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Abstract: The five-dimensional quasi-spin formalism is used to factor out the n, T dependent parts
of shell-model matrix elements in the seniority scheme and derive reduction formulae which
make it possible to express matrix elements for states of definite isospin 7 in the configuration
jn in terms of the corresponding matrix elements for the configuration jv. The n, T dependent
factors for one- and two-nucleon c.f.p. and for the matrix elements of one-body operators and
the two-body interaction are expressed in terms of generalized R(5) Wigner coefficients. The
needed R(5) Wigner coefficients are calculated in the form of general algebraic expressions for
the seniorities v and reduced isospins ¢ corresponding to the simpler R(5) irreducible represen-
tations. In this first contribution, the R(5) representations (w,#) = (j+3—4}v, t) are restricted
to (w10), (%), (#1), and the states of (w, 1) with n—v = 4k—2T, (k is an integer). Explicit
expressions are given for the diagonal matrix elements of the general, charge-independent, two-
body interaction and the isovector and isotensor parts of the Coulomb interaction for seniorities
v = 0 and 1, and the v = 2 states with n = 4k+2—-2T.

1. Introduction

For configurations of identical nucleons, the three-dimensional, quasi-spin for-
malism ') has been used by Lawson and Macfarlane?) ' to factor out the n-dependent
parts of nuclear matrix elements. The resulting reduction formulae make it possible
to express matrix elements involving states for the configuration j" with seniority v
in terms of the corresponding matrix elements for the configuration j°. For the most
part, however, the three-dimensional, quasi-spin formalism merely furnishes a simple
and elegant way to understand well-known results ). Expressions for the #-dependent
factors of nuclear matrix elements for configurations j" of identical nucleons have been
derived without the use of the quasi-spin formalism. For configurations of both pro-
tons and neutrons on the other hand, analogous reduction formulae which give the
dependence of nuclear matrix elements on nucleon number » and isospin T are much
more complicated, and the generalization of the quasi-spin formalism to five dimen-
sions © ~12) now constitutes a valuable tool in deriving such formulae. The five-dimen-
sional, quasi-spin formalism makes it possible to give the explicit n, T dependence of
all nuclear matrix elements in the seniority scheme in terms of generalized Wigner co-
efficients for a five-dimensional rotation group. With the calculation of these R(5)
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T+ See also ref. ?) and for extensions to mixed configurations, see refs. 2-4),
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Wigner coefficients, the basic purpose of the seniority classification can be achieved;
i.e. the influence on all nuclear properties of nucleon pairs coupled to J = 0 can be
expressed in terms of explicit #, T dependent factors. Some progress has been made
toward the achievement of this goal. The R(5) Wigner coefficients needed for the n, T
dependent factors of one-nucleon fractional parentage coefficients for j; £ 7 have been
tabulated, partly numerically, by Ginocchio *?), while the R(5) coefficients needed
for the J = 0 coupled two-nucleon c.f.p. have been tabulated numerically by Ichi-
mura '?). It is the purpose of this and a succeeding investigation 27) to extend this
work to give general algebraic formulae for the n, T dependent factors for all one-
and two-nucleon c.f.p., all matrix elements of one-body operators and the diagonal
matrix elements of the general two-body interaction including the isovector and iso-
tensor parts of the Coulomb interaction '*), for all seniorities and reduced isospins
of possible interest in shell-model calculations.

In order to review the power of the method it may be useful to compare the “quasi-
spin spectroscopy’” of Helmers and others ®~!2) with the conventional seniority spec-
troscopy of Racah and Flowers °). In the conventional spectroscopy, states for a
simple configuration j" of both neutrons and protons are classified according to the
group chain U(2j+1) o Sp(2j+1) = R(3). Some disadvantages are inherent in this
chain. (i) The highest symmetry which preferably should be associated with the most
powerful quantum numbers actually has irreducible representations characterized
solely by the trivial quantum numbers # and 7. (ii) The highest group in the chain is
unnecessarily complicated. For large j the rank of the highest group is unnecessarily
large since the irreducible representations of actual interest are labelled by merely two
quantum numbers, # and 7. (iii) A different symmetry group is necessary as starting
point of the group chain for each j, and in particular for mixed configurations. In
quasi-spin spectroscopy on the other hand, the classification scheme is based on two
parallel group chains starting with the direct product of the quasi-spin group and the
symplectic group in (2j+1) dimensions, i.e. R(3) x Sp(2j+1). The set of ten infini-
tesimal operators which generate R(5) commute with the infinitesimal operators which
generate Sp(2j+1). The irreducible representations of both R(5) and Sp(2j+ 1) are
labelled by seniority v and reduced isospin ¢ [ref.®)]. The group chain based on Sp
(2j+1) is that associated with the conventional spectroscopy, Sp(2j+1) = R(3), but
is now completely specified by the simple configuration j°. The group chain based on
R(5) can be chosen to include the subgroup SU(2) generated by the three components
of isospin T which commute with the number operator [generator of U(1)] : R(5)
> SU(2) x U(1). Quasi-spin spectroscopy thus achieves the following aims. (i) Nu-
cleon number # and isospin T are now associated with the lowest subgroups in one of
the chains. They play the same role as the magnetic quantum number M; of ordinary
angular momentum theory. Dependence on # and 7 can thus be factored out of any
matrix element by application of a generalized Wigner-Eckart theorem and knowl-
edge of the associated generalized R(5) Wigner coefficients. (ii) The highest symmetry
in the classification scheme is now as simple as possible. The group R(5) which is the
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starting point of one of the two parallel group chains is a simple group of rank 2 for
which explicit properties including the needed Wigner coefficients can be worked out
in detail. (iii) The starting point of that branch of the group chain containing the iso-
spin and number operators is always R(5) so that the same symmetry group serves
for all j as well as for mixed configurations.

The quasi-spin technique is thus a natural tool for deriving reduction formulae
through which matrix elements for the configuration j" can be expressed in terms of
corresponding matrix elements for the simpler configuration j*. The formulae are
easily generated to mixed configurations. The quasi-spin technique is also tailor-made
for the study of the general n- and T-dependence of physical quantities for series of
nuclei, although its applications in this regard are somewhat limited by the fact that
it is tied closely to the seniority scheme. Seniority is in general not a good quantum
number in nuclei where both neutrons and protons are filling the same shells. Never-
theless some observed simple n, T dependent effects in light- and intermediate-weight
nuclei may perhaps be understood at least qualitatively by a very simple application
of the quasi-spin formalism if admixtures of high seniorities are relatively unimportant
to the understanding of such effects. So-called isobaric mass formulae and Coulomb
energy systematics may possibly fall into this category. In a systematic study of the
energies of isobaric analogue states, for example, Jinecke **) found a simple T(T+1)
dependence for the energies of isobaric analogue states of odd-mass nuclei and a
similar T'(T+ 1) dependence for the energies of even nuclei supplemented by a strong
pairing effect which favours (lowers the energy of) the even 7 states of nuclei with
A = 4k, (k is an integer) and the odd T states of nuclei with 4 = (4k+2). Similarly,
the isovector and tensor coefficients of the Coulomb energy (diagonal matrix elements
of the Coulomb interaction) show systematic #, T dependent effects '¢-17).

Although the application of the quasi-spin formalism is straightforward in prin-
ciple, it is complicated in practice by the fact that the group chain R(5) = SU(2) x
U(1) is not a canonical one corresponding to a mathematically natural group de-
composition. The scheme in which the physically relevant labels n, T and M are good
quantum numbers does not completely specify the states of the irreducible representa-
tions of R(5) without the introduction of a fourth operator which commutes with
T?, T, and the number operator. Such an operator has the disadvantage that its eigen-
values are not related to the irreducible representation labels of a subgroup of the
decomposition. A mathematically natural and complete labelling scheme could be
based on the group chain R(5) o R(4) = R(3) x R(3), where the two commuting
R(3) groups are the separate neutron and proton quasi-spin groups and together
furnish the four commuting operators needed to completely specify the states. Al-
though the generalized Wigner coefficients have been calculated in this scheme ?),
these do not give the needed , T dependent factors for nuclear matrix elements direct-
ly since T2 is not diagonal in this scheme. By calculating transformation coefficients
[refs. 13- 18)] from this mathematically natural scheme to the physically relevant one,
however, it is possible to calculate the needed n, T dependent factors, at least num-
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erically. Although this technique is laborious it has been used to give tables for some
of the simpler of these coefficients 11-13),

Since it is the aim of this investigation to give general algebraic expressions for the
n, T dependent factors for all types of nuclear matrix elements and all seniorities of
actual interest in shell-model calculations, a more direct method will be employed.
Fortunately the R(5) irreducible representations of actual interest in shell-model
calculations essentially fall into two simple classes. (i) The first includes those seniori-
ties and reduced isospins for which the quantum numbers n, T and M are sufficient
to completely label the states of a given irreducible representation. For these a given
value of T can occur only once for a given nucleon number, (7-multiplicity = 1).
In this class are all states with reduced isospin? = 0,t = fand ¢t = Q—4v (Q =j+3
for simple configurations and Q = Y ,(j,+1%) for mixed configurations). Also in this
class are the states with z = 1 and n—v = 4k —2T; for example the (n = 4k, T odd)
and (n = 4k+2, T even) states with v = 2. (ii) The second class includes all those
states for which a specific value of T can occur at most twice for a given nucleon num-
ber n (T-multiplicity = 2). This class includes the remaining states with ¢ = 1 (those
with n—v = 4k+2—2T) and all states with 1 = $ and t = Q—3v—1. For these two
simple classes of states, it is possible to give general algebraic expressions for the R(5)
Wigner coefficients needed for nuclear matrix elements. The expressions are partic-
ularly simple for states of class (i). The calculation of the R(5) Wigner coefficients
for class (i) states will be presented in this paper, while the calculations for the more
complicated class (ii) states will be presented in a subsequent publication.

In order to establish the notation, a brief review of the five-dimensional quasi-spin
formalism is given in sect. 2. The operators of physical interest are classified as to
their irreducible tensor character under R(5) in sect. 3. The method of calculating
R(5) Wigner coefficients and their properties are discussed in sect. 4. Applications to
matrix elements of physical quantities for states of the configuration j" are given in
sect. 5, while tables of R(5) Wigner coefficients for class (i) states are collected in an
appendix.

2. Review of the five-dimensional quasi-spin formalism.
Definitions and notations.

In order to establish the notation, a brief review of the five-dimensional quasi-spin
formalism will be given. [The notation will follow that of ref. *').]

The classification scheme of conventional spectroscopy is based on groups generated
by infinitesimal operators with conserve nucleon number. The quasi-spin groups on
the other hand are generated by operators which include pair creation and annihila-
tion operators, in particular the operators which create or annihilate pairs of nucleons
coupled to J = 0 and T = 1. The five-dimensional quasi-spin group for configura-
tions j" is generated by the ten infinitesimal operators
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ATMn) =33 3 AmAm M) (= 1) o, 0
A(Mr) = %% i )<%mt%mtIIMT>(_I)J_maj—mm'tajmmt’
T, = L Qs 3 imsy s T, = Z(aﬂru Ujms = Q=3 Gjm=3)> [INop=(J+3)],
where (1)
Nop =Y @, @, -

m, me

They are built from conventional single-nucleon creation (and annihilation) operators

J,,,,,,[ (and a;,,,, ). The generalization to mixed configurations merely requires a sum
over all possible j as well as m and a replacement of the weight factor (j+1) by
Q =3 (j,+3). Except for a normalization factor (j+ 1) *, the operators A7 ()
and (A4(My)) are pair creation (annihilation) operators for nucleon pairs coupled to
J = 0,7 = I and #,. They and the components of the isospin operator Tand a tenth
operator f; = N, —(j+1) are the generators of a group R(5). The connection with

TABLE |
The five-dimensional quasi-spin operators and the iniinitesimal operators of Ry

L Five-dimensional R(5) infinitesimal R(5) irreducible
Quast-spin angular momentum operators in tensor components )
operators ®) operators ") standard form ©) 711

- ] T H TMr
N~ (J+%) Jia H, +T b0
T J34 H, +T6v6
A1) HJ1a+J23) +ilJaa+d34)] Eyy +T4Y

A1) {14+ J23) — {20+ J3)] E_y -7,

AT (=1) H1a—J23) +i(J24—J31)] —E +T42,

A(=1) V14— J23) —i(J2a—J31)] —E_y -7
A47(0) 312 (Js2+iJy5) Eo +T80

A(0) ﬁ(-’sz‘“ﬂls) E_1o +740,
T, (Vas +iJs3) \//5 Eoy - /ET(Ollll)

T (Jos—iTs3) V2Ey_ +/218,

2) The operators as defined in egs. (1).

?) The five-dimensional angular momentum operators satisfy the same commutation relations as the
operators J,,, = —i(x,,0/0x,—x,0/0x,,); m,n = 1,...,5; but no restriction to five-dimensional
“orbital” angular momentum is implied. The vector T has been chosen to span the 3, 4, 5 subspace.
¢) The R(5) infinitesimal operators in standard form for root diagrams of Cartan’s symmetry B,.
The operators £, step up (down) the quantum numbers (3n—j—%) and My by @ and b units, respec-
tively. The operators E,p are the same as those defined in ref. 19).

4) The phases of the R(5) irreducible tensor components follow from the commutation relations,
eqs. (7).
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angular momentum operators in an abstract five-dimensional space is illustrated in
table 1. The two commuting operators of the rank 2 group are H, = N,,—(j+1%)
and H, = T, so that the weights are labelled by » and M. The eigenvalues H, have
a simple symmetry property under particle-hole conjugation H, - —H,asn—4j+2
—n. The remaining infinitesimal operators are organized into standard step-up (down)
operators E,, in table 1. The irreducible representations of R(5) are labelled by
(w, w,), the highest weights (H ¢izens H eigen) Of the representation. For states with
seniority v and reduced isospin ¢, the largest eigenvalue of H, is 4n.,,— (j+3) with
1 max= 4f+2—v. The state with 4j+2—v nucleons (v holes) has unique isospin #.
The largest eigenvalue of H, = T, in this state is thus ¢. This leads to the identifica-
tion of the R(5) quantum numbers (®,w,)

[ =j+%—%l7, W, =1, (2)

so that the irreducible representations of R(5) are labelled by seniority v and reduced
isospin 7. A complete labelling scheme for the states of a given irreducible representa-
tion of R(5) in general requires four quantum numbers. The physics dictates the choice
n, T and My for three of these. In general these must be supplemented by a fourth
label B. The states for a simple configuration j" are thus specified by

v, t}nTM r; aJ M), 3)

where the quantum numbers «, J and M, refer to the decomposition Sp(2j+1) =
> R(3) > R(2). The label « is needed in those cases where the v nucleons free of
J = 0 coupled pairs can be coupled to total J in more than one independent way. The
quantum numbers BnTM; refer to the R(5) branch of the group decomposition.
States of seniority v can be built from v nucleons free of J = 0 coupled pairs, coupled
to reduced isospin ¢, and p = (n—v) pairs of J = 0 coupled nucleons. The p-pairs
are coupled to resultant isospin T,, where T, is restricted to p, p—2, p—4, . . ., since
the p-pair creation operators A™ are commuting isospin 1 operators. The total iso-
spin T is thus the result of the vector coupling T = t+ T, and it would appear that
the fourth label could be chosen as 7. Although a labelling scheme based on T}, does
give a complete specification of the states, it does not lead to an orthogonal set of
basis states since the label 7, cannot be associated with the eigenvalue of a Hermitian
operator (commuting with T2, T, and N,,). In an |(w; w,)T,nTM) scheme, states
with the same # and 7 but different 7, are thus not orthogonal to each other. One way
to overcome this difficulty is through the construction of a fourth operator with eigen-
values that distinguish states of 7T-multiplicity > 1 for given ». Such an operator must
be an isoscalar and conserve nucleon number. On physical grounds, Flowers and

T To avoid confusion the labels {r, 1} will always be enclosed by curly brackets, while the R(5)
quantum numbers (w,m,) = (j+%—4r, ) will always be enclosed by round parentheses.



