 yields, for

the harmonic solution,
' = ! 3
buy + B bug cos (Bu t + 6,) =G H(w) sin (86
- B8 sin (Amst + el) + n sin (Awst)] . (4.49)
The Bessel function expansion of the sine factor is given by
sin[A8_ - 8 sin(py t 4 8;) + n sin (bugt)]

= sin (Aer) cos [(n - B cos 61) sin (Awst) - B sin e1 cos (Amst)]

+ cos (Aer) sin [(n - B cos el) sin (Awst) - B sin 8, cos (Amst)]

= sin (Aer) cos[(n - B cos 61) sin (Awst)] cos[B sin 6, cos (Awst)]

+ sin[(n - B cos el) sin (Amst)] sin[g sin 6, cos (Amst)]
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+ cos (Aer) sin[(n - B cos el) sin (Awst)] cos [8 sin &, cos (Amst)]

- cos[n - B cos el) sin (Amst)] sin[B sin 6, cos (Amst)]

= sin (a8) { [J (a;)+2J,(a;)cos (28w t) + e 119 (@)) =23, (ay) cos (28w t) + ...]

+ [ZJl(al) sin (Awst) + ...][ZJl(az) cos (Awst) - eedl

+ COS (Aer) [ZJl(al) sin (Amst) + ...][Jo(uz) - ZJz(az) cos (2Amst) + el

- [Jo(al) + 2J2(a1) cos (2Awst) + ...][2J1(a2) cos (Awst) - een] , (4.50)
where
= - 4.5
@ =1 B cos 61 , (4.51)
= i 4,
a, = B sin 8 . (4.52)

When only the principal constant and first harmonic terms of this expansion are retained,

the sine factor becomes for small o and s

sin[Aer - B sin (Amst + 61) + n sin (Awst)] =
sin (Aer) Jo(al) Jo(a.z) + 2 cos (Aer) [Jo(uz) Jl(al) sin (Awst) -
Jo(al) Jl(az) cos (Amst)] . (4.53)
When this is used in Eq, 4.49, the result is
Aw; + (n - al) Aws cos (Awst) - 0y Aws sin (Amst)
= G'M(w) ¢ sin (Aar) Jo(al) Jo(az) + 2 cos (26.)

* [Jo(az) J,(0)) sin (Buwgt) - J (a)) Jy(a,) cos (bugt)] > . (4.54)
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The three coefficient equations follow from this result and Eq. 4.14; they are

(- 3
Awr G' sin (Aer) Jo(ul) Jo(az) , (4.55)

@, Jo(az)Jl(al)
n-a, - Jo(al)Jl(ap

tanQ(dw_) = , (4.56)
s L. aZJo(az)Jl(al)
(n-al)JO(al)Jl(az)
Awg[(n-al)2 v o,?] = 4G'2|HTAwS)|2 cos? (46.)
¢ 920092 (ey) + I 2(e)d 2 ()] (4.57)

These three coefficient equations can be solved using the same technique that was
employed in Section 4.4 for the original‘set of equations, Although this has not been done,
some insight into the nature of the solution can be found by examining the ideal-integrator
case, On the basis of earlier work, it is thought that this particular example will give
an exaggerated indication of the general character of the system response amplitude as a

function of Aws.

When H(s) equals 1/ts, then Eq. 4.54 reduces to (recall that Aw; must be zero and

so 46 is equal to zero)

2G!
(n-ul) cos (Awst) -a, sin (Awst) = > [-Jo(az)Jl(al)
(Aws) T
+ cos (Awst) - Jo(al)Jl(az) sin (Awst)] . (4.58)
Equating coefficients yields
ZG;
- B een———— . + 5¢
(n al) " Jo(az)ll(al) R (4.59)
(Aw )4t
s
ZGw :
az = -———2— Jo(al)Jl(az) . (4.60)
(Ams) T

A solution to this pair of equations is given by ey equal to zero and the single equation
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26!

n-a, = -

1

J. (a)) (4.61)
(Aws)zr 171

Since a, equals B8 sin 8 and B is assumed to be positive, this requires that 8, be equal to
either zero or m radians, In those cases, @, must equal n-8 or n+B, respectively, Substi-

tution of these values into Eq. 4.61 yields, respectively,

'
G A

(bu)2c 23 (8%™n) |

(4.62)

This equation is similar to Eq. 4,18 (for the harmonic solution Eq. 4.18 has n equal
to one and bug equal to Aws) developed from the earlier analysis, Fquation 4,62 is plotted
in Fig. 4.28 for the lower two values of n. When this figure is compayed with Fig',4'1
(a plot of Eq. 4.18), the similarity is more prominent, A close inspection of Figs, 4,1 and
4,28 reveals jump discontinuities (see Fig., 4.6) which occur, respectively, at essentially
the same abscissa values. (These discontinuities result from the existence of minimum
abscissa values, for the right-hand branches of the curves.) The peak ordinate value (maximum

B8 value), however, is slightly less in the case of system insensitivity to input signal

amplitude.

