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Abstract: The five-dimensional quasi-spin formalism is used to factor out the  n, T d e p e n d e n t  p a r t s  
of  shell-model  matrix elements in the seniority scheme and derive reduction formulae which 
make it possible  to express matrix elements for states of  definite isospin Tin  the configuration 

jn in terms of  the corresponding matrix elements for the configuration jr. The  n, T dependent 
factors for one- and two-nucleon c.f.p, and for the matrix elements of  one-body operators and 
the  t w o - b o d y  interaction are expressed in terms of  generalized R(5)  Wigner coefficients. T h e  
needed R(5)  Wigner coefficients are calculated in the form of  general algebraic expressions for 
the  sen io r i t i e s  v and reduced isospins t corresponding to  the s i m p l e r  R(5 )  irreducible represen- 
tations. In th is  first  c o n t r i b u t i o n ,  the  R ( 5 )  r e p r e s e n t a t i o n s  (~o~t) = (.j+½--½v, t) are  r e s t r i c t ed  
to  (o910), (o~t½), (tt), a n d  the  states of  (~o~ 1) w i t h  n - - v  = 4k--2T, (k is an integer). Explicit 
expressions are given for the diagonal matrix elements of  the general, charge-independent,  two-  
b o d y  interaction and the isovector and isotensor parts of  the Coulomb interaction for seniorities 
v = 0 a n d  1, a n d  the  v = 2 s ta tes  w i t h  n - -  4 k ÷ 2 - - 2 T .  

1. Introduction 

For configurations of identical nucleons, the three-dimensional, quasi-spin for- 
malism 2) has been used by Lawson and Macfarlane 2) tt to factor out the n-dependent 
parts of nuclear matrix elements. The resulting reduction formulae make it possible 
to express matrix elements involving states for the configuration j" with seniority v 
in terms of the corresponding matrix elements for the configuration jr. For the most 
part, however, the three-dimensional, quasi-spin formalism merely furnishes a simple 
and elegant way to understand well-known results 5). Expressions for the n-dependent 
factors of nuclear matrix elements for configurations j" of identical nucleons have been 
derived without the use of the quasi-spin formalism. For configurations of both pro- 
tons and neutrons on the other hand, analogous reduction formulae which give the 
dependence of nuclear matrix elements on nucleon number n and isospin T are much 
more complicated, and the generalization of the quasi-spin formalism to five dimen- 
sions 6-12) now constitutes a valuable tool in deriving such formulae. The five-dimen- 
sional, quasi-spin formalism makes it possible to give the explicit n, T dependence of 
all nuclear matrix elements in the seniority scheme in terms of generalized Wigner co- 
efficients for a five-dimensional rotation group. With the calculation of these R(5) 

t Work supported by U.S.  Office of  Naval  Research, Contract Nonr.  1224(59). 
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Wigner coefficients, the basic purpose of the seniority classification can be achieved; 
i.e. the influence on all nuclear properties of nucleon pairs coupled to J = 0 can be 
expressed in terms of explicit n, T dependent factors. Some progress has been made 
toward the achievement of this goal. The R(5) Wigner coefficients needed for the n, T 
dependent factors of one-nucleon fractional parentage coefficients fo r j  < 7 have been 
tabulated, partly numerically, by Ginocchio 12), while the R(5) coefficients needed 
for the J = 0 coupled two-nucleon c.f.p, have been tabulated numerically by Ichi- 
mura 13). It is the purpose of this and a succeeding investigation 27) to extend this 
work to give general algebraic formulae for the n, T dependent factors for all one- 
and two-nucleon c.f.p., all matrix elements of one-body operators and the diagonal 
matrix elements of the general two-body interaction including the isovector and iso- 
tensor parts of the Coulomb interaction 14), for all seniorities and reduced isospins 
of possible interest in shell-model calculations. 