FIVE-DIMENSIONAL QUASI-SPIN 17

Szpikowski '°) have suggested the operator
(A% AYA - 4) = (3 (=)' M4 M)A (= M) X (~ 1) " mAMD A= M7).
My M'r
4)

Another possible candidate might be the operator
T-7 =Y (-)'""MTy T .,
Mr

where
1)1 —My

Toup= T MMM S0 LA (MDA M7) + A= M)A (M),
T T v
)

Neither of the operators of eqs. (4) or (5) is invariant under complex conjugation.
Under conjugation (A" -A*)A-A) > (4 -A)A* A"y while T- T - -T- T
(See appendix 1. In the notation of appendix 1 (A" - 4*)(4 - A) = 0,,0_,,. The
commutator [(4 - A), (A% - A7)] is, except for trivial additional factors, equal to
4T T ; see table 8 of appendix 1.) If the fourth operator is made invariant under
complex conjugation, its eigenfunctions can have simple symmetry properties under
conjugation. Since conjugation takes states with H, into states with — H,;(n— 4j+2—n)
this is an important requirement since the physical properties of particle and hole
states are simply related. In place of the operators of egs. (4) and (5), the fourth opera-
tor might be chosen as

a{(AT - AYYA - A)+(A- ANAT - AT)} +bH,(T - T), (6)

which has the necessary symmetry property under conjugation provided a and b are
arbitrary constants (including the possibilities » = 0 or @ = 0) or functions even in
H, and T,. No attempt has been made to find the best possible values for a and b for
the general irreducible representation of R(5) since the algebraic structure of the
eigenvalues of (6) is very complicated in the general case. In practice the problem of
the fourth operator can essentially be avoided since the R(5) irreducible representa-
tions of actual interest for shell-model calculations are relatively simple.

The n, T structure of the general irreducible representation (w, w,) = (j+1—1v, 1)
has been studied by several methods'''!2:29), In the irreducible representation
(w, 1), the allowed values of H, and T are given by the possible angular momentum
couplings T = T,+1 where:

(i) T, has the possible values 7, = p’, p'—2, p'—4,...for H, = +|w,—p'|, p' =0,
1,2,...(Z2w,). The allowed states are subject to the additional restrictions.

(i) T £ wy; and, if the possible couplings of T, + ¢ lead to a state of specific T
more than once.

(iii) A state with T=w,~m (m =0,1,2,...) occurs at most g-times where



18 K. T. HECHT

g = min(m+1, @, —r+1). (See, for example, ref. **, table 2.) The possible H, and
T values for the simple representations (4 1), (10), (11), (20), (22) are given in table 2).

TABLE 2
The H,;, T-structure of some simple representations

1§33 1o 1
H | T H | T H | T
T 1o 1 1
3 | 3 0| 1 0 |0t
-1 ] 0 —1 1
20) (22)
H | T H | T
2] 0 2 2
11 1 12
01 02 0 |012
~1 i T - 1 12
-2 70 -2 2

The n, T structure is very simple for the irreducible representations (@, 0), (wy, %)
and (#1). In these representations the states are completely specified by the labels n, T
and M since a specific value of T for a given nucleon number # can occur at most
once (T-multiplicity = 1). In addition, states of the irreducible representation (w; 1)
with @, —~H,—T = 2k or (n—v) = 4k-—2T have T-multiplicity = 1. Similarly the
states of the irreducible representations (w, %) and (#+1, £), as well as the remaining
states of the irreducible representations (w, 1) (those with n—v = 4k +2-2T) belong
to a class with 7-multiplicity = 2 at most. In all these cases, the two independent states
with the same values of H, and T can be distinguished by their symmetry property
under conjugation. The two states |JH, TM ) labelled by different values of f can be
built such that they have the symmetry property plus or minus, respectively, under the
conjugation operation which transforms the state into a corresponding state |f°, — H,,
T, —M;>, so that the quantum number § can be replaced by a symmetry label in
these simple cases. Although this symmetry property does not lead to a unique labelling
of the double states of these representations,’ it can be supplemented by a require-
ment of simplicity to lead to an explicit and tractable construction of these states ™.
It is thus possible to calculate general formulae for the needed Wigner coefficients
involving the irreducible representations (»;0), (w;4), (w,1), (@,3), (11), (¢+1, 7).
This includes all possible {v, ¢} values for simple configurations with j < § or for mixed

1 Inref. 1), the claim was made that use of the symmetry label leads to a unique specification of the
states with T-multiplicity = 2. With the exception of the H; = 0 states of the representation (e 1),
this is not true. In particular, the choice made in ref. ') for the plus and minus states of the represen-
tation {w;1) is an unnecessarily cumbersome one and will be replaced by a simpler choice which
makes it possible to give tractable algebraic expressions for the R(5) Wigner coefficients involving

the representation {(w;1).
t Details for the states with T-multiplicity = 2 will be presented in a subsequent paper ¥).
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configurations with @ = Y (j+%) < 5. For a mixed configuration with Q = 6;
j =1, 3 and 3, for example, only the single R(5) representation (w,w,) = (42),
corresponding to an overall seniority and reduced isospin {v, ¢} = {4, 2} falls outside
the two simple classes included in the above list. Such exceptional cases can easily be
treated numerically. With these rare exceptions therefore it is possible to give general
algebraic expressions for the R(5) Wigner coefficients needed for a detailed applica-
tion of the five-dimensional quasi-spin formalism to shell-model calculations.

3. The R(5) irreducible tensor character of simple operators

All physical operators can be classified as to their irreducible tensor character with
respect to three-dimensional physical space, isospin space and in addition also as to
their irreducible tensor character with respect to five-dimensional, quasi-spin space.
An R(5) irreducible tensor operator can be denoted by 75573}, Since the operators
of actual interest in shell-model calculations belong to the simple irreducible rep-
resentations of table 2 for which the irreducible tensor components are completely
specified without the label 5, this label will in general be omitted. The R(5) irreducible
tensor operators Té,“}‘l“ﬁ}T can be defined through their commutation relations with
the infinitesimal operators of the group

[Hy, 7] = (Gn—j= DT 050,
[To s T[i(:l):(;‘)lz\}T] =M, T;g:u}ﬁT >
[Es» Téﬁ:?i}T] = Iz}}((wl @)’ (H,+a)T'(Mz+b) Egl(w, w2)fH, TM )
X Tﬁ(ffﬁﬂ:?a)r'(MTM) - (D
The matrix elements of a component of such an irreducible tensor operator are given
through a generalized Wigner-Eckart theorem
{1 @)BH, TM T il 03)B'H T'M )
= ; (o] 03)B H T'M7; (0 05)"HYT" "My (0, @)BH, TMr),
x (o, w2)||T(w”1w”2)“(w'1 w,2)>p , (8)

where the reduced or double-barred matrix elements are independent of quantum
numbers of type f§, H;, T and M;. The dependence on these quantum numbers is car-
ried by the first factor, an R(5) Wigner coefficient. The R(5) Wigner coefficients are
the elements of the matrix which reduces the Kronecker product of two irreducible
representations of R(S). They are defined by

(o} w3)(@) )@, 0;)p; BH, TM1)
= Y eio)H T'Mpl(o) o))" H{ T M7
B'H T'M'r
gl

x {(wr w)B HT'M1; (0]} "HY'T "My (0, 0,)fH, TMr),. ©)
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Since the isospin group is a subgroup of R(5), the R(5) Wigner coefficients can be
factored into an ordinary isospin angular momentum Wigner coefficient and a re-
duced R(5)/R(3) coefficient or isoscalar factor, to be denoted by a double bar

(@1 w2)f'H T'M7; () 03)B"HY'T" "M7 (@, 02)BH, TM 1),
= {T'M;T"M7 | TM (0] 03)fH T’ () 0)B"HY T [I(0y w:)pH, T),, (10)

where the double-barred coefficient is completely independent of the quantum num-
bers M. The index p in egs. (8)-(10) and the sum over p in eq. (8) are not needed for
simply reducible products, such as (w; @,) x (1) = (0, +%, W, + 1)+ (0, +3, w,— 1)
+ (0, —%, 0+ 1)+ (0, — %, w,— 1), for example. They are needed only in those cases
where a representation (w, w,) can occur more than once in the Kronecker product
(0] @3) x (0] wy). In the cases where this multiplicity problem arises, the Wigner-
Eckart theorem serves partly to define the new quantum numbers p, since the decom-
position into reduced matrix elements and R(5) Wigner coefficients is determined by
the choice of the quantum numbers p. The product (w; w,) x (11), for example, con-
tains the representation (w,; ®,) itself with a multiplicity of 2 (with the exception of
the special cases (v, @,;) = (w,0) or (77) for which the multiplicity is 1). Since the
infinitesimal generators of the group transform according to the ten-dimensional
representation (11), the matrix elements of the infinitesimal generators can be used
to define the label p in this special case. The matrix elements of the infinitesimal
generators are chosen to be proportional to the R(5) Wigner coefficients with p = 1,
that is

{w;)f (Hy+a)T'(Mr+b)|Egl(wr, w,)BH, TM 1)
= (= 1), w,)BH, TM; (11)alb|(w; ) (H +a)T' (Mr+b)>,—;
x {(@y @)IEll(0; @2)3,=1, (11)
with
o, 0)E(0, ©2)pp=2 =0 (by definition),
(g @IEN(0y @2)D,-1 = [(01(0;+3)+ o0+ I~ (12)

The phase factor (—1)* has the values

(=1 = -1 for b= —1, a= %1
for b= +1, a=0,
(-1 = +1 for all other cases. (13)

The phase relations between the E,, and standard R(5) irreducible tensor components,
as defined through egs. (7), follow from the commutation relations of the E,,. (See
table 1; E,, = (—1)°T4D)

All operators of physical interest in a shell-model calculation involving the simple
configuration j” can be built from the single-nucleon creation and annihilation opera-



FIVE-DIMENSIONAL QUASI-SPIN 21

tors afmmt_, @mm,- (The generalization to mixed configurations is straightforward.)
The R(5) irredubile tensor character of all operators is thus based on the tensor char-
acter of the single-nucleon creation and annihilation operators. For fixed values of
i and m, the four operators aj,., and a; _,, +, form a basis for the four-dimensional
irreducible representation (31). The phase relations between these operators and

standard R(5) irreducible tensor components follow from egs. (7) and are given by

+ )i
a jmm, = T%%mc:m’
j—mti—m — 76D
(_ 1) : [aj, —m, —m T—z-}z‘—mt;ma (14)

where the tensors T,E,“:‘Tﬁ)ji;jm are classified both as to their irreducible character under
R(5), by the labels (w, w,)H, TMy and as to their spherical tensor character by the
angular momentum quantum numbers j and m. More complicated operators can be
built from these by successive application of a composition law. Operators built from
two single-nucleon creation or annihilation operators can be classified under R(5)
by the build-up process

(0102); J
THlTMT;M

= X gmyjmalIMYmy km | TMo(35)hy 5 (3h Hl{w; w)H T

myme My
(mame h2)

(3%)5J Ex2 R} 15
X Thl%mrl;'m Thz%mtz;mz’ i ( )

where the needed R(5) Wigner coefficients are tabulated in table 3a. The Kronecker
product ($1) x (1) = (00)+ (10)+(11) contains the ten-dimensional (regular) rep-
resentation (11), the five-dimensional (vector) representation (10) and the one-
dimensional (scalar) representation (00). Operators built from products of two single-
nucleon operators thus transform according to these representations. These operators
include the pair creation operators

S IM TMy) = 3, (my jmyldMYCmy dm | TM 20, m, 4, (16)

Jmane,
mime,

and the pair annihilation operators
A (j*3 IM; TMy) = [ (% JM; TM)]". (17)

In addition these include all one-body operators, which can be expressed in terms of
the elementary multipole operators

U(jZSJM; TMy) = Z {jmy jmy|IM>

X (3 3 TM Y m (— 100, o (18)

Jrme,
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TABLE 3a
R(5) Wigner coefficients <GHHT'; GHH", T"|[(w,0)H, T

B

(wwe) (1) (A1) (11) (10) (10) (10) (11) (00)
H,\T'; H',T" HT 11 —11 01 01 10 —10 00 00
35 i 1 1
—i -4 ! -1
11- 11 1 1 1 1
23> 22 72 vz 72 72
11 11 L 1 _ 1 L
27> 22 72 72 72 72
TABLE 3b
R(5) Wigner coefficients ((11)H"\T’; A1H", T"||(w1w,)H, T
(wy0)  (00) (1n (20) (22) (10) (11) (22) (0) (22
H\T'; H', T" H,T 00 00 00 00 01 01 01 02 02
- 3 EN 1 1 RS S 1 1 R
15 —11 10 V2 J30 J6 J3 J3 J6 V3 J6
—11: i3 _ 1 1 ES L 1 1 1
;11 \/ 10 J2 V30 N J3 v3 V6 V3 J6
. . — . /2 1
00; 00 710 0 \/5 7
. /3 A 1 1 1 2
01; 01 N&Y 0 730 76 0 7 0 73 \/3
. 1 1
00; O1 76 0 7
. 1 1
01; 00 76 0 73
TABLE 3¢
R(5) Wigner coefficients <(10)H";T’; (10)H"",T"||(w,w)H, T>
(,05) (00) (11) (20)
T H\ T H.T 00 00 00
- 1 1 3
10; —10 7 7 JTo
. 1 1 3
—10; 10 s 7 NE
01; 01 \/% 0 — V’-ﬁ—

Except for a trivial multiplicative factor, the elementary multipole operators are the
unit tensor operators %y, introduced by Racah ?')

99T
MMy =

U(j*; JM; TMy)
[QI+DRT+1)]

jmyIM|jm Y Gm, TMzlim, > o

mymty
(mzmtz)

L(2j+1)2]*

— jmm:]ajmzrmz' (19)
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The R(5) tensor character of the pair creation, annihilation and elementary multipole
operators is given in table 4. Elementary multipole operators of odd rank (J odd) are
R(5) scalars (00) and R(5) vectors (10) for isospin 7' = 0 and 1, respectively; while
the elementary multipole operators of even rank (J even) transform according to the
ten-dimensional representation (11) for both 7= 0 and 1.

TABLE 4

R(5) irreducible tensor character of the pair-creation, annihilation operators and the elementary
one-body multipole operators

Tensor character V) TE(I‘*"“’Z);J

1TM1;M
Operator ?) (wq w3) H T My J M
(L IM; T =1 Mt) (11) 1 Mt even M
A+ (j* JM; 00) (10) 1 0 odd M
— (=1 " MAL=Mr oy (52 JAM T = 1 M7) (1) —1 — Mt even —-M
— (=) =M (52, TM; 00) (10) —1 0 odd —M
\/EU(jz; JM; T =1 My) an 0o 1 Mr even M
\/E U(j2; JM; 00) (an 0 0 0 even M
— \/E UGS JIM; T = 1 M) (10) 0 1 Mr odd M
\/5 U(j%; JM; 00) (00) 0 0 0 odd M
#) The operators are defined by eqgs. (16)-(18).
) The R(5) tensors are constructed through the composition law, eq. (15).
Of the more complicated operators, the two-body interaction
V=3V (20)

i<j

is the most important in shell-model calculations. For a simple configuration based
on a single j, it can be written in the form

V=1Y 3 V,p A¥(j%IM; TMy)A(j*; IM; TMy), {21)

JT MMt
where V,; is the two-particle matrix element
Vip = (GAUIMTM |V, j2IMTM . (22)

Pairs coupled to T =1, (even J), and T = 0 (odd J) transform according to the
representations (11) and (10), respectively. The full two-body interaction thus con-
tains R(5) irreducible tensor operators which arise from the products

(1) x (11) = [(22)+ (20)+ (10)+(00)] + {(21)+ (11)}, (23)
(10)x (10) = [(20)+ (00)]+ {(11)}, (24)
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which contain two 35-dimensional representations, (22) and (21), the 14-dimensional
representation (20), the ten-dimensional representation (11), the five-dimensional
representation (10) and the one-dimensional representation (00). The first terms in
these Kronecker products (enclosed by square brackets) correspond to a symmetric
coupling of the two identical representations, while the last terms (enclosed by curly
brackets) correspond to the antisymmetric coupling of the two identical representa-
tions. It is advantageous to split the two-body interaction into symmetrically and
antisymmetrically coupled pairs

V=v®4y®
=3Y Y Vil A+ A A7) 4], Y Vil A —A AT (25)

JT MMt JT MMt
The antisymmetrically coupled part reduces via the anticommutation properties of
a* and a to an operator of one-body form with R(5) irreducible tensor character (11).