Based on the above brief investigation, it appears that the use of a balanced
phase detector or other mechanisms for eliminating dependence of the APC system gain on

the input signal level does not materially affect the system response to a secondary signal,

Recall that the above theory depends on the value of n existing at the input of the APC
system's multiplier. The effect of a limiter, or other nonuniform signal processor

preceding the APC system, must be considered separately,
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Fig, 4.28, The harmonic relation between B and G;/rAwsz.
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5., SUPPLEMENTARY EXPERIMENTAL PROGRAM

5.1 Summary of the Experimental Program

In Section 4, a general theoretical analysis of the APC system's response to a
secondary interference signal was developed and interpreted, The purpose of this section
is to examine a particular APC system and compare experimental findings with the theoretical
predictions., Since the experimental work is not limited to a system response consisting of
a single sinusoidal waveform, the data can be extended to include values of n near unity
and system gains approaching the locked oscillation level, The latter information provides
additional insight to the effect of secondary-signal interference,

An input-amplitude-sensitive APC system was constructed for the experimental program,
The details of the system are described in Section 5.2, The experimental tests performed on
the system are summarized with the aid of the block diagram shown in Fig. 5.1. This experi-
mental configuration was used for checking both the locked instability oscillation analysis
of Section 3 and the secondary signal interference analysis, In the former case, the

signal generator supplying the secondary signal was turned off,

The following procedure was used for the experimental study of locked instability

oscillatipn. The combination of reference signal generator level and attenuator setting was
adjusted to yield a locked periodic oscillation (as opposed to the oscillations which

occur just outside the locking range), This input signal amplitude was maintained as the
reference signal frequency was varied across the entire passband of the APC system, The

amplitude (both dc and ac) and frequency of the APC response were recorded for each refer-

ence frequency test point. Data were obtained for three levels of system gain, The results

of these measurements have been presented in Section 3,2,

In measurements of the influence of a secondary signal, the following procedure
was employed. A minimum attenuation of 20 db was maintained between the output of each
signal generator and the APC system in order to insure adequate isolation of the two sources,
At the beginning of each experimental run, the maximum attenuation available (a total of
80 db) was inserted at the output of the secondary signal generator. With the minimum attenu-
ation of 20 db at the output of the reference signal generator, the output level and fre-

quency of this generator were adjusted so the system verged on locked instability oscillations
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with bu,, equal to zero; i,e., with the reference signal frequency equal to the open-loop
system-oscillator frequency. An identical calibration procedure was then followed for the
secondary signal generator,

The next step was to set up the particular values of G, Awr, and n required for the
current run., The system gain, G, was adjusted by inserting the appropriate value of attenua-
tion in the output of the reference signal generator; e.g., 21 db would represent a gain 1 db
less than the gain required for oscillation, Awr was set by tuning the reference signal
generator frequency to the desired value with the aid of a counter, The value of n, the
ratio between the secondary and reference Signal levels, was set by inserting the required
attenuation at the output of the secondary signal generator.

After these preliminary steps, the secondary signal generator frequency was varied

across the passband of the APC system. The difference in the frequencies of the two signal

generators, i.e., Aws, was recorded for each test point, The system response frequency,

ac rms voltage level, and dc voltage level were recorded for these values of Ams. This

entire procedure was carried out for several combinations of G, bu,, and n, Some experimental
results are given in Section 5.3,

5,2 Experimental APC System

Before discussing the experimental data for the secondary interference signal case,
it is convenient to consider briefly the circuit details of the APC system., This will further
an understanding of the specific cause of system instability when an excessive input signal

is present and of the particular response of the system to the secondary signal. Further-

more, the system's over-all lowpass filter transfer function is determined approximately for
use in a theoretical comparison,

A study of the circuit diagram for the APC system, shown in Fig. 5.2, reveals

that the required multiplication function is performed by a balanced phase detector. The
resultant error signal is amplified by a differential amplifier and then filtered by a single-
section RC filter., This lowpass filter is isolated with emitter-follower circuits. The
filtered signal is then applied to the system oscillator, an astable multivibrator, in such

a way as to control its frequency. The system oscillator output is approximately a square
wave and is applied to one of the two inputs of the phase detector. The input signal is
applied to the other detector input as indicated. In addition, an ac-coupled amplifier is
provided for the system response signal, For experimental flexibility, a switch is included
which can effectively remove the RC lowpass filter, (A photograph of this circuit is shown

in Fig., 5.3.)

