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NOTE 

TOTAL RADIANCES AND EQUIVALENT WIDTHS OF 
DOPPLER LINES FOR NONISOTHERMAL PATHS* 
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Willow Run Laboratories, Institute of Science and Technology, The University of Michigan, 
Ann Arbor, Michigan 48 107 

(Received 23 February 1967) 

Abstract-An analytical method similar to that used by SIMMONS(t) on Lorentz lines was applied to the problem 
of the growth of an isolated Doppler line for the case of nonisothermal paths. The results, given in terms of the 
total radiance (N) and equivalent width (W) of the line, are : 
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is the function obtained by LADENBURG t4’ for the isothermal case, ye is an effective spectral line haif-width, N:(g) 
is the Planck function of the local temperature in the emitting-absorbing gas, the nondimensional optical depth 
is defined by dx = (ln 2/x)‘/‘[S(X)G(X) dX]/y,, where S(X) is the local value of the line strength, dX is the incre- 
ment of standard optical depth, and G(X) is a function characterizing the temperature dependence of the line width, 
and the subscript Prefers to the total path in the emitting-absorbing gas. 

RECENTLY relations for total radiances (IV) and equivalent widths (W) of isolated Lorentz 
lines along nonisothermal paths were developed using an analytical method.“) This note 
describes a similar analysis which was carried out for isolated Doppler lines. 

The spectral absorption coefficient at frequency v and temperature T, k(v, T), in this 
case is 

k(v,T) = (~r”‘~exp{-[~~ln2} 

where S(T) is the line strength, y = (vO/c)(2kT In 2/m)“’ is the Doppler line half-width at 
half-maximum line intensity, vO is the line center, k is the Boltzmann constant, and m is the 
mass of the emitter. 

* This work was supported by the Advanced Research Projects Agency, Dept. of Defense, Washington, DC., 
under Contract DAHC15-67-C-0062. 
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Relations for the total line radiance, N, and equivalent width, W, of an isolated Doppler 
line in an isothermal region are well known:“) 

where 

(4) 

(5) 

and N,’ is the Planck function, assumed to be constant over the spectral interval occupied 
by the line. For small x, g(x) + x. So equations (2) and (3) have the following form for weak 
lines : 
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For large values of x, we use an asymptotic formC3’ of g(x) : 

g(x) = (41/Z N 2 [In(x)] ‘I2 

N and W in the strong line limit then are: 
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Tabulations of g(x) for x = @lo to 1000 can be found in Ref. 4. 
In a nonisothermal region, the absorption coefficient is a function of temperature and 

wavelength, hence of path and wavelength since temperature can be represented as a 
function of conditions along the path. The equations for line radiance and equivalent width 
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for nonisothermal paths are obtained from the equation of transfer : 

N=-[N”dv=jjl X(v,X)N;-(X)exp[-Jt(v,X’)dX’]dXdv (11) 

W = i{l-exp[-i&X)dX]}dv. (12) 

If we assume N* = N* change the integration over v to an integration over Av = v - v,, 
and assume no iontrib%on from - co to - vc so the limits of integration change from 0 to 
+ co to - cc to + co, equations (11) and (12) then become: 

00 XL X 

N= ss k(Av, X)N:(X) exp k(Av, xl) dX’ dX d(Av) 1 (13) 
-00 0 

W = 1 (I-exp[- Tk(Av,X)dX]}d(Av). 

-Kl 
(14) 

The solutions require the separation of the path dependent and wavelength dependent 
terms in the absorption coefficient. 

As in Ref. 1, two cases are now considered : (1) a “nearly weak” line approximation and 
(2) a “nearly strong” line approximation. 

In the “thin gas” approximation (weak line case), equations (13) and (14) reduce to the 
simplified forms : 
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XL 
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s 

S(X) dX (16) 

Therefore, for weak lines, N and W are i:dependent of y. For “nearly weak” lines, the 
assumption that N and W are relatively insensitive to the value of y is made and we replace 
y(X) in equation (1) by an effective line half-width, ye = constant, which may be taken to be 
a mass-weighted average line half-width, to obtain : 

,(v,X),(y)“‘yexp[-(yrln2]. (17) 

The use of equation (17) is more reasonable than replacing the attenuation term in equation 
(13) by unity for nearly weak lines, where some self-absorption exists. It will later be shown 
that N and W for the nonisothermal case,obtained by using this form of k(v, X) reduces to 
the simple linear (weak line) forms, equations (6) and (7), for the isothermal condition and 
small optical depth. 
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If equation (17) is a good approximation for nearly weak lines, we can certainly improve 
the approximation and extend its range of applicability by replacing ye in the denominator 
by its actual value y(X) : 

k(v,X) g (1_nni)“‘$$/exp[-( y)‘*n2]. (18) 

In strong lines, further absorption takes place mostly in the line wings. For Doppler lines, 
the condition that [(v- v&l2 >> 1 means that the exponential in equation (1) cuts off 
absorption in the line wings very rapidly, no matter what value of y is used. Replacing y by 
ye only in the exponential term to obtain equation (18) will therefore be termed the “nearly 
strong” line approximation. It will later be shown that N and W for the nonisothermal case 
obtained by using equation (18) reduces to the strong line forms, equations (9) and (lo), for 
the isothermal condition and large optical depth. 