For an isoscalar (charge-independent), two-body interaction it reduces to the trivial
operator

@ _ @I+1D)QT+1) . _ 2J+1)(2T+1) 1g_i_1
V¥ o= Z Vit _(2j+1) H, JZT Vit ——**—(21,_'_1) (2 J 2)‘ (26)

The symmetrically coupled part contains only the representations (22), (20), (10) and
(00). Since only the representations (22), (20) and (00) contain a T = 0 state among
the nucleon-number conserving-components (see the A, = 0 rows of the representa-
tions in table 2), an isoscalar two-body interaction contains only R(5) irreducible
tensors of type (22), (20) and (00). The interaction can be written in terms of the basic
two-body tensors

[T, 0,))]50028 % = Y Y (IMJ—M|00X{TM T —M7|00)
MM+ H T

x {(w, wz)H1 T, (CU1 wz)_H1 T”(wl, w2,)00> (?TIXZZT) 1 T(al)lllﬂ}zl;ldﬂ -M> (27)

with (w;@,) = (10) and (11) for J = odd and J = even, respectively. The R(5)
Wigner coefficients needed for egs. (27) are given in tables 3b and c. In terms of these
two-body tensors, the symmetrically coupled part of the general isoscalar, two-body
interaction can then be written
VO = —1 ¥ Vipo, (2T +1)*
J even
x (V2L T DIGR; 8 + VAT (UGR89 + W AT IS
~3 3 Vir=ol2J + VLT 10)2)I59;  + 2V T (0P ER18). (28)
J odd

Besides the charge-independent, two-body, nuclear interactions of the above form,
the Coulomb interaction is of particular importance in shell-model calculations. De-
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composing it into isoscalar, isovector and isotensor parts it can be written

Veou = Z — { G+t t) =31+ ) +H3G3 1 1 1)} (29)
i<j U

Since the Coulomb interaction acts only on pairs coupled to T = 1, it can be decom-
posed into R(5) irreducible tensors of type [T(J2(11)?)]53 e ® with T = 0, 1 and 2
for the isoscalar, vector and tensor parts, respectively. The nucleon number conserving
tensor components include the value 7 = 1 only for the representations (10) and (22)
and the value T = 2 only for the representations (22) and (20) (see the H, = 0 rows
of table 2). An isovector interaction can thus be built only from the representations
(10) and (22), while an isotensor interaction can contain only the representations (22)
and (20). The Coulomb interaction can be split into non-trivial and trivial terms as
before

(a)
VCoul - Coul VCoul

The trivial antisymmetrically coupled term now reduces to

. cout (27 +1)3 ot (27 +1)3
T S hCat Ly y o S S ‘( )

—j—1—M,;]. (30)
Jeven (2j+1) J even / 1) [2 2 T] (

The non-trivial symmetrically coupled term can be written in terms of the tensor
operators [T(J2, (11)*)15%52%4 ® to be abbreviated by T4 as

Vi = —4 2 V2 + DH[V2TED +V2TE0 + 3W AT
+[VOT50 — 3T+ T520 +V2T530' T, (31)

where the two-particle matrix element V57" is defined by

V= G ST (32)

Fiz2

Insofar as the R(5) irreducible tensor character is concerned isovector and isotensor
components of a more general, charge-dependent interaction will have the same form
asthe T = 1 and T = 2 components of the Coulomb interaction.

4. The R(5) Wigner coefficients

Since the R(5) irreducible tensor character of the operators of interest in shell-
model calculations include the representations (00), (31), (10), (11), (20) and (22),
application of the Wigner-Eckart theorem requires knowledge of the R(5) Wigner
coefficients for Kronecker products in which one of the representations is a member
of this set. Although this includes the 35-dimensional representation (22) and the
14-dimensional representation (20), only Wigner coefficients diagonal in both H,
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(nucleon number) and 7 are needed for these two representations, so that it is feasible
to calculate the needed Wigner coefficients.

The R(5) Wigner coefficients are defined through egs. (9) and (10). Since the iso-
spin angular momentum Wigner coefficients are well known, only the reduced R(5)/
R(3) Wigner coefficients which are denoted by a double bar, need be calculated. Their
general properties will be discussed first. (From now on the term R(5) Wigner coeffi-
cient will refer to these reduced (double-barred) coefficients unless otherwise stated.)

4.1. ORTHOGONALITY

Since both the full R(5) Wigner coefficients and the isospin R(3) Wigner coefficients
form orthogonal matrices, the reduced Wigner coefficients are orthogonal also. In
particular, for fixed values of H, and T

Y (@ 0B H T (07 0)B HY T (0, 2)BH, T,
s
x (@) @) H T'; (0 03B HY T (@ @2)BH 1 To5 = 00,5, 005w, 0550,50 (33)
and, with T fixed,

Y 200 H{T'; (0 0))f"H{T" (w0 0)BH, T,

(w1w3) Bp

x (o) H{ T ; (0] 0y)B"H{T"|(w; w,)BH, T,
= 05 055 On 5, Opr, 17, O 7T O 7 - (34)

For fixed values of (0} @), (0] w3 ), H, and T, therefore, the R(5) Wigner coefficients
form orthogonal matrices. The rows of these matrices are labelled by the values of
B'H[T’; B” H/ T" consistent with H, and T, whereas the columns are labelled by the
possible values of (w;w,), p and B. The states of the uncoupled representation
(w3 H{T Miy|(w) 0y)B" H'T"' My are completely specified by the eigen-
values of 12 commuting operators, the quadratic and quartic Casimir invariants
which specify the irreducible representation labels and the operators Hy, T* and T,
plus the “fourth operator” for both the single primed and double primed representa-
tions. The states of the coupled representation |[(w} w3)(@w} @) (w, w,)p; BH, TM 1]
should therefore in general require a set of 12 commuting operators for their complete
specification. In the general case, the labels p are thus completely specified only by
the eigenvalues of two operators. These operators must lie outside T the group R(3).
Since only Wigner coefficients for very simple Kronecker products are needed in the
applications to nuclear problems, no attempt has been made to find a general solution
to this multiplicity problem. The products (w,®,)x (33) and (w;w,)x (10) are
simply reducible, and the label p is not needed at all in these cases. For the product
(w, w,)x (11) only the product representation (@, w,) itself has a multiplicity of 2,

t For a general discussion of this type of problem see refs. 22 23).
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and in this case the matrix elements of the infinitesimal operators of the group serve
to distinguish the two states with different p (see egs. (11) and (12)]. In the few other
cases where the label p is needed, the several independent coupled states are chosen
somewhat arbitrarily (see subsect. 4.4) and labelled p = 1,2, 3,....

4.2, PHASE CONVENTION

The overall phase of the R(5) Wigner coefficients is fixed by a generalized Condon
and Shortley phase convention. The coefficients can be chosen to be real, and the
“leading’” coefficient connecting the state of highest weight H| = 0, T’ = w3 =1’
to the state of highest weight H; = @,, T = w, = t is chosen to be positive. Specifi-
cally

(oio)H] = o), T" = o) (0B AT o, 0)H, = 0, T = w,> > 0. (35)

If more than one value of 7" is possible, the leading coefficient (T = T”'), is defined
as that with the largest possible value of 7" consistent with 7" = @} = ¢ and T =
w, = t. For the simple representations (14), (10), (i1), (20) and (22) no further
specification of the label " is required.

4.3. SYMMETRY PROPERTIES

The group R(5) is self-adjoint. If the set of matrices & for the elements of R(5)
form an irreducible representation of R(5), the complex conjugates of these matrices
&* form an equivalent irreducible representation. The basis vectors of an irreducible
representation and their conjugates are thus simply related. The conjugation operator
K has the following simple properties (see table 1)

KIgK™'=—J;, i,j=1,...5

KE,K'=—-E_, _,, KH,K'=-H,, KT,K'=-T,. (36

For states with T-multiplicity = 1 for which the quantum number B is not needed it
follows from the last two egs. of (36) that

Kl(wlt)Hl TMy) = (_l)n(wl’t)+v+T-MT,(w1t)_Hl s T, =Mz, (37)

where the phase factor (—1)"@00*"*T=M1 haq been chosen such that the (T, M,)-
dependent factor carries the usual angular momentum phase conventions associated
with the isospin group. The (@,, t)-dependent factor  could in principle be chosen
arbitrarily but must in practice be chosen to be consistent with the phase convention
of eq. (35). The factor v carries the intrinsic R(5) dependence of the phase. To estab-
lish the phase factor the basis states and their conjugates are constructed explicitly in
appendix 1 for the irreducible representations (@,0), (w;%) and (##) and the states
withn—v = 4k —2T of (w, 1). The latter  are denoted by the quantum number § = 0.

t These are identical with the « = 0 states of ref. 11). The label « of ref. ) has been replaced by B

since the states x = 1 and 2 of the irreducible representation (w, 1) can be replaced by simpler states
to be denoted by g = 1 and 8 = 2.
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The results (see appendix 1) can be summarized as follows:

v = 0 for all states of (w,0) and (w,3),
v = 0 for the f = 0 states of (w, 1),
v = t—T for all states of (1). (38)

For states with T-multiplicity > 1, the fourth quantum number f will always be
chosen such that

Kj(w,t)fH, TM1) = (_1)"(wl’t)+v+T_MT|(w1 nps, —H,, T, =My}, (39)

where either §° = B (irreducible representations with integral 7) or f° and f are in
simple 1 : 1 correspondence (irreducible representations with 4-integral ¢). The phase
factor v is now dependent on f. For irreducible representations with states of T-multi-
plicity > 1, the phase factor v thus serves partly to define the quantum number 8.
[For a more arbitrary choice of the fourth quantum number §, the complex conjugate
of a state with a specific value of 8 could in general be a linear combination of states
with all possible values of °. This would have been the case if § were chosen as the
eigenvalue of the operator defined by eq. (4) which is not invariant under the con-
jugation operator K. If B is associated with the eigenvalues of an operator of the gener-
al form of eq. (6), however, the basis vectors will have the symmetry property of
eq. (39)].

Using the conjugation relations, eq. (37) or (39) and standard techniques [see for
example the discussion of the symmetry properties of SU; Wigner coefficients given
by de Swart 2#)], symmetry relations between the R(5) Wigner coefficients can be
established. In particular, the full R(5) Wigner coefficients satisfy the symmetry rela-
tion ' (interchange of representations 1 and 3)

Hwy 1B (Hy )y Ty My (04, 8,)8,(H, ), Ty My, [(05,t3)B3(H 1 )s Ts M1 0., 5
_ {dlm (6013t3)]% (_ 1);+VZ+T2—MT2
dim (w,, )
x oy, t3)B3(H,)s Ts M5 (04, 12)p5 —(H1), T =My ) (@1, t)B1(H )1 Ti M1, 00,
(40)
where dim(w, t) stands for the dimension of the irreducible representation (w,?)
dim (w, 1) = 12w, +3)(2t+1)(w, +t+2)(w, —t+1).

The phase factor (—1) is a function of the irreducible representation labels (w,;?;)

and can be determined from the phase convention, eq. (35), by applying eq. (40) to

t In principle the symmetry relation (40) implies a “proper” choice for the label p. This problem
is not met for the Wigner coefficients needed in this investigation, since the label p is actually needed
only in the special cases where (wy, 1;) = (w,, ;) so that no distinction need be made between labels
of type pia 3 and pas 1.
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the leading Wigner coefficient connecting the states of highest weight. In particular,
by setting both (H,); = w;,,T; = My, = t;, and (H,); = w,,, Ts = My, = 13,
and T, = T,, (where T, is the largest possible value of T, consistent with H, =
o, —w,;,, Ty, = t;, and T; = t,), the phase factor { can be determined to be

(=1 = (=) 07" Ty (41)

[The phase factor 7, is that for the state with (H,),, T, = T, 8, = B,. For the simple
representations needed for shell-model calculations, the phase factor ¥, is either equal
to zero or is determined by the value T, see eq. (38)]. Combining the symmetry rela-
tion (40) with the analogous one for the ordinary isospin Wigner coefficient, the cor-
responding symmetry relation for the double-barred R(5) Wigner coefficients becomes

Lo, t)B(H ) Ty ; (w4, 1)B,(Hy ), Tail(w,, 13)8:(H )3 T35,

(N3 =ti—T3+T1+Ta=Ta+va—%; dim (w,,2;)(2T; +1) *
=D |:dim (wlltl)(2T3+1)}
x (@4, t3)B3(H )3 Ts; (@4, 12)B5 —(Hy), Tall(wy, 1), (Hy ), T,5,. (42)

In the special case (w,,7,) = (34) the phase factor of eq. (42) reduces to the simple
value (—1)27"""3*Tt in agreement with eq. (63) of ref. 12).

A further symmetry relation for the full Wigner coefficients again follows from the
conjugation relations

(@, t)8,(H,) Ty My, ; (w,,1,)B2(H,), T, My @, t3)B3(H,)s Ts My,

— (_1)§+v1+vz~V3+T1+T2—T3

xLo, )81 —(H) Ty ~Mr,;(01,8:)B5—(H ), T,— My, (0, 8:)B5—(Hy)3 Ts
_MT3>p’ (43)

where the phase factor £ can again be a function only of the irreducible representation
quantum numbers (w,, t;). The phase factor ¢ has not been evaluated for the most
general product (o) x (w,,1,) = (w;,;) where the whole phase problem may be
complicated by the multiplicity problem and the choice of p. For Wigner coefficients
which involve only irreducible representations of type (w,0), (w,1), (17) and the
B = Ostates of (w, 1), the phase factor ¢ has the simple value

(_1)§ — (_l)mll—t1+m12—12—w13+t3. (44)

If the Wigner coefficients include the representations (w, ), (f+ 1, ¢) and the remaining
states of (w, 1), the phase factor £ can be made to have the same value by a proper choice
of the fourth quantum number f since the phase factor v can in these cases serve partly
to define the label f. The phase factor (44) thus serves in all cases of actual interest
in this investigation. Combining the symmetry relation (43) with the analogous one
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for the ordinary isospin Wigner coefficients, the corresponding symmetry relation
for the double-barred R(5) Wigner coefficients becomes

<(w1 , tl):Bl(Hl)l T (wlztl)ﬁZ(Hl)Z TZ]'(wlgtS)ﬁ3(H1)3 T3>p

— (_1)w11—t1+m12—t2—w13+t3+v1+v2—V3

x (@, t)pT—(H )1 Trs (@, 1,)p5—(H), Toll(w4, 13)55 — (H )3 T55,. (45)
The phase factor for this relation differs from that given by Ginocchio 2), eq. (58).

4.4. CALCULATION OF THE R(5) WIGNER COEFFICIENTS

The calculation of the R(5) Wigner coefficients begins with the calculation of the
matrix elements of the infinitesimal operators of the group. For the irreducible
representations (w, 0), (w;+) and {w, 1) these have been calculated through the use
of transformation coefficients to the separate neutron-proton quasi-spin scheme (see
ref. 11), tables 3-3); the elements actually tabulated are the reduced R(5) Wigner co-
efficients with p = 1. For the representations {(w,;0) and (w, %) they have also been
calculated by a different technique by Szpikowski 2°). They can also be calculated
most directly from the explicit construction of the states with Ay = T given in appen-
dix 1 by operating on these states with the infinitesimal operators E4 1, E1 10, Ex1.-1
in turn. For the irreducible representation (#¢), the matrix elements of the infinitesimal
operators have been calculated by this technique. They are expressed in terms of
reduced R(5) Wigner coeflicients and tabulated in appendix 2 (table 1le). Results
for the irreducible representations (w, %), (t+1, ¢) and the § = 1 and 2 states of (w, 1)
will be tabulated in a subsequent publication.