92



‘uex8eTp IITNOITO Waisds Dy

o1+ o1+ o1
32 2 H o1+
= 31go0 5= OT+
T g
M2 2 ®
jod
A1
T 096 ST
Gl - eI - eI -

*z°s *814

dTTLNG 91¢®
SJIO01SISUBRI} IV ALON

mo
Louanboaag

2 J

600¥NI
1

N

ovL
dLO

LJ ndug
oM-6G¥y

93



One of the important experimental parameters is ko’ the gain constant of the system
oscillator measured in cycles (or radians) per second per volt. This parameter can be
measured easily by applying a dc voltage to the oscillator input and noting the resultant
frequency, The data points shown in Fig, 5.4 represent a series of these measurements, and

the curve drawn through these points is a straight line approximation. The excellent
frequency linearity of this astable multivibrator with voltage can be predicted by theory

over an appropriate range of voltage. From this curve, the slope, ko’ is determined as

42,8 kc per volt.

Fig. 5.3, The experimental APC system,

Another important circuit property is the over-all lowpass filter transfer function,
If the stray capacitance of wiring and components is ignored, then the transfer function con-
sists of a pair of isolated real poles. One of these is due to the RC filter of the system;
the other is a consequence of the envelope detection circuit of the phase detector. More
precisely, this latter pole is caused by the series diode resistance and effective secondary
resistance of the transformer in the circuits coupling to the inputs of the differential
amplifier., The presence of this second pole in the transfer function causes this system
to be potentially unstable, Since the diode resistance depends on the input voltage level,

so does the location of the pole. For this reason, it is difficult to assign directly by

circuit analysis, or to determine experimentally, the appropriate time constant for this
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Fig. 5.4, System oscillator frequency versus voltage relation,

pole. An indirect determination follows,

Assuming that H(s) for this system has the form

1

e« mmmg (5.1

and recalling from the experimental work in Section 3.2 that |ﬁ(mf)| is approximately

equal to 0.43 when mf/Zw is equal to 12,94 kc, then it follows that
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1

0.43 = T
K1+j112n x 12,94 x 107) (1+j1

. (5.2)

521 X 12,94 x 103)|

At this frequency, the transfer function must introduce a phase shift of -m/2 radians. This

requires that
1t @nx 12,94 x 1092 =1 . (5.3)
Solving Eqs. 5.2 and 5,3 for L5 and T, yields

T, = 7.02x 10°% second .

T, =216 x 107 second . (5.4)

Where T, is the time constant of the RC filter of the system and Ty is the time constant of
the pole produced by the phase detector. A direct experimental evaluation of T, can be

made easily, as a check on the above result., This yields a value of 20.8 x 10’6 second,

Although it is unlikely that the transfer function given by Eq, 5.1, with the
values of Y and T, indicated by Eq. 5.4, is an exact description of the actual filter
characteristic, the model given is not unreasonable. It should be reiterated that it is
difficult to measure experiméntally the actual lowpass filter characteristics. This dif-
ficulty is caused by the phase detector (multiplied circuit which introduces phase shift and
attenuation in generating the control signal. This filtering action cannot be measured

conveniently since the control signal does not exist explicitly in front of the diode

circuits, and is modified by the detector filter at subsequent points, For this reason (in

addition to the difficulty of experimentally evaluating II(s)) the phase-detector gain
constant, km, and hence the system gain, G, are also difficult to obtain directly. Cer-
tainly, one of the useful applications of the locked instability oscillation analysis is the
indirect evaluation of G and |ﬁwa)' from simple measurements,

5.3 Experimental and Comparative Theoretical Results

The experimental procedure outlined in Section 5.1 for the secondary-interference-
signal case was employed to obtain the data shown graphically in Figs. 5.5-5.7. Each of these
three sets of curves was made for a constant value of system gain and for Aw,. equal to zero,

The gains for these three sets are, respectively, 3 db, 1 db, and 0 db less than that required
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for the initiation of locked oscillations., The ordinate and abscissa quantities, koe1 and