In order to review the power of the method it may be useful to compare the "quasi- 
spin spectroscopy" of Helmers and others 6-12) with the conventional seniority spec- 
troscopy of Racah and Flowers 5). In the conventional spectroscopy, states for a 
simple configuration j"  of both neutrons and protons are classified according to the 
group chain U(2j+ 1) ~ Sp(2j+ 1) ~ R(3). Some disadvantages are inherent in this 
chain. (i) The highest symmetry which preferably should be associated with the most 
powerful quantum numbers actually has irreducible representations characterized 
solely by the trivial quantum numbers n and T. (ii) The highest group in the chain is 
unnecessarily complicated. For largej  the rank of the highest group is unnecessarily 
large since the irreducible representations of actual interest are labelled by merely two 
quantum numbers, n and T. (iii) A different symmetry group is necessary as starting 
point of the group chain for each j, and in particular for mixed configurations. In 
quasi-spin spectroscopy on the other hand, the classification scheme is based on two 
parallel group chains starting with the direct product of the quasi-spin group and the 
symplectic group in (2 j+  1) dimensions, i.e. R(5) × Sp(2j+ 1). The set of ten infini- 
tesimal operators which generate R(5) commute with the infinitesimal operators which 
generate Sp(2j+ 1). The irreducible representations of both R(5) and Sp(2j+ 1) are 
labelled by seniority v and reduced isospin t [ref. 6)]. The group chain based on Sp 
(2j+ 1) is that associated with the conventional spectroscopy, Sp(2j+ 1) ~ R(3), but 
is now completely specified by the simple configuration jr .  The group chain based on 
R(5) can be chosen to include the subgroup SU(2) generated by the three components 
of isospin T which commute with the number operator [generator of U(1)] : R(5) 

SU(2) x U(1). Quasi-spin spectroscopy thus achieves the following aims. (i) Nu- 
cleon number n and isospin T are now associated with the lowest subgroups in one of 
the chains. They play the same role as the magnetic quantum number Mj of ordinary 
angular momentum theory. Dependence on n and T can thus be factored out of any 
matrix element by application of a generalized Wigner-Eckart theorem and knowl- 
edge of the associated generalized R(5) Wigner coefficients. (ii) The highest symmetry 
in the classification scheme is now as simple as possible. The group R(5) which is the 
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starting point of one of the two parallel group chains is a simple group of rank 2 for 
which explicit properties including the needed Wigner coeffÉcients can be worked out 
in detail. (iii) The starting point of that branch of the group chain containing the iso- 
spin and number operators is always R(5) so that the same symmetry group serves 
for all j as well as for mixed configurations. 

The quasi-spin technique is thus a natural tool for deriving reduction formulae 
through which matrix elements for the configuration jn can be expressed in terms of 
corresponding matrix elements for the simpler configuration jr .  The formulae are 
easily generated to mixed configurations. The quasi-spin technique is also tailor-made 
for the study of the general n- and T-dependence of physical quantities for series of 
nuclei, although its applications in this regard are somewhat limited by the fact that 
it is tied closely to the seniority scheme. Seniority is in general not a good quantum 
number in nuclei where both neutrons and protons are filling the same shells. Never- 
theless some observed simple n, T dependent effects in light-and intermediate-weight 
nuclei may perhaps be understood at least qualitatively by a very simple application 
of the quasi-spin formalism if admixtures of high seniorities are relatively unimportant 
to the understanding of such effects. So-called isobaric mass formulae and Coulomb 
energy systematics may possibly fall into this category. In a systematic study of the 
energies of isobaric analogue states, for example, J/inecke 15) found a simple T(T+ 1) 
dependence for the energies of isobaric analogue states of odd-mass nuclei and a 
similar T(T+ 1) dependence for the energies of even nuclei supplemented by a strong 
pairing effect which favours (lowers the energy of) the even T states of nuclei with 
A = 4k, (k is an integer) and the odd T states of nuclei with A = (4k + 2). Similarly, 
the isovector and tensor coefficients of the Coulomb energy (diagonal matrix elements 
of the Coulomb interaction) show systematic n, T dependent effects 16,17). 

Although the application of the quasi-spin formalism is straightforward in prin- 
ciple, it is complicated in practice by the fact that the group chain R(5) = SU(2)x  
U(1) is not a canonical one corresponding to a mathematically natural group de- 
composition. The scheme in which the physically relevant labels n, T and Mr  are good 
quantum numbers does not completely specify the states of the irreducible representa- 
tions of R(5) without the introduction of a fourth operator which commutes with 
T 2, T O and the number operator. Such an operator has the disadvantage that its eigen- 
values are not related to the irreducible representation labels of a subgroup of the 
decomposition. A mathematically natural and complete labelling scheme could be 
based on the group chain R(5) --, R(4) = R(3)x  R(3), where the two commuting 
R(3) groups are the separate neutron and proton quasi-spin groups and together 
furnish the four commuting operators needed to completely specify the states. Al- 
though the generalized Wigner coefficients have been calculated in this scheme 18), 
these do not give the needed n, T dependent factors for nuclear matrix elements direct- 
ly since T 2 is not diagonal in this scheme. By calculating transformation coefficients 
[refs. 13, 18)] from this mathematically natural scheme to the physically relevant one, 
however, it is possible to calculate the needed n, T dependent factors, at least num- 
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erically. Although this technique is laborious it has been used to give tables for some 
of the simpler of  these coefficients 11,13). 