With these tabulations of the matrix elements of the infinitesimal operators, the
simpler R(5) Wigner coefficients can be calculated by standard recursion techniques.
By operating with an operator E,, = E,,(1)+ E_,(2) on a state of a coupled system
built from systems 1 and 2, the single primed and double primed systems of eq. (9),
a recursion relation for the full R(5) Wigner coefficients is obtained

2 <B(H+a)T(Mr+b)|Ey|BH; TM1)

BT B _ ‘
BHT'M7y; B HYT MY |B(H, +a)T(Mr+ b))

= Y {B'H{T'M|E,|B'(H; —a)T' (M ~b))
e
x{B'(Hy~a)T'(M7—b); "HYT 'MY|BH, TMr)
+ ) (BH{T M7 |E,|B ' (HY = a)T" (M7 —b)>
B'T"

x CB'HY T'My; B(HY —a)T" (M7~ b)|BH, TM). (46)

7 rr

In this relation the irreducible representation labels (0} w}), (@} ®w>) and (@, ®,)
have been omitted for brevity. Although this recusion relation may contain a formi-
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dable number of terms for the most general coupling (0w} ®3) X (@’ ®@y) — (@, ®,),
it becomes manageable if one of the representations is a simple one such as (0} w5 ) =
(31). The R(5) Wigner coefficients for the product (w;®,)x (%) can therefore
be calculated by recursion techniques. The R(5) Wigner coefficients involving more
complicated representations are then calculated from these by means of a build-up
process. For example, Wigner coefficients for the products (w;w,)x (10) and
(w;w,) % (11) can be expressed in terms of the simpler coefficients for the product
(0, ®,) x (1). Such a build-up process can be based on a recoupling transformation
for a coupled system built from the states of three irreducible representations. Two
possible ways of coupling the three representations (w,¢); with i = 1,2, 3, to aresul-
tant state of the representation (w, t) are illustrated in fig. 1 by diagrams of the type

{w 1),

(w.t)3 > (w,f)a

(w 1),

{w 1),
(w'”IZPIZ

(wit) R, 3 s BHTM; (w 1) P 533 BH TM

Fig. 1. Coupling and recoupling of three R(5) irreducible representations.

introduced by French #°), adapted to R(5). The two coupled systems illustrated by
fig. 1 are connected by a unitary transformation whose matrix elements are the gen-
eralized R(5) Racah coeflicients or U-coefficients

IH{[(@ D1(@1 )@ D 12p12) (@01 1) (@1 )p12, 35 BH, TM )
=) Y U ) {[(@; )@ )3](@18)23023} (01 D)py, 235 BH, TM 1)

(@18)23 P23, P1, 23
< U ((wl D1(01 )25 (01812012012, 3) ’ 47)
(@01 8)3(w11); (@18)23P23P1,23
where the R(5) U-coefficients are the generalization of the recoupling coefficients of
ordinary angular momentum theory in their unitary form, although the notation is
based on a generalization of the notation for the 6-j symbol. The U-coefficients are
independent of fH, TM; and are real. They satisfy the orthogonality relations

s o) =sm zul)e()-o

where « is a shorthand notation for (;?),,, p13, p12,3 and p is a shorthand notation
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for (w;t);3, P23, p1,23- They can be related to the R(5) Wigner coefficients by

U ((w1 RPN ] t)12P12P12,3)
(w1 t)3(@1); (@11)23023P4, 23
= Y {w;1),8;; (0, 1),8,]l(w, 1281205, (@1 128125 (01 1)383]|(w, DD, ,

£1£283
212823

X @ 1)2855 (1 1)331(01 1238230 p,, @ 1)1 815 (01 )238a3| (@1 D, .,

x U(T\ T, TTy; Ty, Ty,). (49)

The shorthand notation ¢; = §, H,,T; has been used in eq. (49). The sums over My,
have been performed and expressed in terms of an ordinary isospin angular momen-
tum U-coefficient (unitary or Jahn form of the Racah coefficient). Another very useful
relationship between the R(5) U-coefficients and the R(5) Wigner coefficients follows
from eq. (47) and the orthogonality of the Wigner coefficients

((w1 Di(@i1)y;(@011)12012012, 3)
(01 )3(@1); (@1 8)23P23P1, 23

= Z <(w1t)131;(w1t)282||(a’1t)12312>p12<(w1t)1231z§(wlt)353|i(w1t)3>p12,3

£283812

xL(@11)28:; (@, 1)383(w; 1)23823 5, U(Ty Ty TTy; Ty Tay). (50)

Y, Ly 1) 815 (0 1)23853]l(w0, 1)e) 5,2, U

Pis23

This is the relation to be used as the basis for the building-up process in the calcula-
tion of the Wigner coefficients. Eq. (50) is valid only if the quantum numbers p have
been chosen such that coupled states with different values of p are orthogonal to each
other. In particular,

K@ )@y D):)(@s )12 p12H@11)5]
X (@1 1)p12,35 BH, TM|[{[(0, 1),(@01 1), (@1 )12 P12}, 1)3]
x(wit)pia,33 B'H TM7)
= O(wytyia@s0)12 @10, (@11 Op120°12Op 12, 30712, 3 08 On 1 O Ontrbai (51)

For the representations of interest in shell-model calculations, most of the indices p
are not needed. For example, if the representations (w, ¢), and (@, #); are both identi-
fied with the representation (11), the labels p,,, p.3 and p,, 5 are not needed. In this
case (w;1),3 = (00), (10), or (11); and the fourth label p, ,5 is needed only in the one
special case, i.e. (w;1),; = (11) and (0, ¢) = (®;1),. Except for this case, therefore,
the sums over p, ,, disappear from the left-hand side of eq. (50), and this relation
can be used to calculate the R(5) Wigner coefficients for the products (w;?) x (10)
and (w,?)x (11). Eq. (50) gives the R(5) Wigner coefficients to within a common
factor, the U-coefficient of the left-hand side of the equation. This U-coefficient can
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be considered as a normalization factor and can be determined from the normalization
condition and the phase conventions for the R(5) Wigner coefficients, egs. (33) and
(35); or alternately, in cases where not all values of SH, T are of interest, it can be
determined by calculating the R(5) Wigner coefficients through recursion techniques
for some special values of BH, T such as those for the highest-weight state. In the
special case (w1)x (11) — (w, 1), for which the label p, ,; is needed, one set of the
R(5) Wigner coefficients (those with p = 1) are known through the matrix elements
of the infinitesimal operators, so that eq. (50) can be used to calculate the R(5) Wigner
coefficients with p = 2.

The R(5) Wigner coefficients for the products (w; ¢) x (20) and (w, #) x (22) can be
calculated through eq. (50) by setting (w, ), = (w,1); = (11); or for the products
(w,1)x (20) by setting (w,1), = (w,t); = (10). In these cases some of the labels p
are needed. For example the product (w, ¢) x (22) in general contains the representa-
tion (w,t) with a multiplicity of 3 (although in the special cases (w,?) = (w,0) or
(#t) the multiplicity is only I, whereas for (w,f) = (w, %) the multiplicity is 2). In
cases where the label p is needed it has been defined rather arbitrarily, by assigning
special values to some of the U-coefficients in eq. (50). This is best illustrated by a
specific example. There are three independent sets of Wigner coefficients {(w, 1)¢’;
(22)¢""[[(w )&y, corresponding to the possible values p = 1, 2, 3. These have been
calculated for & = H{'T" = 00, 01 and 02 through the system of three equations

; Ay ey (22)323”((’)1 1)8>p U ((u()i 11))((;)11)1,)(’0();;)):;,_)

= Z (o, 1)81;(11)82”(60“’)312)«(0/1t,)312§(11)83”(“’11)3>

283812

X <(11)82§ (1 1)83”(22)323>U(T1 T,TT;; Ty, Tzs)’ (52)

with (0} t') = (0,0), (w0, +1,0), and (v, -1, 0). In this case the three intermediate cou-
plings (@ 1) x (11) = (@} 0); (@,0) x (11) > (w, D and (11) x (11)—(22); with 0} =w,,
@; +1; needed for the right-hand side of egs. (52), all have multiplicity 1. Labels p,,,
P12,3 and p,; are thus not needed for these intermediate couplings. In all similar cases
where the label p, ,; has actually been needed for the final coupling it has been pos-
sible to find a sufficient number of intermediate couplings with a multiplicity of 1.
They furnish a sufficient number of equations to solve for the independent sets of
R(5) Wigner coefficients with different values of p 1,23 for the final coupling T. In the
above example, the three equations obtained from (52) by setting (@w;t") = (v,0),
(wy+1,0), and (w, —1, 0) form a system of three independent equations in the three
unknowns {(w; 1)e,; (22)e,3||(w; 1)ey, with p = 1, 2, 3. In this specific case the
labels p have been defined such that the two U-coefficients with (w|¢') = (w,0) and

t In this investigation the labels p have been needed only in relatively simple cases. It is interesting

to_speculate whether it is possible to find a sufficient number of intermediate couplings with a multi-
plicity of 1 in the general case.
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p = 2 and 3 are equal to zero, and the single U-coefficient with (w}?') = (@, -1, 0)
and p = 3 is also equal to zero. This choice for the three independent states facilitates
the calculation of the R(5) Wigner coefficients (especially since the values of the U-
coefficients are not known initially). Eq. (52) with (w}¢') = (w,0) now gives the R(5)
Wigner coefficients with p = 1 at once. The single, non-zero U-coefficient with
(w1 t') = (0,0) follows from the normalization of the p = 1 Wigner coefficients.
Next, eq. (52) with (w]t") = (w,—1,0) can be used to calculate the R(5) Wigner
coefficients with p = 2. The two, non-zero U-coefficients with (w;?’) = (w,—1,0)
now follow from the normalization of the p = 2 Wigner coefficients and the ortho-
gonality of the Wigner coefficients with p = 1 and 2 and so forth.

In the relatively small number of cases where the label p is needed in this investiga-
tion, it has been defined in a similar way. This is of course a very arbitrary choice.
In an actual application of the Wigner-Eckart theorem, however, the R(5) Wigner
coefficients with different values of p may not be needed. Instead it will be sufficient
to know the p sums such as

¥ o P H T QDT (@, DB, 7,0 (G OV )

for different values of (w}¢").1f the three reduced matrix elements{(w, || T3?||(w, 1),
of a tensor operator T?%) are expressed in terms of a new set of three reduced matrix

elements ((w; || T*?||(w, 1)}, defined by the system of three equations

(o DITe @ 1)y, = X 0 (4 SR =) o DT, 1,0 (59

with (@] 1), = (0, 0), (w,+1,0), (w; —1,0) for« = 1, 2, 3, respectively, the Wigner-
Eckart theorem can be expressed in terms of the {(w, 1)||T??||(w, 1),

{wy DBH, TM 1| T B {0y DB HY T' My
=Y (o, )f'H; T'My; (22)HT"'M7 (0, )H; TM1) Lo DIT??|i(w, 1)),
P

= 3| S o OB H T My QOHUT M o, )8, THL,

(a)1 1)(11); (wll t)— — (22)

X U( (11)(0)11),(22)_1) )} <(CL)1 1)”7 ||(w1])>a (55)
The last is a convenient form. The SH, TM; dependence of the matrix elements now
appears only in the p sums, (enclosed by the curly bracket), and these are the H, TM¢
dependent factors which are most easily calculated through the build-up process. In
all those cases where a high multiplicity appears it is therefore more convenient to
tabulate the p sums [such as those of egs. (53)] rather than the R(5) Wigner coeffi-
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cients for specific values of p. If needed, the latter can be calculated from the tabulated
U-coeflicients for the specific choices of p which have been made.

4.5. TABULATIONS OF R(5) WIGNER COEFFICIENT

The R(5) Wigner coefficients to be tabulated are those for the couplings
(0] )Y x (0] t"") > (w,1), where () (@t"") = 31), (10), (11), (20) and (22) and (ii)
(0] t’) and (w, t) include the representations (w,0), (w, %), (#7) and the § = O states
of (m,1).

The coefficients {(w, #);(11)|[(w, t),-, with £ = 0, } and 1 are tabulated in ref. 1y
(tables 3-5); [the B = O states are identical with the x = O states of ref. *')]. The remain-
ing coefficients from the above list are tabulated in appendix 2. In particular, the co-
efficients for the couplings (w,1)x (1) - (v, £10); (0,0)x (33) - (0, = 31);
(0 H)x(31) > (0,23 1)B =0 states; (w;1)f = O states x (33) - (v, +13), and
(1t)x (31) - (¢ 1, t+1) are given in tables 9a-e. Some of these have previously been
calculated by Ginocchio '?). Since some of Ginocchio’s coefficients differ from the
present ones not only in overall phase but also in relative phase, they are tabulated
again in appendix 2. The coefficients for the product (@, 0) x (10) are given in table 8
of ref. ''). Unfortunately these coefficients also differ in phase from the present
conventions, but only overall phase factors are involved. To be in agreement with the
present cases all coefficients of table 8, ref. 1), in the second row (labelled by H{T";
H"T" = H,+1T; —10) and in the second column (labelled by (v, w,) = (j—10))
must be multiplied by —1. (They are also given again in table 10a of appendix 2.)
The coefficients for the couplings (@, %) x (10) - (w;%); (0, 1) x (10) = (v, 1)f=0
states; and (zz) x (10) — (¢¢) are tabulated in tables 10b-d. Finally, the coefficients
for the couplings (w;3)x (11) - (w;1)p = 2; (w;3) x (11) — (w, +11)f = 0 states;
(0,0)x (11) > (w, 1) = 0 states; (v, 1) x (11) - (w,1)p = 2, f =0 states are given
in tables 1la-e.

In the case of the products (w, ) x (20) and (w, t) x (22), only R(5) Wigner coeffi-
cients diagonal in H, and T are needed in the applications to shell-model calculations.
These are tabulated for the couplings

(0;0)x(20) > (@, 0); (0,0) x (22) - (0,0); (w0, 3) x (20) > (@, 3);

(0,3)x(22) » (@01 D)p = 1, 2; (0, 1) x (20) - (0, 1)p = 1,2, f = O states;
(w;1)%(22) > (w,1)p sums, f = 0 states only; and (z7) x (20) — (#¢);

(2t) x (22) — (21); in tables 12-15. Finally some of the U-coefficients which are a by-
product of the method of calculation are given in tables 16.

5. Applications
5.1. COEFFICIENTS OF FRACTIONAL PARENTAGE

Reduction formulae for one- and two-nucleon fractional parentage coefficients can
be obtained through their simple relationship to the matrix elements of the single-
nucleon and nucleon-pair creation operators. The precise relationship between the
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c.f.p. and the reduced matrix elements of the single-nucleon and nucleon-pair creation
operators are 2%)
UMY IBT, T o, 3BT, 0d )

_ <o, 3BT, adila || " (o' 3BT, 00"
[n(2J + DT+ 1T ’ (56)

GHUIBT, T AT o, BT, ad )
_ v, 3BT, || (T TN o'} T, o' Ty .
[n(n=1)2J+DRT+1)]?

(57)

The pair creation operators &/ * are defined by eqgs. (16). The quantum numbers o
and J refer to the decomposition of the symplectic group through the chain Sp(2j+1)
> R(3) just as B, T and n refer to the decomposition of R(5). By using a generalized
Wigner-Eckart-theorem in both spaces c.f.p. can be written in terms of generalized
Wigner coefficients for both R(5) and Sp(2j+1)

BT 7 BT, oy
= < RO =T QD B, = dn— =TT . ),

(58)
<j"‘2{u't'}ﬁ'T' «J AT 0t BT, od Y
— <( B H = DT 5 (0 Y')NT (w0, )p(H, = In—j—-1HT)
\/n n—
X {<v’t'}oc J5 I, thad ). (59)

The first factor in these relations is the reduced R(5) Wigner coeflicient as defined in
this work. In eq. (59), (w}t'") = (10) and (11) for T’ = 0 and 1, respectively, (see
table 4), so that (w}'#"") = (1T"). The second factor is completely independent of the
quantum numbers B, T and » and is made to carry all of the dependence on the quan-
tum numbers « and J.

Particle-hole relationships for the c.f.p. follow from the symmetry relations, egs.
(42) and (45) for the R(5) Wigner coefficients and the corresponding symmetry rela-
tions for the coefficients of the Sp(2j+1) = R(3) chain. It will be assumed that the

phases of the latter have been chosen such that the c.f.p. satisfy the particle-hole
relationship 2!23-26)

GO T oI} ot BTy
<j4j+2_n{l)t}ﬁT, O(Jl}j4j+2—n+ 1{Ulll}ﬁ'T’, O(’Jl>

= (=1 iT-T o [(4j+2“ n+ 12 +D2T + 1)} %_
- n(2J + Q2T +1)

(60)
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This leads to the further particle-hole relation
<jn—2{v/t/}BlT/’ al]l; jZT”J”,}jn{Ut}B'I; OtJ)
<j4j+2_n{vt}ﬁT, aJ;j2T//J//I}j4j+4—n{vltr}ﬂ/T/’ oc'J')

= (=1 T [(4]'+4—n)(4j+3—n)(2J’+1)(2T'+1):l %‘ (61
n(n—1)(2J +1)(2T +1)

Through the use of the R(5) Wigner coefficients it is now possible to give reduction
formulae whereby the c.f.p. for arbitrary n can be expressed in terms of those contain-
ing the smallest possible number of particles (such as » = v). For one-nucleon c.f.p.
two reduction formulae can be written 12).