Aws/Zn, are those used in Section 4 for the similar theoretical curves. The values of n used

here are also the same as in Section 4,

In general, these curves reveal the presence of the harmonic, the first subharmonic,
and a series of smaller ultraharmonic system response peaks. The harmonic response peak occurs
on the various graphs between 7 and 11 kc. The first subharmonic response peak occurs at
approximately twice the frequency of the harmonic peak., The frequency of system response
within the subharmonic peak was found to equal Ams/4n, as expected, The absence of a
second subharmonic response also agrees with the theoretical predictions. Although no
attempt was made to analyze the ultraharmonic case theoretically, it is reasonable to expect
that techniques similar to those used in this study could be applied. These peaks are
relatively insignificant for the lower value of n and G. This changes dramatically, however,

for the higher values of these parameters., Frequencies of system response within these
20w 3dw

peaks were,successively,-z?i ke, -7;3 ke, etc,

The photographs in Figs., 5.8 - 5,10 show the system response for conditions as
stated individually on each picture, For lower values of n the response is essentially
sinusoidal, Nevertheless, it is clear that nonsinusoidal periodic waveforms occur for
appreciably high values of n. These effects are pronounced for high values of G, For
this reason, the applicability of the theoretical results developed in Section 4 is limited.
The high-frequency ripple evident in these pictures is due to imperfect filtering of the
system oséillator at the point of observation,

For the purposes of comparison, the analytical techniques developed in Section 4
were applied to a model of this experimental circuit. The system lowpass transfer
function given by Eq. 5.1 (using the time constant values given in Eq. 5.4) was assumed for
the model. The two filter quantities required by the Newton-Raphson method, i.e., the square
of the magnitude of the transfer function and the cotangent of its phase angle, are plotted
in Fig. 5.11, The harmonic solutions for the same values of gain used in Figs, 5.5-5.7 are

shown respectively in Figs., 5.12-5,14, These latter curves evidence system behavior similar
to that observed previously, but they have noticeably more amplitude than the experimental

curves. An explanation of this may be that Eq, 5.1 does not adequately describe the actual
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a) The harmonic peak for:

G=-1 db (relative to the
gain required for system
instability)

n=0,355

Frequency of oscillation
(i.e., Aws/Zn) = 7.92 kc/s

Vertical scale 0.1 volt/
division

Horizontal scale 50 usec/
division

b) Halfway between the harmonic
and first subharmonic peaks
for the values of G and n used
in (a)

Frequency of oscillation
i.e., AmS/Zn) = 11,75 ke/s

Vertical and horizontal
scales are identical

¢) First subharmonic peak for
the values of G and n used
in (a) and (b)
Frequency of oscillation
(i.e., du_/4m) = 7,85 kc/s

Vertical and horizontal
scales are identical

Fig, 5.8, Periodic forced system
‘ response waveforms,
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a) The harmonic peak for:

G=-1db, n=0.2

Frequency of oscillation
(i.e., bdu/2m) = 9,52 ke/s

Vertical scale 0.1 volt/
division

Horizontal scale 50 usec/
division

b) Halfway between the harmonic
and first subharmonic peaks
for the values of G and n
used in (a)
Frequency of oscillation
(i.e., Aws/Zn) = 14,30 kc/s
Vertical and horizontal
scales are identical

c) First subharmonic peak for
the values of G and n used
in (a) and (b)
Frequency of oscillation
(i.e., Aws/4n) = 9,52 ke/s
Vertical and horizontal
scales are identical

Fig., 5.9,

Periodic forced system
response waveforms,
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Fig. 5.10,

a) The harmonic peak for:
G=-1db, n=0,1
Frequency of oscillation
(i.e., Aws/Zw) = 10,00 ke/s

Vertical scale 0,1 volt/
division

Horizontal scale 50 usec/
division

b) The first subharmonic peak
for the values of G and n
used in (a)
Frequency of oscillation
(i.e., Aws/4n) = 10,52 kc/s

Vertical and horizontal
scales are identical

c) System response with Aws/Zn
equal to and for:
G = -1 10.00 kc/s db, n = 0,56
Vertical and horizontal
scales are identical

Periodic forced system
response waveforms,
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system transfer function, From the work in Section 4.4 it can be seen that relatively slight

changes in the phase angle of the transfer function can influence quite noticeably response

characteristics. A second factor is that the actual response is nonsinusoidal for the higher

values of n and G; this violates a basic theoretical assumption,

+2
1.0
q4+1
Magnitude Squared
8F Cotangent of the Phase Angle
0
.6}
-1
4
-2
L2F
/ -3
I
0 I 1 1 i 1 1 L 1 1 1
2 4 6 8 10 12 14 16 18 20

Aw S/21r (ke/s)

Fig, 5.11, Characteristics of the two-pole filter.
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6. CONCLUSIONS AND APPLICATIONS

Results of this study facilitate an understanding of the causes and effects of the
locked, periodic responses of APC systems beyond that previously achieved., Two distinct
types of periodic response were considered--locked instability and forced oscillations.

The system designer is provided with the tools necessary to determine the possibility of
either form of periodic response by his circuit, and with design guidelines for controlling
these oscillations where needed, Several conclusions and applications based on the findings

of this study are presented below.