Since it is the aim of this investigation to give general algebraic expressions for the 
n, T dependent factors for all types of  nuclear matrix elements and all seniorities of 
actual interest in shell-model calculations, a more direct method will be employed. 
Fortunately the R(5) irreducible representations of actual interest in shell-model 
calculations essentially fall into two simple classes. (i) The first includes those seniori- 
ties and reduced isospins for which the quantum numbers n, T and M r are sufficient 
to completely label the states of  a given irreducible representation. For these a given 
value of T can occur  only once for a given nucleon number, (T-multiplicity = 1). 
In this class are all states with reduced isospin t = 0, t = ½ and t = f2-½v (f2 = j + ½  
for simple configurations and f2 = ~,a(J, + ½) for mixed configurations). Also in this 
class are the states with t = 1 and n - v  = 4 k - 2 T ;  for example the (n = 4k, T odd) 
and (n = 4 k + 2 ,  Teven)  states with v = 2. (ii) The second class includes all those 
states for which a specific value of T c a n  occur at most twice for a given nucleon num- 
ber n (T-multiplicity = 2). This class includes the remaining states with t = 1 (those 
with n - v  = 4 k + 2 - 2 T )  and all states with t = ~ and t = f 2 - ½ v - 1 .  For these two 
simple classes of states, it is possible to give general algebraic expressions for the R(5) 
Wigner coefficients needed for nuclear matrix elements. The expressions are partic- 
ularly simple for states of class (i). The calculation of the R(5) Wigner coefficients 
for class (i) states will be presented in this paper, while the calculations for the more 
complicated class (ii) states will be presented in a subsequent publication. 

In order to establish the notation, a brief review of the five-dimensional quasi-spin 
formalism is given in sect. 2. The operators of  physical interest are classified as to 
their irreducible tensor character under R(5) in sect. 3. The method of calculating 
R(5) Wigner coefficients and their properties are discussed in sect. 4. Applications to 
matrix elements of physical quantities for states of  the configuration j "  are given in 
sect. 5, while tables of  R(5) Wigner coefficients for class (i) states are collected in an 

appendix. 

2. Review of the five-dimensional quasi-spin formalism. 
Definitions and notations. 

In order to establish the notation, a brief review of the five-dimensional quasi-spin 
formalism will be given. [The notation will follow that of ref. i i ) . ]  

The classification scheme of conventional spectroscopy is based on groups generated 
by infinitesimal operators with conserve nucleon number. The quasi-spin groups on 
the other hand are generated by operators which include pair creation and annihila- 
tion operators, in particular the operators which create or annihilate pairs of  nucleons 
coupled to J = 0 and T = 1. The five-dimensional quasi-spin group for configura- 
tions jn is generated by the ten infinitesimal operators 
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= 1 ] J - m a  + a + A+(MT)  ½ Z Z ..z,,.tv,.,/±" ± ~ " l l M r > ( -  ~ - j  . . . .  - ' j- , .m', ,  
m m r ( m ( )  

A ( M r )  ½ Z Z 1 1 , 1MT>( " ' J - "  a = <gmtgmt[ --1) aj-mm', j . . . . .  
m rot(re't) 

T+_ ~ + • a + + i • 1 : aj,,+_½ai,,~- ½, To = ½ Z ( j m ½ a j m ½ - - a j m - ½ a j , n - - ~ - )  ' [ z N o p - ( J + 7 ) ] '  
nl m 

where  (1) 

No,, = 2 a;m~aj  . . . .  • 
m, mt 

They  are bu i l t  f rom c o n v e n t i o n a l  s ing le -nuc leon  c rea t ion  (and  a n n i h i l a t i o n )  opera to r s  

ajm,,,~ + ( and  aj ...... ). The  genera l i za t ion  to mixed  conf igu ra t ions  mere ly  requires  a sum  

over  all poss ib le  j as well as m and  a reph tcement  of  the weight  factor  ( j +  ~) by 

.(2 = ~ , ( j ~  +-~). Except  for  a n o r m a l i z a t i o n  thctor  ( j + . ~ ) - ~ ,  the opera to r s  A + (M-r) 

and  ( A ( M r ) )  are pai r  c rea t ion  ( a n n i h i l a t i o n )  opera to r s  for nuc leon  pairs  coup led  to 