Casel. v/ = v—1
o= LT RGBT ) (v
G o= Ly W ot 0l

y [q(2T’+ D2t +1)
n(2T+1)(2t"+1)

} 0, OBH, T (33)~ 1 3i(ws + 1) (H, — DTS, (62)

where H, = in—j—1%; o, = j+1—1v in the R(5) Wigner coefficient. The phase ¢
is that of eq. (45) with v, = 0, while v, and v, refer to the highest weight states. For
the simple representations (@, 0), (@, 1), (#), and (w; 1) B = 0 states, the R(5) Wigner
coefficients for eq. (62) are given in appendix 2. In all these cases the phase factor has
the simple value (—1)""77"*""? = (—1)"""T7% Eq. (62) follows from eq. (58)
and the symmetry relations, eq. (42) and (45), together with the special value
(oo, t; (3D +33(0, +3t) o, +317) = +1.

Case2. v/ = v+41

ot LOFT T BMOBT ATy _(rer-jeimv-s
(j"{vt}t, aJl}ju+ 1{U+1, l,}t’, OC,J’\)

y [(v+ DI +1)(2r + 1)] *
n(2J +1)(2t+1)

(o =3)'(H,=5)T'; 3133l(0, )BH, TD, (63)

with H; = 4n—j—4 and w, = j+}—1v. Eq. (63) follows from eq. (60), and the
special value {(0; —%t)w; —11';(31)13||(w, t)w, 1> = +1. These two relations have
been given by Ginocchio '?). They are reproduced here since the present phase
properties of the R(5) Wigner coefficients differ from those of ref. '2).

For two-nucleon c.f.p., similar reduction formulae can be written in terms of the
R(5) Wigner coefficients. Several cases must be considered. With H 1 = 3in—j—1and
0y = j+i—1v;
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Case 1. v =v—2,

_ o= BT e T et BT )
P Ho—=2,0 ¢, T JAT T} vt} o)

o= DT+ D2+ 1] T { T AP
g [n(n—l)(2T+1)(2f+1)j| Sy )BH, T; (1T") = 1T"||(y + 1 )5 (H, = )T

(64)

— (_I)T’—T——t'-H—(p

The phase factor ¢ is again that of eq. (45) with v, = 0, while v, and v; refer to the
highest weight values for the representations (w, t) and (w, + 1¢'), respectively. In the

derivation of eq. (64), the symmetry relations, egs. (42) and (45), have been used;
also the special value

Loy Do, 1; ATINT" (0, +1¢ Yo, +127)y = +1.

Case 2. v = v+2,

G o+ 2,0} T 00 52T T ) o} BTy (1)~
oo, 13, od s ATV} j o+ 2,0, 0T

o [+ + 1)@+ )20 +1) PP —— .
[ n(n—1)(2J + )1+ 1) ]<( W) (H = DT AT )T i(0, O)BH, T,

(65)

where eq. (61) has been used; also the special value

{w =10, —1t'; AT"HT"|(w Do 1) = +1.

Case 3. v/ = v; arbitrary t’ for T”" = 0, but ¢’ # tfor 7" = 1,
G Hot T, T AT T et} BT, od )
ooty ad 2T T VT 2ot 3+ b, o' T
. [(v+2)(v+1)(2J’+ nEr +2b+1)T
n(n—1)2J +1)(2t+1)
Ly ) (H, = DT (AT N (@, BH, T (66)

Ly o, =1t +b; AT )T (02 ooy 1)

where b can have the values 0, +1 since the v+2 nucleon state of seniority v and
reduced isospin ¢’ can have total isospin 7" = ¢’ or t'+ 1. Since each of these states is
single, the label §’ is not needed. In this case, the R(5) Wigner coefficient with H, T =
w,t does not have the simple value +1 and, like the coefficient for arbitrary H,
and T, must be read off from tables such as those of appendix 2.

Case 4. v’ = v, T = 1, ¢’ = t. For general v, t, J", this case is complicated by the
multiplicity problem. The product (w, ¢) x (11) in general contains the representation
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(wy t) twice, and the reduction formulae will depend on the two independent R(5)
Wigner coefficients with p = 1 and 2. The exceptions are the representation (w;0)
and (tt) for which the products are simply reducible. In these two cases, eq. (66) holds
also for the case v’ = v, T”" = 1, ¢’ = ¢. Finally with J'" = 0 the pair-creation opera-
tor belongs to the family of infinitesimal operators of the group, so that in this case
the reduced matrix elements with p = 2 are equal to zero. In this case the reduction
formula is again given by eq. (66) where the R(5) Wigner coefficients are those with
p = 1. For this special case numerical values of the R(5) Wigner coefficients have
been tabulated by Ichimura '?). In the general case, v’ = v, T"" = 1, t' = t, the c.f.p.
can be written

<j"‘2{uz}B'T', oJ AT = 1" # 0} j"{ut} BT, ad >

Lo ) H —1T'; (A0, )BH, T, Fi(v, t, 00'jJ' I J)
\/n(n—l)

1

o H'H, —1T"; sAD (0 )BH T, F5(v, t, a0’ jJJ"T), (67
\/n(n——l)

where the coefficients F, and F, are independent of 8, H,(n) and T.
One possible reduction formula in this case could be given by

G He BT, T AT = 107 # 0]} j*{ut} BT, oJ )

(VY- +2)e+ DRI+ 1) e
-0 [ n(n—1)(2J +1) }

X {{e B (H, —)T"; (11w, )BH, T, -

X [T5(0) j*{veit, ad 5 j21T7 1} jo 2ot} +1, 0D

+ Lo (10)< ot} od 5 2107} joF 2 {otht, a'J D]

— () (H, = )T 1)1 [(w; )BH, TD,=»

x [ (0)j*vt}t, ad; 10|} j* 2 {utht+ 1, 0 J D

+ ()G et o 2L o ot 2T T3, (68)

where the short-hand notation I’ ,(b) has been used;

. (69)

(o, =1, t+b; (11w, o, 1),
3’ (co Ny —1t; (1IN [(0, oy £, -,
(o o, =1 (AN [, Do 1), -,
<(wlt)wl_17t+1;(11)11”(w1t)wlt>p=l (
(o) =1, 1+ 15 (I i(w, D)oy 1),=5 |

ry(b) =
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5.2. ONE-BODY OPERATORS

One-body operators of definite rank (spherical tensor character K in physical three-
dimensional space and isospin character t) can be expressed in terms of the elementary
multipole operators of eq. (18).

The operator Fyif = Y7_, f(i)X7 can be written

U(j*; Kq; 1y)
[CK+1D)QRr+1)]F’

Fyiy = GRS (70)

where the double-barred matrix element is the conventional angular momentum re-
duced matrix element of the one-particle operator in the single-particle state with
angular momentum j and isospin . The R(5) tensor character of the elementary
multipole operators is given in table 4. Operators with K odd and 7 = 0 are R(5)
scalars. Their matrix elements are therefore diagonal in v and ¢ and independent of
nucleon number and isospin. One-body operators with K odd and © = 1 have R(5)
tensor character (10), while those with K even T = 0 or 1 have R(5) tensor character
(11). Their matrix elements can thus be off-diagonal in v and ¢ and have a complicated
n, T dependence. The diagonal matrix elements of the one-body operators in states
with v = 1 (¢ = 1) are perhaps of greatest interest. The R(5) Wigner coefficients
needed to calculate these are tabulated in appendix 2, (tables 10b and 11a) and table 4
of ref. '!). Although the states of the irreducible representation (w, 1) are completely
specified by » and T; the R(5) Wigner coefficients do depend on a fourth quantum
number, e (or o) for w;+4—H; —T = even (or odd) integer, or ¥(n+v—1)+7T =
even (or odd), respectively. This dependence makes itself felt only through phase
factors of the form (—1)#"~7. Since the product (w, 1) x (11) contains the representa-
tion (w, 1) twice, matrix elements of one-body operators with K even are governed by
two R(5) reduced matrix elements, eq. (8). They can be determined from the matrix
elements of the one-particle and one-hole states. Results for the full matrix elements
are shown in table 5. Operators with K even, in particular, lead to a complicated n, T
dependence. By using the proper combinations of the t = 0 and 1 operators, Parikh
[ref. 1°)] has used such matrix elements to find the n, T dependence of the magnetic
dipole and electric quadrupole moments for the seniority 1 states of the configuration
J". (For the magnetic dipole moment, see also de-Shalit and Talmi®), pp. 449 and 536.)

5.3. THE TWO-BODY INTERACTION

The n, T dependence of the general two-body interaction can in principle be deter-
mined for any matrix element, diagonal or off-diagonal in v and ¢, by the techniques
outlined in this investigation. Since the two-body interaction includes the relatively
complicated R(5) irreducible tensors of type (20) and (22), the calculations are simple
only for states involving the simpler irreducible representations of R(5). In particular,
since the needed R(5) Wigner coefficients for the representations (w,0), (w,4) and
the f = O states of (w, 1) are known,(appendix 2), it is possible to extract the n, T
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dependence for the diagonal matrix elements in states of low seniority. The calcula-
tions are simple for states withv = 0, v = 1, and withv = 2, t = 0, as well as for the
(n = 4k, T odd) and (n = 4k+2, T even) states with v = 2, r = 1; the latter, the
p = 0 states of (j—1, 1). Although this does not include all v = 2 states, it includes
the most interesting ones, since the major components for the low-lying states of
doubly odd nuclei may be expected to be given by the above types.

The general, charge-independent, scalar, two-body interaction has been classified
in terms of the basic R(5) irreducible tensors [T(J2(1T)* 1533 ° by eqgs. (27) and
(28) of sect. 3. The reduced matrix elements of the interaction can be defined in terms
of the reduced matrix elements of these basic tensors. In particular, if the reduced
matrix elements are defined by

(j+1=10, D |70 ||(j+ 1 — 10, Had ),
= =1 Y Vigo [20 +115(j+3—1v, ) [|[[TU 2112 T2 0+ 3~ do, DD,

evenJ’

((j+1—~1v, D7 SN+ —do, D,
= —1 Y Vipoo[2 + 115 +1—1v, DaJ[ILTU 20 D@2 (j + 4~ v, D>,
odd J’
()

the diagonal matrix elements of a charge independent two-body interaction can be
written

CMBTM, 2IM,| 3. Vil (o} BTM ., aTM))
= V2 ¥ Lo, )17 EQ1N @y Dad > (o, )BH  T; (22)00]|(w, )BH, T,

+VEY o, 1Y EQ (e, T K0, )BH T (20)00]i(w, 1)BH, T,

J+1)evens

+VE Y (@ )adl1Y G, Dt (04 )BH, T3 (20)00]|(e, )BH, T,

+ 3V (@, YYD (0, Ty 1+

N H
+ 283, D11 SN (e, )l > - 1+ ATy 5, V2T D) (72)

The reduced matrix elements can be calculated from the matrix elements of the inter-
action in states with n = v and n = v+2. The number of such matrix elements needed
is equal to the largest number of terms in the p sums of eq. (72) which is at most equal
to three in the general case. For the simple configurations j", the reduced matrix ele-
ments have been calculated for states withv = 0, v=1,7 = 0,and v =2, ¢t = 1. The
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TABLE 6a
Reduced matrix elements for the two-body interaction

(U+=do |l {5 olIG+E 40, 1))
for states with v = 0(r = 0)

R(5) Rank N1

(22) even J %[f%))(lj} 2(zjl’_/even_ VD)
i i i+3)7%

(20) even J [%:§j+ )] (jVeven+ Vo)
iy

(00) even J I i even + Vo)
4v'10
. 1 . . k3 %

20 odd J 3(/+§)(1+%12)(,;+1)(1+3)] -

i+1)(2j+1)
(00) odd J %L) "oda

Veven and (V,q4) are the average two-particle interaction energies for even (and odd) J states, respec-
tively, see egs. (74) and (75).

TABLE 6b
Reduced matrix elements for the two-body interaction
{Utt—to, 0|7 {$1oD]|+3 -0, 0)
for states withv =1 (¢t =)

R(5) Rank (w1 :
o e ® GDIF e[,
o QIADUHIHDT
(22) p=1 even J [ﬂ;S(ZJ—*l)W__:I 2jV even— Vo)
22y p=2 even J 0
B G+)Qj—1DQj+7+
(20) even J 10G+1) :I (i Vevent Vo)
1
(OO) even J - [4(3J+1)] I76>ven_|'(2].'_1)VlJ:|
] 410
20) odd 7 s 3(j+1)(j+2)li)2j~l)(2}'+7):| %170(”
1 ~
i (00) odd J Vs U+DE+3)Voga
2(j+2) %, .
10 a J — % [}
(10) ) even }f[(j-{—l)] G Vevent Vo)

2) Needed only for an isovector interaction.
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TABLE 6¢C
Reduced matrix elements for the two-body interaction
(RG+HE—to, 0|7 (@101 G+~ 10, 0,05)
for states with v = 2, t = 0

R(5) R
D oank ) o G= 072199 |4, 0), Jo>
G=DUG+HHG+IT] T
(22) even J %I:_——QZ—(jf—Llr)—H‘ (2] Veven_VD)
L8+ ] o
@0 even J 7[(’1—(@%%3 [27—3) /W event2i—3)Vo+-6] Veven Us )]
(00) ! even J 7: [2(6j41)j Veven+ 2 —3) Vo —4j(Veven Us,)]
6(j—HG+8)i(+2) > IR
(20) odd J |: A ’5%’ ! 1(2,/ 5 W2t G= D0+ D oaa =30 +1)Voaa Uz)]
1 —
(00) odd J i Vi Wi+ U+D UG+ DV oaa +30G+1)(Voaa Us,)]

The average two-particle interaction energies Vevens Voaas (Veven Us,) and (Voaq Uy,) are defined in egs. (74),

(75), (78) and (79).

results are collected in tables 6a-d. For states with v = 0 and v = 1, eq. (72) merely
leads to a well-known result, (see de-Shalit and Talmi %), p. 456). In those two cases,
the interaction energy has the form

n(n 1) {(61 + 5)] even (2] + 3)V0 + (2.] - 1)(.] + 1)Vodd}
2 H2-1D3U+1)
Y—3n (2.] + 3)jl7even - V0(2.1+ 1)_(2]_ 1)(}+ 1)Vodd
+HI(T+)-3n) | 22— 1)(j+1) ;
2j _

+ [n:\ (*2—?1—) Vo~ Veven)- (73)

In eq. (73) the function [#n] is equal to 4n for n even (v = 0) and {(n—1) for n odd
(v = 1). The interaction energy has been expressed in terms of the two-particle energy

V, in the state with J = 0 and the average two-particle energies in states with even
and odd J defined by

Y V2I+1) Y V20+1)

Veven — even J — even J : -, (74)
Y (2J+1) (2j+1)j
evenJ
Y VI+1) Y V(20 +1)
I/Odd — oddJ = _ Oddl . (75)

Y (2J+1) Qi+1)(j+1)

odd J
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Eq. (73) has been derived by de-Shalit and Talmi from the expression for the average
interaction energy for levels with the same v, ¢, n and T. Since states with v = 0, (and
1), have only a single possible value of J, the interaction energies in these two special
cases follow directly from the expression for the average interaction energy. The deri-
vation of this result by means of the quasi-spin formalism is somewhat more general,
however. It shows that the n, T dependence of the interaction energy in any state with
t = 0 (arbitrary v, @ and J) has the same general form as that given by eq. (73). A
similar result is obtained for the n, T dependence of the interaction energies in almost
all states of the R(5) irreducible representations with 7-multiplicities = 1 (see tables
12-15 of appendix 2). This result can be summarized as follows. For states with

i) t=00v=0,2,4,...

(i) t=3%0=1,

(i) t=1v=24,...;(n—v) = 4k—2T (k = integer); the § = O states of (w, 1),
(iv) v = 2j+1-2¢; (R(5) representations (1)),

the general charge-independent interaction energy (diagonal matrix element), has
the form

oty TMp, 0 Myl Y Vil j"{ot} TM ., aJ M >
i<k
= AY(n—2j—1)*+BT(T+1)+ C+D4(n—-2j—1), (76)

where the coefficients 4, B and C are functions of v, ¢, « and J. The coefficient D
has the value

1 .
T B X Vi@I+D+ X V(2 +1)).