The periodic response of an APC system to a single, constant-frequency input signal

within the system's capture range has been referred to in this study as a locked instability

oscillation, An APC system will exhibit locked instability oscillations only when the
following two requirements are met:

1) The transfer function of the system's lowpass filter must
introduce a phase shift of -w/2 radians at a finite frequency, and

2) The total system gain, including the attenuation through the
lowpass filter, must exceed unity,

The frequency of oscillation; if it exists, will be the finite frequency at which the first
requiremeﬁt is met.

When locked instability oscillations exist, the magnitude of the periodic response
is an even function of Amr, the difference between the input (reference) signal frequency

and system oscillator's open-loop frequency, The response is maximum for b, equal to zero

and decreases quite abruptly to zero for increasing |Amr . The system phase error is an
odd function of Awr and has zero value for zero Awr. Except when Awr is equal to zero,
the static system phase error always exceeds in absolute value the error that would exist
if no oscillations occurred., A typical example of both of these relationships was given
in Fig, 3.3. It is generally true that as the system gain increases, the magnitude of the
system response increases for any given value of Awr' and the range of Awr over which the

magnitude is nonzero also increases, The effect on the system phase error is also accentuated

as the gain increases,
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An additional, interesting aspect of the locked instability oscillation analysis
is the ability to determine the system gain and the magnitude of the lowpass filter's
transfer function at the frequency of oscillation. Both of these quantities can be found
from three easily performed measurements. Since direct measurement of the gain and complete
filter characteristics is often difficult, this indirect method is of considerable value,
The three measurements needed are those of

1) The frequency of oscillation,

2) The maximum magnitude of oscillation, and

3) The value of Awr at which the oscillations cease.

The specific relationships between these measured quantities and the quantities of interest
were developed in Section 3,2 (see Eqs. 3.74-3,77),
The second type of periodic response considered in this study, i.e,, forced oscil-
lations, results when the APC system is subjected to two constant-frequency input signals.
In the particular problem analyzed, it is assumed that the greater amplitude input
signal is the reference signal and that the other signal differs only slightly in frequency
from the reference. It is then shown that the system exhibits a periodic response, i.e., a
forced oscillatory response. Under the above conditions, the average frequency of the system
oscillator is equal to the reference frequency for low-level periodic responses.
(The frequency of the response oscillations should not be confused with the system
oscillator frequency.) In contrast to locked stability oscillations which exist only for
certain ranges of system parameters, all APC systems exhibit forced oscillations, The
peak magnitude of the system response with forced oscillations is related, however, to the
stability éf the system, Based on the examples of‘Section 4,4, it can be seen that as
the phase shift of the lowpass filter approaches and exceeds -n/2 radians, the response

magnitude increases,

The general characteristics of the forced oscillations are considerably more

complex than those of the locked instability oscillations, Three dependent variables are

defined for this case--the magnitude of the response, the system phase error (between the
reference signal and the system oscillator signal), and the phase relations between the
periodic response and the input reference signals, The third variable is usually of little
interest and will not be discussed here any further (see Section 4 for additional details).

The four independent variables for any given APC system are:
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1) G: The system gain,

2) n: The amplitude ratio between the secondary and
reference signals,

3) Bw i The difference in the radian frequencies of the
reference and open-loop system oscillator sig-
nals, and

4) Bug: The difference in the radian frequencies of the
secondary and reference signals.

In general, the magnitude of the system response will be zero whenever Bug is zero,
provided that the sum of the input signals does not cause system instability (for systems
sensitive to input-signal amplitude). Further, it has been shown that the response magnitude

is essentially equal to nbug for small Bug . Grandlund found this same behavior for the

FM discriminator preceded by a wideband limiter (see Ref. 13). For this reason, it is
expected that an APC system designed to operate properly as an FM demodulator will exhibit
the same effectiveness against co-channel interference as does the limiter-discriminator
combination,

As bug is increased further, the magnitude of the system response tends to peak in
one or more places. The number of peaks and the degree of peaking are a function of the
other three independent variables as well as of the lowpass filter characteristic of the
system (as discussed previously). Usually, there are two dominant pecaks--the harmonic and
first subharmonic response peaks, The radian frequency of the response oscillation within
these two peaks is, respectively, Aws and AwS/Z. Since the first subharmonic peak occurs
for values' of Bug approximately twice those of the harmonic peak, the frequency of system
response in these peaks is nearly the same. The harmonic response prevails for values of
bug immediately below and above the first subharmonic peak, The consequent changes of
oscillation mode may be, but are not necessarily, quite abrupt. The system response wave-
form is nearly sinusoidal in both of these peaks for low values of n and G. The existence
of any significant higher-order subharmonic peaks was neither predicted by the theory nor
observed experimentally.