The absorption coefficient can now be represented as : 

exp[-( y)‘ln2] (19) 

where G(X) = 1 for the “nearly weak” line approximation and G(X) = [r&(X)] for the 
“nearly strong” line approximation. 

Considering first the simpler expression W, we substitute equation (19) into equation 
(14): 

W = _i p-exp{- ~(~)‘i2S(X~(exp[-($)21n2])dX}]d(dv). (20) 

Define a dimensionless optical depth, x, by 

which upon substitution into equation (20) gives 

W = i [I-exp{-x,exp[-( s)21n2]}]d(Av). 

-0-J 

(21) 

(22) 

Expanding the first exponential on the right-hand side of equation (22) in an infinite series 
and interchanging the order of summation and integration, we obtain : 

l{exp[-n($rln2]}d(Av) 

0 

112 

7 i? (-lrxF+' = “CO (n+ l)!(n+ 1)1’2. (23) 
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Identifying the infinite series on the right-hand side of equation (23) as the function g 
defined in equation (4), which was obtained in the solution for W and N for the isothermal 
case, we obtain the desired expression for the equivalent width of a nonisothermal Doppler 
line : 

w= & 
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Substituting equations (19) and (21) into equation (13): 

(24) 

N= fm TN:(x)[exp{-($rln2}]exp{-xexp[-($rln2]}d(Av)dx. (25) 

-00 0 

Expanding the second exponential on the right-hand side of equation (25) in an infinite 
series and interchanging the order of summation and integration, we obtain : 

N = 

6 

N,*(x)2 $ yxn 
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‘/ {exp[-(rr+I)(t)‘In2]}d(Av)dx 

N,*(x) 2 ‘(- ” 
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n! (n+ 1)1’2 
dx. 

n=o 

We recognize the infinite series in equation (26) to be the derivative of g : 

& (- 1rx” 
dx= “ZO n!(n+ 1y 

(26) 

(27) 

Substituting equation (27) into equation (26) we obtain the desired expression for the total 
radiance of a nonisothermal Doppler line : 

N = ( &)1’2yegq,N:(g)dg 

0 

(28) 

The function g(x) has asymptotic values of x and (2/Ja) [In(x)] ‘I2 for small x and large x, 
respectively. The corresponding representations for dg are dx and x- ‘[x In(x)]-‘/2 dx. 
Substituting g = x and dg = dx into equations (24) and (28), we obtain the nonisothermal 
weak line expressions : 

W= (&)l12yexL = i’-)dX, 

N =(&)li2~~~N:(X)dx _OjN;(X)g(X)dX. 
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Under isothermal conditions, equations (29) and (30) reduce to equations (6) and (7), the 
weak line isothermal equations for N and W for optical depth X = XL. Substituting 

g = (2/Jn) M41 ‘I2 and dg = x- ‘[rc In(x)]- “’ dx into equations (24) and (28), we obtain 
the nonisothermal strong line expressions : 

l/2 yeL [In( l/’ - 
Jn 

- &{h[(!!$)“*$TS(X)G(X)dX])‘;’ (31) 

and 

N = (+ei NT(x)x- ‘[rr in(x)]- 1/2 dx 

-l/2 
S(X)G(X) dX. 

TABLE 1. SUMMARY OF RELATIONS 
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5 

S(X’)G(X’) dX 
0 

F(X) = 1 (nearly weak line approximation) G(X) = 1 

F(X) = y(X)/?, (nearly strong line approximation) G(X) = Y&(X) 
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Under isothermal conditions, equations (3 1) and (32) reduce to the following forms : 

w = (In 2)‘12 
Akn[ (yr’E$Z])“’ 

N = (In ;p2w 
~~-l[In{(~)1’2~}~li2dy 

= $NtEn{ (v)1’2y}]1’2 

which are identical to equations (9) and (lo), the strong line isothermal equations for N 
and W for optical depth X = X,. 

It is interesting to note the similarities between the isothermal and nonisothermal 
relations for N and W for the Lorentz and Doppler lines, as summarized in Table 1. 
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