For states with 1 = &, v = 3, an n—T dependent term of the form
E(=1)" T(n—2j—-1)2T+1) (77)

may have to be added to the simple terms of eq. (76). This additional term arises
through the R(5) Wigner coefficient for the coupling (%)% (22) —» (w,%) with
p = 2 (see table 13). It is absent in states with v = 1 for which the corresponding
reduced matrix element with p = 2 has the value zero (see table 6b). For states with
v =2,n =4k, Todd; n = 4k+2, T even; the coefficients 4, B and C of eq. (76) can
be evaluated from the reduced matrix elements of tables 6¢ and d. The resuits can be
expressed in terms of the two particle energies in states with J = 0 and J = J, (with
J,=2,4,...2j—1 for t =1, and J, = 1,3,...2j for ¢t = 0), the average two-
particle energies defined by egs. (74) and (75), and additional weighted two-particle
energy averages defined by
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Veven Uy,) = V2T + V)UJjid 5; jj), 78
( ) (ZH)M%A +1)UJjjJ 23 jj) (78)
VoadUyy)) = ——— V,(2J+1DYU(JjjJ 55 ji). 79
(Voad J) (2j+1)(j+1)0&§J .I( ) (JJ 25.Ji) ( )

The results are collected in table 7. (For the states with v = 2, # = 1 the coefficients
have the factors (2j—3), (2/—5) in the denominator. For j = 3, however, the only
states with n—2 = 4k —2T are those with H, = ¥(n—2j—1)=0,T = 1. Forj = %
the only states with n—2 = 4k —27 are those with H, = +1, T =1, and H, = 0,
T = 2. In these special cases the factors (2j—3) or (2j—5) are cancelled by compen-
sating factors in the numerators of eq. (76) so that the interaction energies are finite
forj=3%orj=3%)

Eq. (76) is valid not only for simple configurations j* but gives the », T dependence
of the interaction energies (diagonal matrix elements) also for mixed configurations,
if the seniorities and reduced isospins listed are replaced by over-all or multi-level
seniorities and reduced isospins, and the factors (#—2j—1) are replaced by (n—20Q).
In a mixed configuration based on single-particle levels j,, j, . . . with corresponding
single-level seniorities and reduced isospins v,, v,, . . ., &, f;, . . ., the over-all or multi-
level seniorities v and reduced isospins 7 are given by the possible R(5) representations
in the Kronecker product

(et 3 =100, t)x (ot —1vp, ) % ... =Z ~3v,

Eq. (76) predicts a very simple T-dependence for the interaction energies of the
form T(T+1). Since this seems to account for the observed energy systematics of iso-
baric analogue states [Jinecke !°)], it may be possible that these energy systematics
are governed mainly by the low-seniority (v < 2) components of the wave functions.
Since seniority is in general not a good quantum number in nuclei where both neutrons
and protons are filling the same shell, admixtures of higher seniorities may be rela-
tively unimportant as far as the 7-dependence of the energies is concerned. For the
v = 0 states, it is possible to investigate this point. The Kronecker products of
(0,0) = (j+1—1v,0) with (20) and (22) are given by

(0,0) x(20) = (0, +2,0)+ (®w; ~2,0)+ (0, + 1, )+ (w; —1,1)+ (0, 0)+ (w0, 2), (80)
(6010) X (22) = (wl +2,2)+(C{)1—2,2)+((D1+ 1,2)+(0)1+ 191)+(a)1 - 17 2)

+(w =1, D+ (02)+ (0, 1)+ (0, 0). (81)
Thus R(5) tensors of rank (20) connect v = 0 states only to states withv =4, f =0 and
v =2, t =1, while R(5) tensors of rank (22) connect the v = 0 states only to states

with v=4,t=2and v=2,¢ = 1. For simple configurations j" with j < 7, only the
v = 4, t = O states include a state with J = 0. The coupling (@, 0) x (20) —» (v, —2,0)
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may thus be the most important in determining the effects of higher-seniority ad-
mixtures. The R(5) Wigner coefficient for this coupling has the form

{(w,0)H, T;(20)00]|(w, —2, 0)H, T
- [57(91 —Hi =T+ H, = T)(0,+1-H + T)(w, +1+H, +T)T (82)
6(w, + 1) (w, +2)2w, + 1) 2w, +3) :

The energy difference between the states withv = 4,7 = 0and v = 0, = 0 is of the
form o7 (n)+ BT (T+1) given by eq. (76). If admixtures of v = 4 states can be treated
in perturbation theory, these will lead to correction terms to the v = 0 states of the
following n, T dependent form:

o LG+ =[G +3)° ~ Hi] = 2T(T+ DI+ 0+ P+ Hil+ TH(T+1)’}
L)+ BT(T+1)

, {83)

with H, = $(n—2j—1). This does include a term of the form 72(7+1)?. The general
T-dependence of the energies of isobaric analogue states may well be given by a series
in powers of 7(T+ 1) dominated by the first term. In the case of mixed configurations,
the state of overall v = 0 may be connected also to states with v = 2, ¢t = 1. If ad-
mixtures of this type can be treated by perturbation theory, they will lead to n, T
dependent contributions to the interaction energy of the same form as those given by
eqgs. (32) and (33) of ref. '"). It was seen there that effectively these differ little from
the simple T(7+ 1) dependent form.

Since the Coulomb energy of nuclei shows interesting systematic n, T dependent
effects 1°17), the study of the n, T-dependence of the two-body interaction has been
extended to include the isovector and isotensor parts of the Coulomb interaction
(diagonal matrix elements). Since the needed R(5) Wigner coefficients are available
only for the simpler R(5) representations, only states with seniority v = 0, v = 1, and
the (n = 4k, T odd), (n = 4k +2, T even) states of v = 2 will be studied. Since the
seniority scheme may be poor for nuclei where both neutrons and protons are filling
the same shell, Coulomb energy formulae based on simple configurations j" and states
of lowest possible seniority may be only a guide to the true n, T dependence of the
Coulomb energy. Nevertheless, the observed n, T dependent effects in light and inter-
mediate weight nuclei seem to be explained at least qualitatively by the diagonal matrix
elements of the Coulomb interaction in states with v < 2. The observed effects have
been summarized by Jinecke 16:17) 1,

The isovector coefficient of the Coulomb energy shows a simple linear dependence
on » for even nuclei. For odd nuclei the same linear dependence on # is observed but
now with a superimposed oscillation which distinguishes nuclei with 4 = 4k 43 and
A = 4k +1. The amplitude of these oscillations is large enough to be clearly observ-
able for states with T = } but decreases with increasing 7. The isotensor coefficient
of the Coulomb energy on the other hand seems to show no marked dependence on

t See ref. 1°) for a review of this subject and for additional references.
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nucleon number # but shows an observable pairing effect which distinguishes nuclei
with A = 4k and 4k +2.

The Coulomb interaction has been decomposed into its R(5) irreducible tensor
components in eq. (31). The R(5) reduced matrix elements for the Coulomb inter-
action can be read off from tables 6, if the two-particle interaction energies are inter-
preted as

2.1 e? .2
Vy =z — 1D (84)
3ra
and restricted to states with J even. The R(5) Wigner coefficients for the isovector and
tensor components are given in tables 12-15 and 10. With these the diagonal matrix
elements of the Coulomb interaction

Ut TM oy, J,| Z V,-5°“'Ij"{vt} TMy,J5) (85)
i<k

can be evaluated for states with v < 2 through a generalization of eq. (72). The iso-
scalar part of the interaction has the form of egs. (73) and (76). The isovector and
tensor parts of the interaction give the following contributions to the diagonal matrix
elements (85) of the Coulomb energy:

(i) Forv=0,(t =0;J=0)

e[S

(86)
Ggi)yforv=1(@=4%J=j)
_ 3¢ o qyae-1 3T +1)(2j+3)
MT{3a+ [3b+—2T(T+1)} (n=2j—1)—(=1) T }
2 . (n—2j—1"—(2j+3)"]).
+[BME—T(T+1)] {b+c—c[_w———4T(T+l) J} (87)

(i) for v =2,¢t =0, J, = odd

— M {3a+3b(n—2j—1)} +[3M2~T(T +1)] {d—e [M}} ; (88)

(2T ~1)(2T +3) ’

(iv) for v = 2, t = 1, J, = even; states with n = 4k, T odd; or n = 4k+2, T even

Yy : VA P
My l3 + [3(b+b)+ 2T(T+1)] (n—2j 1)}
2 - ’ (n—zj_l)z

: 2
L (1=2=1 k ! (59)

AT(T+1)  QT—-1)Q2T+3) Ty
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The coefficients in eqs. (86)—(89) are given by

a = jV,,..+core contributions,

_ 2.] Veven—- 0
202j-1)
j —

- N even)’

AR~ 1)
(4.] 1)] even (.] + 1)VO +2](VevenUJ2)
4j(2j-1)
(] 1)V0 J even+2j(1/even UJz)
4j(2i-1)
b = ﬂ:zVO_ even+(2j—1)(VJz_2]( even UJz))]
(2= +1)(2/—3)(2 - 5)
f (2.] 9)[V0 even] (2.] + 3)[V12 - even UJz)]
(2/-3)(2j—5)

3

+ . [3.] even VO +]( Veven U.Il)] s
(2j-1)

d/ — [Q’.] - 1)(V0 +.] even)+ ZVJz + 2.](Veven DJ:)J
12j(2j+1)
[(20_]__’ 60] - 11.] + 24)(21 Veven - VO) + 4(4J + 2.] + 3}(V12 2]( even UJz))J
12j(2j+1)(2j —3)(2j -5)
— [(2J - l)(VO +] even) +2V_,2 +2J( even UJz)]
4j(2j+1)
[(4J - 12] _71 + 12)(2.] even VO)+2(4] _4] + 3)(VJ2 2./(Veven UJz))]
4j(2j+1)(2/ - 3)(2j - 5)
h —_ [(2] - 1)(VO +J even)+2Vlz + 2]( even UJz)]
3j(2j+1)
[2(2.] 1)(] 3)(2] even VO) + (2.] + 3)(V12 2J(I/even UJz))]
6j(2/ - 3)(2j - 5)

k= —(2j+2)g,
| = L7 44 = D)V i Veren) + 2V5, 42 Veren U]
3j

- i : [2(212 - 7] + 1)(2j1_/evgn — VO) + (6J + 1)(VJZ 2]( even UJz)]
AR 6(2-3)2 =) - 0)
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The two-particle energy averages are given by eqs. (74) and (78) with ¥ given by eq.
(84). The Coulomb interaction between nucleons in partly filled shells and the nu-
cleons in the closed shells of the core can make a contribution only to the coefficient a.

In states with v = Oand v = 2, r = 0 the isovector coefficient of the Coulomb ener-
gy (coefficient of the — M term) has a simple linear #-dependence given by the co-
efficient 5. In states with v = 1 and » = 2, ¢t = 1 additional small », T dependent
terms are predicted. However, their coefficients (¢, ' and f) are small compared with 5.
The largest of these is the oscillatory term for states with v = 1 which, through its
dependence on the factor (—1)*"~7, gives a contribution of opposite sign to states
with n = 4k+3 and n = 4k+1, respectively. The magnitude of this term decreases
with increasing 7. Several small n, T dependent terms are predicted for the isotensor
coefficients of the Coulomb energy (coefficient of the [3M7 —T(T+1)] term). How-
ever, the coefficients of these terms (c, e, g, A, k and ) are small compared with b, d
and d'. The major contribution to the isotensor coefficient of the Coulomb energy
should thus be expected to be independent of # and T. The large coefficients are dif-
ferent in states with » = 2 and v = 0 so that pairing effects can be expected for the
isotensor part of the Coulomb energy. All these effects are in essential agreement with
the experimentally observed facts *°). Although Coulomb energy formulae based on
states of good seniority with v < 2 cannot be expected to give good quantitative
results in nuclei where both neutrons and protons are filling the same shells, all of the
observed n, T dependent effects in light and intermediate weight nuclei are explained
at least qualitatively by the above formulae.

6. Concluding remarks

Although the applications discussed in this work are somewhat limited, it is hoped
that they can be considerably extended when algebraic expressions for the R(5)
Wigner coefficients involving the representations (w %), (¢+1, t) and the remaining
states of (w, 1) are added to the coefficients tabulated in appendix 2. Even when large
seniority admixtures are important, shell-model calculations can be facilitated if the
n, T dependent factors can be given for all matrix elements of interest in the seniority
scheme.

It is a pleasure to acknowledge many stimulating discussions with J. Jinecke and
to thank R. Hemenger for checking some of the algebraic results and for a careful
reading of the manuscript.

Appendix A
A.1. EXPLICIT CONSTRUCTION OF STATES WITH 7-MULTIPLICITY =1
In order to study the behaviour of the states |(w, t)H,; TM ) under conjugation, it

is convenient to give explicit constructions for these states in terms of lowering and
raising operators acting on the state of highest weight or some state of maximal weight.
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Since states with My < T can be constructed through well-known three-dimensional
angular momentum techniques, it is sufficient to construct states with M = T and to
define lowering or raising operators O, acting on states with M = T through the
relation

Oul{w  )H  TT) = f(a, b)[(w, 1)(H, +a)(T+b)(T+b)),

where f(a, b) is a normalization factor. Operators O,, are constructed as functions
of the infinitesimal operators E,, (standard Rs notation, see table 1). The following
have been found most useful:

O, .=E_, Oy .+ =E;,
O_, .1 =E} |E_|,—Eq_E_jQTo+1)~E_,_ T,2To+1),
O4i -1 =E}_E\\—Eo_ E\oQQTo+1)—E,_, T,2T,+1),
O_,0=E_io(To+1)—Eo_E_,;,
O41,0 = EiofTo+1)—Eq_Eqy,

2 2
O-30=E>o+2E_, E_,,, 0,0 = E{o+2E,_,E;. (A.1)
TABLE 8
Commutators [X, Y] of some lowering and raising operators acting in the subspace of states with
MT = T
Y
E E, 0—1,—1 0+1, -1 0—2,0 02,0
X
E_ 0 0 0., QT,+1) P 0 —E,QH,—2T,—1)
Ey 0 o 05,27, +1) E_,QH,+2T,+1) 0
0.4, 0 0 0 —0,,, 4QH+2T,+1)
04, 1 0 0_,, 1(2H,—2T,—1) 0
0 5,0 0 R
0, 0

where
P=2F - TH+3CQRT,+ 1) —3(H 2+ 3T +3T) 2T, +1) + H QT2 +2T,+3),
Q=+27- T+%C5(2To+1)_%(H12+3T02+3T0)(2T0+1)_H1(2T02+2T0+%),
R =447 - T—-2H,C;+2H,(H*+T®) + H,(2T,—3),
with C; = w(w+3)+wy(w,+1)
and where the components of the isovector J are given by eq. (5)
1
Ty = — _/i T 1= +(EwE_1n—E o En),
V
1
I 4= V2 T _ = A+ (EpwE_1_,—~E_1Ei_1),
Ty = (E11EA171*El_1E—11‘T0)~
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Note in particular that O,, = O, and that O, is the operator which creates an
a-like four particle cluster with 7 = 0 built from two J = O-coupled pairs (0,, =
—3Y i < IMp1—=M7|00Y Ay Al prry). Some useful commutators involving
the lowering and raising operators are listed in table 8.

In the representations with small values of ¢, (t = 0, }, 1), it is most convenient to
generate the full set of states through lowering and raising operations acting on the
maximal state |(w,)H, TM ) =|(w, H)tw, w,), whereas for states with larger #, such
as (fz), it is more convenient to use the highest-weight state |(w,t)H, TM;) =
[(w t)w, tt) as starting point. The explicit constructions for states with 7T-multi-
plicity =1 are listed below.

A.1.1. The representation (w,0)

l(wlo)Hl =o~B,T =M= (wl—“_ﬂ» = N(a, ﬁ)Oﬁ—x,quﬂ,—l
X (00,0000, 0>, (A.2a)
where |

N(a, B)
1y [22“””[((»1 —a— M PQRo, +1-20)!(2w, + 1 -28)!(2w, +1—2a—2ﬁ)q%
- ! B, —a) (o, — B)[(20, + DI J

=N(B, a). (A.2b)

A.1.2. The representation (w,%).
(1) Type e states (w,+%1—H,;—T = even integer)
(w3)eH, = a=p+4, T = My = (0, —a—f)>
= N(a, ﬂ)oﬁ— 1, -10%, - o Hioo), (A3a)

where f

N(a, f) l
257200, 4y —a— ), — 3 —a—)! !

(=1 i: x (20, +1—20)(20, +3—2B)1(2w, +1—20—26)! |.