A number of lesser peaks may exist with values of bug below that for occurence
of the harmonic peak., These ultraharmonic peaks occur in increasing numbers as n is in-
creased, for any fixed value of G, The radian frequencies at which these peaks occur are
1/2, 1/3, 1/4, etc., times the values of Aws for which the harmonic peak exists. The
frequencies of system response within these peaks are, respectively, ZAws, SAms, 4Aws, etc,
Here the response waveform was quite complex for the experimental system evaluated (see

Section 5). Certainly, the existence of these ultraharmonic peaks jeopardizes the co-
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channel performance of an APC system, The tendency toward this peaking decreases as G is
decreased, Furthermore, it is expected that the magnitude of these peaks can also be
decreased through choice of a suitable, relatively stable lowpass filter (such as the single
zero-single pole filter of Section 4.4),

The dependence of the system response magnitude on bw, is, in turn, quite de-
pendent on bwg . An example of this relation, for the harmonic peak with n and G fixed, was
given in Fig. 4,27, In general, the harmonic peak decreases in amplitude, and occurs at
lower values of Aws, as Awr increases, Furthermore, this peak broadens with increasing
Amr. The first subharmonic peak tends to decrease in relative size and to disappear
eventually for increasing Awr, as do the ultraharmonic peaks, In general, the effect of
increasing n and/or G is to accentuate the characteristics already discussed,

Modification of the phase error of the system by the presence of the forced oscil-
lations is similar to that in the case of locked instability oscillation. There are some
differences, however, in the two cases, For example, the phase error is not generally equal

to zero when Awr is zero, although it does not deviate greatly from zero for even moderate

values of n and G. The phase error remains an odd function of bw, (essentially the inverse
sine of Amr/G), and is almost independent of Bug . These results have been verified both
theoretically and experimentally.

As previously stated, this study serves, a) to provide the designer a means for

analyzing his system with regard to its susceptibility to a locked periodic response, and

b) to provile guidelines for the control of the locked periodic response. An example of the
former is given by the work of Sections 3.2 and 5. From the theoretical work developed in
this study, along with the analysis technique described in Appendix A, it is possible to
determine analytically the system response characteristics for at least the harmonic and sub-
harmonic response peaks. Likewise, the degree of locked instability oscillation, if any,

can be determined for any given value of systém gain,

Specific applications where the guidelines are useful are in the design of
receivers to reduce co-channel interference and of frequency synthesizers utilizing APC systems,

It was mentioned previously that an APC system might effect co-channel rejection of a
second FM signal similar to that of the limiter-discriminator circuit. Another related
application of an APC system was recently discussed by Bridges and Zalewski (see Ref, 22),
who proposed a technique to reduce co-channel interference in AM double-sideband systems--
which may employ two APC systems, Each APC system is required to lock to one of the two

received carrier signals and reject the other. These carrier signals are assumed to be at
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nearly the same frequency, Since the object of the two APC systems is to provide a copy of
their respective carriers without any (or, at most, with a minimum of) additional spectral
components, results of this study dictate that considerable care must be taken in the design
of the two lowpass filters in the system., Specifically, a particularly stable filter is
needed to minimize the forced response peaks--at the possible expense of system holding range.

In the design of a particular form of frequency synthesizer (see Ref, 23), APC
systems are used to extract a single harmonic component from a reference frequency comb of
many, harmonically related signals, It is desirable that the APC system bandwidth approach
in value the harmonic separation of adjacent comb components, in order to insure that the

system will lock to the desired signal, Beyond this objective, other spectral energy in the

output of the APC oscillator should be minimized., Care and compromise in the design of the

system filter are required to achieve these two conflicting objectives.
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APPENDIX A

NEWTON-RAPHSON METHOD FOR SIMULTANEOUS

The Newton-Raphson method is an iterative technique for the solution of simul-

taneous non-linear equations,

NON-LINEAR EQUAT

TONS

The following brief description is abstracted from Ref. 24,

We seek the solution(s) of the system

where

£(x) = 0

X = column vector [xl,xz,...,xn] .

and

>

consisting of n real equations in the n real unknowns, x. Now define the matrix

f = column vector [fl(;), fz(;),...,fn(;)]

MO w [£,00] 1<

with elements

R of, (x)
flJ(x) = —3;;- .

i, j<n ,

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

Thus, det M(x) is the Jacobian of the system (A.1) evaluated for the vector x. With these

definitions in mind, and with the starting vector

X
[¢]

column vector to([x
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the Newton-Raphson method is given by the iterative equation

- ~

Xeol = % * ka, k=0,1,2,3, ... , (A7)

where ka is the solution vector for the set of simultaneous linear equations given by
M(x,)éx, = -f(x

k) . (A.8)

It can be proven (see Ref. 24) that if the elements of M(x) are continuous in a neighborhood

of a point x' such that

3(2') =0 , (A.9)

and if det M(x') is nonzero and X, is '"near" x', then

lim X = x' . (A.10)
k-

Since the system (A.l1) may have several solutions, the requirement that X, be near x'

guarantees that the selected starting vector will converge to the desired solution,
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APPENDIX B

IMPLEMENTATION OF THE NEWTON-RAPHSON METHOD

The Newton-Raphson method described in Appendix A easily may be programmed for the

solution of a particular set of equations on a digital computer. The only possible program-

ming complication lies in executing the required solution of a set of simultaneous linear
equations (i.e., the solution of Eq. A.8). Since many efficient routines are available for
this specific problem, even this usually entails only selecting an appropriate library
subroutine.

A flow chart of the program used for the éalculations in Sections 4,4 and 5,3 is
given in Fig, B.l, This program was designed to solve for the three unknowns g, 48, and

46, as functions of bu,, and Bug for fixed values of n and G, all for a given lowpass filter,

The starting vector Bos 8605 and 48, s is supplied for the first values of Awr and Aws
analfzed. After the first solution is obtained, b, is incremented and the solution of the
first point is used as the new starting vector. This continues until the maximum desired
value of bw, is reached. Then b, is reset to its initial value and Bug is incremented,
Here, the starting vector is the solution to the point with the initial value of Aw,, and the
previous value of Bug « For this value of Bugy bwy again is run through all of its values,
The program continues until the final values of Buwg and buw, are reached,

For each point on the bu, = dug plane, the solution vector is printed and.so is
the product, BAuw . This latter value is proportional to the magnitude of the system response.
Based on the experience of running this program on an IBM 7090 computer, it was possible to
calculate approximately 125 points per minute. (Each point represents a new value of b,
and, when incremented, Aws.) Typically, between three and four iterations were required

for each point when it was specified that each of the variables, 6xk , ka , and 6xk at any
1 2 3

given iteration was less than one percent of the respective values of the elements of Xy .
The M(x) elements required by the Newton-Raphson method are determined from the
coefficient equations derived in Section 4.2; namely, Eqs. 4.11, 4,16, 4,17, These are

rewritten here in the format of Appendix A,
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£,(x) = bu, - GLI (8) sin () + I (8) sin (ao))], (8. 1)

nJ._1(8) sin (a6])

£,(0) = cot (g - () cos (88, - D, (8) cos (ao) (8.2)
£,(x) = 82ug? - G2[M(ug) [2(492 (@) cos” (ag)
- 4J,(p) cos (ae) * nJ,_,(g) cos (a6g) + n232_1(a1 (B.3)
where x = column vector (8, A8 Aes]. (B.4)
The respective partial derivatives (the matrix required elements) can be expressed as:
£,(0 = -GUJ (8) sin (a6) + nsin (ag)) [FJ,(8) - J, (@]} , (8.5)
f12(£) = G J_(8) cos (a8) (B.6)
£,,(x) = n GJ (8) cos (a6 (B.7)

.~ 2nsin (a8,) cos (48,) [Jots)Jn_l(s)-P- J (8 1 (8)+J, (8T (8)]
100 = £ . (B.8)
[nJ,_,(8) cos (agg) - 23,(8) cos (Aer)]Z

. -2nJ,(B)J_ ,(B) sin (A6 ) sin (a6 )
fzz(x) - 1 n-1 S T , (B.9)
‘ [nJ,_,(8) cos (a8)) - 2J,(8) cos (ae,)]?

L - n232_ (8) - 2nd;(B)J, _,(8) cos (46,) cos (e, (B.10)
[nJ _,(8) cos (a0) - 2J,(8) cos (a6,)]?
£,(%) = G2[Mwy) |28 cos2(a0,) J,(8) I, (B) - £3,(8)] - 4n cos (s6)
cos (86)) J,_(8) [ (8) = I (B)] - 4n cos (4e) cos (80) J(8)
B2 0 (8 - 3 @+ 202, )BT, 1 (8) - I (O] -28u? ,  (B.1D)

fsz(;‘) = 462 |T1'(mf)|2.11(s) sin (a6 )[nJ _;(8) cos (86) -2J,(8) cos (4601 ,  (B.12)