B al Bl +1—a) (@, +3—B)(20, +2)!12w, +1)!20,)!

(A.3b)
(ii) Type o states (w; +3— H;—T = odd integer)

[(w,$)oH, = a—f—% T = My = (001—“—B)>

=N (e, B)OB— 1, -1 0%, _1|(w1%)—%a)1w1>, (A.4a)
Where N (o ) = NGB, ), (A.4b)
[see eq. (A.3b) for N (B, x)].

* The phases of the normalization factors are somewhat arbitrary. They have been chosen here to
be consistent with ref. 1),
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A.1.3. The representation (w,;1). The x = O states only (states with w,—H,~T
= even integer)
oDk =0,H, =o—p, T =M = (0, —a—f)>
= N(, B)O%,,_, 0%y, _ il Dk = 0,00, @), (A.5a)

where

N(a, B) = N(B, ®)

a)122“+2ﬁ(w1+1—0(—/3)!(a)1—1—a_ﬁ)!(2w1+1_2a)!
= (—1)*** [ (20, +1-28)!20, +1-2a—2p)!

(0 + 11BN, ~2) o, — ) [0+ D]

} . (A.5b)

A.1.4. The representation (tt).
(i) States with (H,—T) = even integer.
(t)H, = t—x—2y, T = My = t—x) = N(x, y)0* ,,0% | _,i(tt)ttt), (A.6a)
where
22241 —x)1 (2t +1—-2x) (2t —2x — 2y)!
X122+ 1)]?

(ii) States with (H;—T) = odd integer.

N(x, y) = [ I (A.6b)

(t)H, = t—=1—-x=2y, T = My = t—x) = A(x, y)0%,,0%, _,0_ ol(tt)ttt),
(A.72)
where

22FEIHIO 41— x)1(2t+ 1 =2x)1(2t — 1 —2x —2y)!
12y + DI2ONRe+ D) (e +1)?

N(x,y) = [ }%. (A.7b)

By operating on these states with the infinitesimal operators E,,, matrix elements of
the infinitesimal operators can be calculated at once.

A.2. CONJUGATION PROPERTIES

The group R(5) is self-adjoint. The irreducible representations and their conjugates
are equivalent and the basis vectors of an irreducible representation and their conju-
gates are simply related. To establish the phases of this relationship the conjugates of
the above states are constructed by operating on them with the conjugation operator
K. The conjugation operator K has the following properties (see table 1):

KJ ;K ' = —J j=1,...5,

ij»

KE,K'=—-E_, ,, KHK'=-H, KTK'=--T,. (A8)
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For states with T-multiplicity = 1 for which the quantum numbers H,, T and My

are sufficient to completely specify the states, it follows from the last two equations
of (A.8) that

Kl(w)H  TM1> = cf(0)~H, T—Mp). (A9)

The phase factor ¢ will be denoted by (—1)"""*7 M7 [eq. (37)]. The (TM,) depend-
ent factor has been chosen to be in agreement with the usual angular momentum
phase conventions. The following relations are particularly useful in the construction
of the states (A.9)

KO_,0K™ ' = 0,, (A.10)
2T
(KO4 i, K™)(@,0H, T, =T = (KO, ,, _IK‘I)(ZT;), (@, OH, TT>
TZ(T—I)
= mo—l,—xi(w11)H1 TT), (A.11)
TUT-1)
(KO-, - K D0, )H, T, =T = m 04y, -1l(@,)H, TT). (A.12)

With these relations the conjugates of the basis vectors for the simple irreducible
representations with T-multiplicity = 1 can be constructed.

A.2.1. The representations (0,0), (w,%) and the x = 0 states of (w,1). In these
three cases, the phase factor under conjugation follows from the relation

K|(w, t)Hl TT) = K(N(a, [3)0’1 1, -1 0% 1, —-ll(wl t)H1 W, w1>)

T2(w1-a-ﬂ) _
= (-1 —=———— N(B, ®)O0%, —105—1, —il(w )—H, w0
[2(c0; —a—B)]!
= +(—1)"“"Nw,)=H,, T, =T, (A.13)

where eqgs. (A.11) and (A.12) have been used. (Note the interchange of o and f.) The
values of H, for the maximal-weight states have been denoted by H,, where H, = 0
for the representations (w;0) and the x = 0 states of (w,1) and H, =  for the
representation (w,4). The overall-phase factor in the three cases has been fixed
through the conventions

K|(w; 0)00, w,) = (= 1)"|(w,0)00,; , —o,>,
Kl(wl%)%wl (1)1> = (“l)ﬂ(wl’%)l(wl%)_%a wl’ —(O1>,

K|(a)1 N0w;w,> = (_ l)ﬂ(wl’ l)l(wl 100, , —w;>. (A.14)
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(Note that the over-all choice of phase is always arbitrary to within an (o, f)-depend-
ent factor.) For the representations (w,0), (w;%) and the x = O states of (w,1),
therefore, the phase factor (—1)" of eq. (37) has the value + 1, (v = 0), for a/l states.
Note that the conjugation operation exchanges states of type e and type o in the
representation (w; ¥).

A.2.2. The representation (tt). The two cases ¢ = integer and ¢ = half integer must
be treated separately.

(a) t = integer; H, —T = even integer.

Through the use of eqs. (A.10) and (A.12) and the over-all phase convention
KDty = (=1D)™|(2t)—t, t, —t), the conjugation operation gives

KIUH, TTY = K(N(x, y)0% 300%, - [(t2)u1))

Z(I x)
—(_ )” ( J’)[( )],011,—10300120 (A.IS)
Through the further use of the commutation relations of table 8
T2(t Xx) . 2t 2v 1
KIGOH, TT> = (~1/NGe») = 0%, 2,073 >~
[2(:—x)]! (2e=2y)!
. T2(r x) .
= (= D"(=1)]N(x, 1—x~ y)[2(t_ S 20 "0y, l(er)et)
= (=1)"(—=1)""|(tt)-H,, T, = T). (A.16)

(b) t = integer; H,—T = odd integer.

Using similar techniques

KI@)H, TT) = K(A(x, y)OL200%,, -1 O ol(t)t1e))

) 4 A P g i 0%, 0_,ol(t)

= (=1 AN (x, t—1—x— 0' 7 770", _,0_, ()t
P T ol

= (=1)"(=1)""t)—H,, T, = T>. (A.17)

(c) t = § integer.
For H, —T = even integer, using egs. (A.10) and (A.12)

K[()H TT) = K(N(x, y)OL, _, 0% 5l(1t)t1r))
T2

I

1)"N 0%, -10% hO
(17N ) 1 O, 10500 0o s i

(A.18)
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Through the further use of the commutation relations of table 8

K{(¢)H, TT)
2(t—x)
= (—)(=1)AN(x,t~3—x~y) [2(;—xﬁ 0%, 4 0572770, ol(to)tet)
= (~)"(=1""(t1)=H,, T, = T>. (A.19)

For (H; —T) = odd integer, an identical result is obtained. For all values of #, there-
fore, the conjugation properties of the states of the irreducible representation (7t) are
given by

K(H, TT) = (=1)"(=1)""|(1)~H,, T, =T,

so that the phase factor (—1)" of eq. (37) has the value (—1)'~".

Appendix B

TABLES OF R(5) WIGNER AND RACAH COEFFICIENTS

The R(5) Wigner coefficients are tabulated for the couplings (w}¢") x (w]'t") —
(w, 1) with (0ft"") = ($1): tables 9, (w}t”) = (10): tables 10, (0} ") = (11)
tables 11; () ¢'") = (20) and (22), Wigner coefficients diagonal in H, T, tables 12-15.
The representations (@, ¢') and (w, ¢) are restricted to the special cases (w;0), (w,3),
(#t) and the 8 = O states of (w, 1).
The following notation is used:

The states of the representations (w,%) are completely specified by H, and 7. How-
ever, the R(5) Wigner coefficients involving the representation (w,%) do depend on
the fourth quantum numbers f, where

B = e for w,+3—H,—T = even integer, or 3(n+v—1)+T = even,

B =oforw,++—H,—T = odd integer, or ¥(n+v—1)+T = odd.



TABLE 9a
The R(5) Wigner coefficients
L OVHN T GHH " T (0, HEH, T

H,T'; H"T” i (013) = (0, +%, §) B (@:3) = (0~ B
o e I:col+2+H,+T]% [U)I-H—HI:Z]%
ime T ey ¢ 20,13 © 20,43
o T 1 [w1+1—Hl—q% [wl+w2+Hl+T:|%
i T ey e - 2w, +3 © 2m,+3
b . c01+1+H1—T:]% ':(1)1+2—H1+T:|%
vy T ey ° - 2m,+3 ¢ 2m,+3
HAh T3 —11 l:wl—i—Zle—%T:I% I:(Ul+l’+Hl-Ti|%
ihETs =i o 20,43 ¢ 20,43
TABLE 9b
Lo HF HNT'; GHH "\ T"||(0,0)H, T
H,T;H"\T"” /3, (0,0) = (w,+4%,0) 6/ (@,0) = (v,—4,0)
(TH Do +3+H,—T) % (T+ 1), +3—H, ~T)T%
H—-3T+5 4 : o :
QT-+1)Q2w,+1) QT+1)2wy+5)
N L e o [Tlrti-Hm-Tn:
> ® QT+DQRw,+1) QT+1)Q2w,+5) 4
T+1)(w,+3—H,—T)]3 T+ (o +5+H, +T)+
HdTod -3 o ;l:( ), D o [T D BT
QT+1)Q2w,;+1) QT+1)Q2w,+5)
ot Tk 13 [t o [[lotirA-TN:
* >R QT+ DQw+1) QT+1)Q2w,+5)

The coefficients of tables 9a and b have previously been calculated by Ginocchio '2). They are tabu-
lated here since Ginocchio’s coefficients differ from the present ones in relative phase.

TABLE 9c¢
(' 9B HLT GHH T ||(w0,1)f = 0, H, T

H\ T'; H"T" § @) = (@ =4 F (@18 = (o1t 1)
HiT—d: 31 (T+1)(w1+l+H1+T):|% (T+1)(w1+2waT)]%
1% T % 2(w, +1)QRT+1) e - 2w, +2)Q2T+1)

. T(w,+H,~T) % [T<w1+3—Hx+T) 3
mobreh bi e —[p TR o Aot DT

. (T+1)(w1+1—H1+T)]% (T+1)(w,+2+H1—T):I%
H+3T-5—F 4 20+ DT+ 1) ° 2(e, +2)2T+1)

) T(w,—H,—T) 7% T(w +3+H,+T)|+
Hi+3T+% -4+ o — HoF)QRTLD) ¢ - m]




TABLE 9d
Lo D = O0H\T; GHH" T”|[(0, HAH, T

p=0H\T; H"\T" f (@ F) = (0~ ¢ B (@3) = (44, 3)

QT— 1w +1 —HI—T)(f01+2):| 3 [(ZT—I)(wx+2+H1+T)(w1+ 12] 2
32T+ D(w; +3) 2w, 1-3) ¢ 32T+ Daw,Qw, +3)

) [(2T+3) ((»1+2—H1+T)(w1+2):] 3 [(2T+3) (@, +1 +H1~T)(wl+1)i| 3
2 3QT (@ +3) 2w, 1 3) ° 3QT+ Dy 2oy +3)

0H—}T-% 440 [

IRt e e e M s el
R R e Ty
TaBLE 9¢
CEOHNT' GHH TG H T

HY T H,W T () = (%1% @) = (¢+4,1+9)
T )
T =]
H+:T+E -4 4 |:(t+(§;%3))(é;f;;rl) ; [(t_g:%l))((TzJ;fijl) %

The coefficients in table 9¢ have previously been calculated by Ginocchio *?). The present ones agree in
both phase and magnitude with those of ref. 12?).

TABLE 10a
(0, 0)H\T'; A0 H", T"||(@,0)H, T

H, T, H" T (610) = (w,+1, 0) (0,0) = (w,—1,0)

Ho—1 T: 1o |:(wl+l+H1-T)(w1+2+H1+T):|% |:(w1+1—H1—T)(w1+2—H1+T) 3
! ’ 2(w; +1)2w; +3) 2(w,+2) 2w, +3)

H, 1T 10 (w1+1-H14T)(601+2—H1+T):If [(w1+1+H1“T)(w1+2‘FH1+T) 1
! ’ 2(w;+ 1), +3) 2(0,+2) 2w, +3)

HoT—1 01 [T(w1+2+H1+T)(w1+2—H1+T) + 7[ﬂw1+l+H1—T)(wl+l—H1—T)j|%
S QT+ 1)(w; + D2 +3) | QT+ 1)(@1+2)Qw, +3)

1 _I:(T+1)(w1+1+H1_T)(w1+1_H1_T):|% I:(T+1)(w1+2+H1+T)(w1+2_H1+T) £

H T+1; QT+ (@~ D Q2w +3) Q2T+ 1) (w0 +2)2w;+3)

These coefficients agree with those given in table 8, ref. !1); provided the coefficients in row 2 and column 2 of
table 8, ref. 1) are multiplied by an overall phase factor of —1.
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TABLE 10b
L FH T (10)H", T"||(w, HFH, T>

B HNT; H", T"f (%) = (0, — 1, }) B (@1%) = (o, +1L 1)
(o +3—H,—T) (e +§—H,+TY|+ (0 +$+H, —T)w, +5+H,+T)
e H—17T; 1 0e e
2(w, +1)Qw,+35) 2(w,+2)Qw,+1)

e H T+1;0 1e

(2T—i—3)(w1+%—H1+T)((:)1+%+H1+T)] % [(2T+3)((01+§1;+H17T)(wl+§-fH1—T):I *
e —

- HT+1)(w,+1)Q2w;+5) 4T+ ) (0, +2)Qw;+1)
T 0 e (w1+%+Hl—T>(w1+§AH1+T)J% [<<:)1+%+H1+t)>(wl+%—m~T)]%
oM ¢ 4T(T+ 1) (wy+1) Q2w+ 5) AT(TH Do+ 2) Q20+ 1)

¢ HiT-1:0 1 e_[(ZT—I)(w1+%+H1—T)(w1+%~H17T):|% e |:(2T—1)(0)1+%+H1+T)(w1+%—H1+T)]%

4T (0, 1) 2o, +5) AT (0, +2)Qew,+1)
e H+1T: —10 I:((Ul+%+H1‘—T)(w1+%+H1+T):|'5" [(w1+%_HI+T)(U)I+%_H1_T):]%
S ¢ 2w, + )20 +5) € 2(0,+2)Qwy+ 1)

Coefficients with f = o can be obtained from the above through the symmetry relation:

LenDPHLTSANH T (w0, oy Ty = (—)or+ 1=81 (e, 1)~ H T5(10) — H, T” (o H)e— H, T

TaBLE 10b (continued)
Len DB H T ;(10H " T”|[(0, H)BH, T>

g H, T, H,\T" B (@:1%) = (o1})

(O +3+H, +T) o, +3—~H,+T)| %
H-—-1T, 10 w[
° ' ¢ 6(w+1) (w1 +2)

. QT -+3) w1 +3—H—T)w,+§—H,+T)|*
o H,T+1; 01 e % 3T+ Do+ D@, +2) :I
{H1+QCT+1)(w;+3)}

e HHT ; 01

2BT(T+ Do+ Do, +2) 1}

o HiT—-1; 01

[¢]

(ZT_1)(w1+%+H1+T)(w1+%+H1_T):I £
3T (o +1)(w,+2)

(0, +3+H,—T)(o,+3—H,—T)] %
6(w;+1)(w,+2)

o H\+1T;,—10 e I:

Coefficients with 8 = o can be obtained from the above through symmetry relation:
{(any %):Hll T;(10)H", T”H(Q_)l $oH, T>
= (—Der+1-B1 (e P —H" T";(10)~H"\ T"|{(w0, H)e — H, T >.