£5(x) = 4062 [M(wp) |23, (8)3,_ (8) cos (a0, cos (86)) . (B.13)
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Equations B,5-B.13 constitute the nine elements required for the 3 x 3 M(;) matrix in

Eq. A.8 for the original three coefficient equations. Equations B.1-B.3 constitute the
clements of the %(;) vector also required by Eq. A.8. In the program, all twelve of thse
elements must be evaluated at each iteration in order to solve for the correction elements

N

in éxk.
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APPENDIX C

DERIVATION OF SOME FOURIER COEFFICIENTS

In Section 4.6, the Fourier series expansion of two periodic functions are re-

quired. The appropriate coefficients for these series are developed below, The first func-

tion to be considered is the radical expression,v/i + n? + 2n cos bugt with period
Zn/AmS. The constant n is positive and less than unity, This function is even with respect
to t and has a nonzero average value,

The appropriate cosine series coefficients are given by

™
a = % \/q +n2 +2ncos x cos kx dx, k =0, 1, 2 ... , (C.1)
0
where
X = Awst. (C.2)

With the aid of the identity

cos x =1-2 sin2(§) . (C.3)
the a, coefficient becomes
m
=4 2 T 2[X
a == o\/l +2n + n2 - 4n sin (7) dx/2 (C.4)
or
/2
=4 2 . 2
a == Q.\/(1 + n) 4n sin‘ y dy (C.5)
with the change of variables
y = X/Z N (C.G)
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Let

4n

k2 2 c— (C.7)
(1+n)?
Then Eq. C.5 may be written as
/2
a = i%ﬂl)- J1-KkZsinZy dy = i(-f[ii E(k,n/2) (€.8)
(o]

where E(k n/2) is the complete elliptic integral of the "second kind." Although E(k ,n/2)
is a function of k (and hence n) it will be helpful to write it simply as E in the following

development., Thus, the leading coefficient in the cosine series is just

. 2(1+n)
ao/z = —— E . (C.9)
For small n this may be expanded in the form
3 n2
a°/2 = (1+n)[1-n-z----- - el (C.10)
(1+n)2

which shows that the average value of this function for small n is similar to unity,

The calculation of the coefficient a, is carried out in much the same way, With

the changes of variables (C.2, C.6 and C,7) and the identity (C.3), a, may be written as

/2
a = ﬂl%:ﬂl /1 - K2 sin2 y(1 - 2 sin? y) dy (C.11)
o
or
/2
a = ﬁﬁ%ﬁﬂl E-2 sin?y. /1 - k? sin? y dy (C.12)
o

The integral of Eq., C.12 may be evaluated with the aid of the identity

/2 /2

.2 i 2ein2
sin? ya/1 - k2 sin? y dy = sin. y{ - Kisinty)dy (C.13)
0 o ./1-k%sin?y

With the aid of Ref., 25 the two terms of the right-hand side may be expressed by
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[n/2

sin” ydy _ 1 [F(k,n/2) - E] (C.14)
o /1-k? sin?y  k?
and
/2
. (F(k,n/2) - E)
Sty dy L2 ek e A Rk,n2) (C.15)

o . /1-kZsin?y 3k2 k2 3k?

where F(k,m/2) is the complete elliptic integral of the "first kind", abbreviated to F

below., Combining these expressions yields

<4040 12 - k2) E 4 2(k2 - DF] . (C.16)

1 g2,

For small n it may be shown that a; is similar to n.

The higher order coefficients may be found in exactly the same way. For example

a, is easily placed in the form
/2
a, = 2320 1 - K2 sin2k (1 - 8sinZy + 8 sin 4y) dy , (C.17)
o

from which it is not difficult but somewhat tedious to show that

a, = 51%-;-“1 [15k2 E - 8(1 + k2)F + 16(1 - k% + k")p] , (C.18)

where D is defined as
p=E=E | (C.19)

The second function for which the Fourier coefficients must be found is

ncos(Awst) + n?
dug . In this case it is easy to derive the general coefficient, Once
1+n2+2ncos(Amst)

again this function is even with respect to t, but has no constant term, This may be seen
from its integral (Eq. 4.34) which has no term increasing linearly with t. The desired
coefficients are given by

2Znhw
a = —_— —Z0SX2N . cos kx dx, k=1, 2, «.. , (C.20)

kil
o 1+n2+2ncos x
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where again

X = Amst .

With the aid of the following two definite integrals found in Ref.

k
cos_kxdx _ m(-n) for n2 < 1
o 1+n2+2ncos x 1-n?
and
i
cosxcoskxdx 7 lan?

=5 ¥l forn2 <1,
o 1+n2+2ncos x 1-n2

Eq. C.20 takes the form

which can be simplified algebraically to

& = '('n)k bug -
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