Ht'm(+'0)(+DL T

={L'Ho=g¢u'™)|[10(0 1) ‘L'HO=d(1T®))

H
‘I— = {(I'HO0 = g(1'®)||10(01) ‘L H(0'®)>
(g+'o)yoe 7 o o = d(1T)>
_Hatav:tev (L'HO')]10(01):L'HO = 4(1"®)
Om_<
" (g0 (e +T)(I+'O)U+IL v A (40D (T + ') (1 +0) L .VH \Emonujﬁogi\m‘/ﬂwua
(D IO+ 0) = FH T+ 10) — (1 + )T+ o) (1L LT+ @) —H(1 ') — (o) (1 + o) N o) '),/
_” (e+'on e+ +'0) (1L g\ _H (' +'o)oq+1I01 1o i—I W 0
L@+ oy u—"H—1+'o)L—"H+1+'"®(-+L)(1—1) A+ L+ 'H+ 7+ oL +HH—T o)1+ —1)
ﬁ (e+'o)(e+'m) (1 +'O) U+ LD +1I) ﬁ g+ + o) o(1+1(+1) \‘H_l 1o G4+I H 0
@+ N L+ H—T+ O L+ H AT+ )T+ G+ o)y (L—"H+1+'o) (L—"TH—1+'0)(CT+D)L
(€410 (¢ + o) (14 T0)T (g +'o)(T+To)log
. - — 4 I+'H
_HQ+§§+£+N+§Cli+?C:L «F_téiwii_+§v§+£1N+§v 01 0
ﬁ (g+'00)(g+ o) (1+ o)z ﬁ (¢+Tm0)(¢+ ') oz g 01 I 1-'H o
(t+'o)L+H-TH'O) I "H—-11'0) L+ —"H+1+'o) I+ H+T+'0)
(I1—"m) = (1'®) (1‘1+'e) =q'® SJULH L1 VH

(LHO = g, L%, HO1) 1% Ho = .§0'®)>
90] a14v]
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TaBLE 10d
CEnH'\T'; W0)H", T"|| () Hy T
H,l T’ ;H/,l T (t-l_) — (”)
T+H)XT—H,+1)]%
HolT : 1o _[( +Hy)( 1+_)]
2t(t+2)

H, T+1; 01

H T-1; 01

H+L1T

;—10

(—D)+T+2)(T+H,+1)(T—H,+1)

-

20T+ 1D)QRT+1)

H,(t+1)

[
[

[t+2)T(T+ D]

(t-T+1)(t+T+1)(T+H1)(T—H1)] 3
(t+2)TQT+1)

(T-H)(T+H,+1)] %

21(t+2)

]ir
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YL HOF®)], LY HA) LY H o (3 0))

1UOIIR[A1 AIOWILIAS 94} AQ 9A0QE 9Y) WOIJ PAUIRIQO 3q UBD 0 = g I SJUSIOYI0D

(s-H'o)(1+'™) L9
~ G O N—=L1+'HoO
0 ww_HQ|E+m+§v2+£+m_+§v:|s&
(+10D) -+ +I)9 _” (¢ +lona+o)Ls H_ o 11— ¢ LItH?®
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T s L+ H A+ 3oL+ TH—§+'0)(1—17) slz-"H+i+ ") I~"H—§+'0)(1—10)
=
o ﬁ;i.:ts@@ﬁax;&:m T ﬁ (s+'on(a+'™)(+1)I¢ H_ 4 o 10 < I THo
(L+"H+HE+Ho) L —"H—§+'®) | (1+10) s LUI—H+E+ o)+ H—§+'2) ] (1+10)
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0 5 11 N-L1-'H o
«ﬁi,_;blm‘tav§+£+‘w+§v:\&e”_
ﬁ (1+'o)(¢+1'0) 19 Q ﬁ (s+'0(1+'o)(1+.1)9 g A < L1—H e
LA HA o)L —"H+§+'0)(1+1) LA H- o)L —TH—EHT0)L
S+'o)(1+")(1+.1)9
0 2 11 SI+LI—'H o
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TaBLE 11a (continued)
LenHF H T ADH"\ T" (0 HBHL T,

g HLWT" ;H"T” § (@13) = (w18);p =2

e H—1T+1; 11

o

5 +9)[ (0 +DQRTH3) e +3—Hi+ Ty —3+H,—T) ]%
2o 3 8(T+1) (0 +2)2w, — 1) Qo +T) (w? + 3w +1)
{T@w,+120,+3)+ Qo — 3w + 2 (wy +§ —H +T) (w0, + 3+ H +T) 2

of-lT 5 11 B - 8T(T+ D)oy 1 D @n+2) @y — 2o+ T (@t + 30+ 1)1k

(0, +2)QT—1)(w+3—H,—T) (w0, +3+H,+T)] %

e HIT=h T e Qo o e o D Qo DB+ T (k1304 3)

oH, Ti1; 01 e — (2T+3)(w1+%AH1+T)(w1+%*H1—T)(w21+3w1+%)]%

3T+ 10+ D(w, +2) 2oy — 1) (2w, +7)

{(0* + 30+ PIQw, +3)+2H, QT+ 1)]—-5Qw, +3)T (T+1)}
2B T(T+ (o + D (@0 +2)2w; — 12w +TH @ + 3w, +§)1F

H T-1; 01 e |:(2T“‘)(w1+%+H1-T)(w1+%+H1+T)(w21+3w1+%) 1
o H, ; 3T(0+ 1) +2) 2w — 1D Qw; +T)
eH, T ; 00 e {20 +30,+1)QRT+1)—5H, 2w, +3)}

2[3(w,+ D0, +2) Qo — 1) 2w +T) (w2, + 30, +3) ]

(@1 +2)QT+3) (i +i—H =T +3+ H, +T) %
3-8(T+1) (0 + 2w — 12w, +T)(w? + 30 +3)

e Hi+1T+1; —11 e —Qw;—3)

{20, —3) (00, +2) — (T+ D (@4w? + 120, +-3)} (@, +-§ — Hy — T, +§ 4+ H — Tl

oHHIT ;-1 3 - 8T (T+ ) (w;+ (@, +2)2w; — 1) Qew, + T (@ + 30, +D

HET—1 —Hy +T)(, +3+H,—T)4
e Hy+17—1; —11 e A(2w1+9)[(w1+ YOT— Doy +i— Mt T) ot it M ):|

38T (0, +2)Con— Qo+ TN 0% 43w, +3)

Coefficients with § = o can be obtained from the above by the symmetry relation:
LD HNTUDVH T ||[(0H) o Hi T,
= (—)o1=B Y (o 1) —HA T (L) —H" T |[(w: De—H, T>,
withy”” = 1 for H, T = 00 and »"" = 0 for all other valuesof H", T"".
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TaBLE 11b
(o, O)H"\ T'; (II)H/,1TNH(C_011)/3 =0H,T)

HY T H' T" (@, 1) = (m—1,1) @ 1) = (041, 1)
H—1T ; 11 [(w1+2_Hl+T)(wx+1—HI—T)]% l:(a)rH+H17T)(w1+2+Hl+T) 3
' ’ 2(my+1)(2wy+3) 2(;+2)Qw; +3)
H T+1: 01 I:T(w1+2—H1+T)(w1+2+H1+T):|i _ I:T(WH‘I_Hl*T)(w1+1+H1~T)j|%
1 ’ @7+ D@+ HRw+3) QT+ 1)@ +2)20,+3)

H,  T—1: 01 (T+1)(w1+1—H1—T)(w1+1—O—HI—T):I% _[(T—i—1)(w1+2—H1+T)(w1+2+H1—|—T):|%
' ’ QT+ 1) (o +1)Qw,+3) QT+ +2) 2w, +3)

H+1T ; —11 [(“"+2+H1+T)(w1+1+H1—T):|% I:(wl—Hle—T)(w1+2~H1+T):|%
! ’ 2(wy+ 12w +3) 2(w;+2) 2w, +3)

H, T H", T" (611) — (U)ll)

T H,—-T 3—H,+T)]*
Hy—1 T+1; 11 _|: (oy+H, Yo+ 1+ ):I

2QT+ 1w, +1)(w,+2)

T+1 1+H,+T 2—H,—T)]%
H,—1T—1; 11 _ (T+D (0, +1+Hi+TH (o + 1 )]

2QT+1)(w,+1)(w,+2)
H T ; 01 —H
! ’ [(w 4+ 1) (e +2)1F
T(T+1) 7%
BT 00 - [(w1+1)(wl+z)

T —H,—T 34+H,+T)]%
H4+1T+1; —1 1 [ (o, 1 Ww,+3+H,+ )]

2Q T+ (0, + 1) (w,42)

H4+1T—1; —11

|:( T+ 1) (w41 _H1+T)(w1+2+H1“T)] k1
2QTH 1) (w1 + 1) (w,+2)
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TABLE 1lc
Lo DB = 0H T, ADH", T"||(w0,0)H, T>

8 H, T’ 5 H"\T” (w,0) = (w,—1,0) (0,0) = (0,41, 0)
0 H—iT - _[(wl—H~H1—T)(wl+2—H1+I):| I:(w1+2+Hl—(—T)(w1+l+Hl T)]%
! ’ 6(w;+3)Rw;+3) 6w, 2w, +3)
ot ren o1 [T 2 T TR A Do T
' ’ 3T+ 1) (w,+3)Qw,+3) 3T+ D, Rw,+3)
om  retp o1 —[TEDOHSI DA STIE T2 M T 2 AT
! ’ 3RT+H1)(w,+3)Qw,+3) 3T+ 1) w,Qw,+3)
0 Ha1T . . (wy+1+H —T)(ew, +2+H, +TY}+ [(w1+2—Hl+T)(w,+1le—T)]%
' ’ 6(w1+3) 2w, +3) - 60,2y +3)
g H, T' ; H" T” (©,0) = (,0)
T42 — —Ty]%
0 Hy—1T+1; 11 [( T2t 3—Hi+T) (0 +H, )1
62T+ 1w (w,+3)

[(T—l)(0)1+2—H1—T)(w1+1 +H1+T)] 3

62T+ Nwy(w,+3)
H,
OH T ; 01 SR -
' B, (0, +3))
T+1
OH, T ; 00 [_7"(_+)_
3w, (w;+3)

(T+2)(w, 43+ Hy +T) (0, ~ H,~T)| 4

0 Hi+1T7T+1; —-11
vHE T §QT+ Dan(wy £ 3)

0 H+17T—1; —11 ﬁ[gwliﬁp *
62T+1)wy(w,+3)
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TasLE 11d
oy DF = 0 H T ,(AINH", T" (w0, Df = 0 H\ T,

B H\T" ; H"T” (D= (w1);p=2

0 Hi—1T+1; 11

E [ r(T+2) (o, +H,—TYw,+3—-H,+T) ¥
72 Loy~ (o + (@, - 2) (0, + (T DQT+1)

3T (T 1) -1+ Hy+T) (o, +2—H,—TY |4
0 H,— —1; -
A= 2[ (o —D)(an 1 D)o 4 2) (o - &) TQT+1)

{3T(T4+ 1)~ (o, + 1D (w,+2)}

O .
Ao T 0l RT(T4 (1= 1) (o + (@ +2)(wr+ DI

3H,
[2(y— D) (0 +1)(w; +2) (0, +4) ]2

0 H; T 00

T(T+2) (o, —H—TYw;+3+H,+T) ]5'

3
O Hrl Tl —11 =3 [(wl—1)(w1+1>(w1+2)(w1+4)(r+1)(2T+1)

3MT(T—INT+ D) (o +1—H+T)(w, +2+H,—T)Y| =
0 HF1T—1; —1 z A
AT U 3L o Dl i D(or £2) (@, 14 TRT+1)
B H\T L H\T” @11) = (@—11) @:1) = (+1,1)

OH,~1T ; 11 —=

1 Flo+2) (0 +1—H —T) (0 +2-H: +T)| ¥ 1 (w1+1)(w1+1+H1—T)(w1+2+H1+T)jl%

2 T(T+1D) (0 +1) (0, +3)2w, +3) 2 T(T+ Do (w0, +2)2w;+3)
OHA1T :—11 1 I:(w1+2)(w1+1+H1‘T)(w1+2+H1+T)] 1 I:(w1+1)(w1+1—Hl—T)(w1+2«H1+T) 3
1 ’ 2 T(T+ D)o+ 1) (@, +3) Qe +3) 2 T(T+ Doy, +2) 2wy 4-3)

0OH, T+1 ; 01 0 0




ﬁ U+LDLUE+HDU+D)T g _H (1 +LDLU DU +9)T g _” LT(+LDE+) 11— 1L 1+'H
( ) (- #L(—

H—DO—"H—D{I+I1-HL H—DCH—DER+L+Ha+L+D H—DMH—DO+I—D(U+L+)

(+DI(eH1a+aT O+DIT+H1a+0T (O-+I)IUT+NIT
= (1 + - UI1+'H
F_+5+bﬁmtbr+s+:C|L _H:.T£+gxilba+s+c:+glv”_ ¥ :+£+bamlbu_: » H £
ﬁ (-+z90+Dee+H0a+9z g ﬁ G +I90a+10)+0a+He H_ ﬁ @I +LD) (T +D1T H_ L= ‘4L 1+H
@+'H+DA+"H+L)O+L+HDE+HL+D C+H'H+DO+H"H+DU+L—D(L~) FLO+HH+DE+HHALD@+AL+HD(L—2)
€+00+07 7 _ ~ +a+at T+ _
_H:Liixle Wﬁltxtilc H 00 LH
_H (+19a€+Ha+nt Qi ﬁ +21020+H00+49T H_ 0 10 Iy
CH—DCHAI(L—DA+L—9) (H—LDCHAINCHL+DO+L+D
(I+DLE+HIDU+DNTT, (I+IDILA+00+D27, (T+nig (r1
- — H -~ ‘LH
LH A+2+Du—n H_m @+L+0+zI—9 H_ F_iiu_ 1o
J+Da+I0(E+HD0a+DT g _H 0+Da+100+00a+0T H_ N 10 4L YT
F_+£&t2+i+tc+s+im+&+: FLO+HH—DG+HH+DO+L—-D(L—7)
1+IDLUEHIDT+1T ; _” (T+I101z0+00+9T H_ _H LT +ID(@+HT Q T T et
LHETQVCIE +DO+L-D(L—?) HO-"H+DCHA+LDC+L+DA+L+) (U—"H+DCH+LDA+I—NT+L+D)

(+n1ze+10a+ne Q _

a+nLz0+00+9 H_l +n.reT+nre
U+'H—DCH+DA+IL-+)(L—1D

+La+"H—DCH+ DA+ L—D@+L+D) $LO+'H—-DCH+D)

H_:+: 11 L1-'H

ﬁ (+200a+DUe DT +)T
(z+

U-+19a -+ -+ +9T Q _H C+HIDU+ID@E+DiT
W—DU+'"H—DO+L+D@+L+) —1) FLOA+

L+ H- DU+ H—DO+L-)(L "H—I)(T+"H—L)C+LI+)(L

f_l

H_ — 11 9g+ri—-'"
Jsv

a—19-1n = (-+29+2) = () () = (1 A IVH

SLHD|,. LY HAD LIS HED
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TABLE 12
(@ 0)H, T;(20)0T”[|(w, 0YH, T>

}»{//1 T

Coefficient

{w1(0,43)+5H2 —5T(T+1)}
w0 +3)Rw, +1) 2w, +5) 1%

_[ ST(T+1DHQT—1DQRT+3) ] {2H12—2T(T+1)—(2w21+6w1+3);
(@1 +3) 2w, +1) 2w, +5) 3QT-DQ2T+3)

{0, 0)H T;(22)0T"[| (0, OYH, T >

H’ /1 T

Coefficient

{4H2 2T (T+1) —w (0, +3)}
3wy (0 —1) (1 +3) (0 +H)

I: 6T(T+1) ]%
T Lo, — D (@ +3) (0 +4)

2T(T+DHRT—1H(RT+3)] 3% jH12+5T(T+1)f(w?l+3w1+6)
(@ —1) (0, +3) (o, +44 | 3CT—1)(2T+3)
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TABLE 15
(EH,T; 0)0T”||(t)H, T

H”, T" Coefficient
0 0 {5T(T+1)—5H,%> —21(++2)}
6t +2)R— D2t 5)]E
o VIO{H 2 [T(T+1)—3(t+ 121 + T(T+ D+ 1) —T(T+1) +11}
- [3t(t4+2)Qr— D)2t +5)T(TH+1)RT—1)2T+3)1%
CENHLT; Q2)0T”||(t)H, T
H", T” Coefficient
0 0 {2HA+T(T+1)—1t(t+2)}
Br(r+2)2t— D2+ 5
0 | H{3T(T+1)—(t+1)%}
RT(T+ (e +2)(2r—1)(2¢t+5)1%
0 ) {H2[T(T+1) -3¢+ 1)1+ T(T+ D¢+ 1)*+5T(T+1)—4]}

6T(TH+1)QRT—1)QRT+3)r(t+2)2:—1)(2t45) 1+
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