J = 0, T - 1 a n d  MT. They  a n d  the  c o m p o n e n t s  o f t h c  isospin ope ra to r  T a n d  a ten th  

ope ra to r  H 1 = N o p - ( j +  ~) are the genera tors  o f  a gro~ip R(5).  The  c o n n e c t i o n  with 

TABLE 1 

The five-dimensional quasi-spin operators and the iniil:itcsimal operators of R5 

Five-dimensional R(5) infinitesimal R(5) irreducible 
Quasi-spin angular momentum operators in tensor components d) 

opcrators a) operators t') standard form e) T( 11 ) 
- -H1 T M T  

½Nop -- ( J + } )  Ja2 H t  --± T(I~oool) 

TO J3  4 H 2  -}- T(ol110) 

A+(I) l - [ ( J 1 4 + J 2 3 ) W i ( J . ~ 4 + J 3 1 ) ]  E l l  + T(11111 ) 
T ( l l )  A(1) l [ ( J 1 4 + J 2 3 ) - i ( J z 4 + J 3 1 ) ]  E _ I _  1 - - ~ - 1 1 - !  

(11) A + ( - - l )  ½ [ ( J l , , - J 2 3 ) + i ( J 2 4 - J 3 1 ) ]  - E 1 _ 1  + T l l -  I 

A ( - I )  ½ [ ( J l , , - - J 2 3 ) - i ( J z 4 - J 3 1 ) ]  - E _ 1 1  _ T ( '  ~-I '11 

A + (0) ~2 (J52 + i j15)  E,  o + T(a'~lo , 
1) 

(J52 - i  J15) E_ 10 + T ~  ~o A(0)  ,/2 

T+ (J45 + i j53)  x/'~ Eol  - w/ST{"~o, ~), 
/ S T ( l l )  T_ ( J45 - i J53 )  x / 2 E o _ I  + V ~ o 1 _ 1  

a) The operators as defined in eqs. (l). 
b) The five-dimensional angular momentum operators satisfy the same commutation relations as the 
operators Jmn =--i(xmO/Oxn--XnO/OXm); m, n = 1 , . . . ,  5; but no restriction to five-dimensional 
"orbital" angular momentum is implied. The vector T has been chosen to span the 3, 4, 5 subspace. 
e) The R(5) infinitesimal operators in standard form for root diagrams of Cartan's symmetry B2. 
The operators Eat , step up (down) the quantum numbers (½n--j ½-) and M T by a and b units, respec- 
tively. The operators Eab are the same as those defined in ref. 10). 
a) The phases of the R(5) irreducible tensor components follow from the commutation relations, 
eqs. (7). 
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angular momentum operators in an abstract five-dimensional space is illustrated in 

table 1. The two commuting operators of the rank 2 group are H 1 = Nop- ( J+½)  
and H z = T o so that the weights are labelled by n and Mr. The eigenvalues H1 have 
a simple symmetry property under particle-hole conjugation H1 ~ - H 1  as n ~ 4 j +  2 
- n .  The remaining infinitesimal operators are organized into standard step-up (down) 

operators Eob in table 1. The irreducible representations of R(5) are labelled by 

(co 1 ~o2), the highest weights (H1 eigen, H2 ~igo,) of the representation. For states with 
seniority v and reduced isospin t, the largest eigenvalue of H x is ~r/ma x -  ( j + ½ )  with 
n max = 4j+2--V. The state with 4 j + 2 - v  nucleons (v holes) has unique isospin t. 
The largest eigenvalue of H2 = To in this state is thus t. This leads to the identifica- 

tion of the R(5) quantum numbers (co~ o)2) 

;+±-±v c°1 = J  2 2 ,  co 2 = t, (2) 

so that the irreducible representations of R(5) are labelled by seniority v and reduced 

isospin t. A complete labelling scheme for the states of a given irreducible representa- 
tion of R(5) in general requires four quantum numbers. The physics dictates the choice 

n, T and Mr  for three of these. In general these must be supplemented by a fourth 
label/L The states for a simple configuration j"  are thus specified by * 

I{v, t}flnTMr; ~JMj), (3) 

where the quantum numbers ~, J and Ms refer to the decomposition Sp(2j+ 1) 
--, R(3) ~ R(2). The label a is needed in those cases where the v nucleons free of 
J = 0 coupled pairs can be coupled to total J in more than one independent way. The 

quantum numbers flnTMT refer to the R(5) branch of the group decomposition. 
States of seniority v can be built from v nucleons free of J = 0 coupled pairs, coupled 
to reduced isospin t, and p = ½(n-v)  pairs of J = 0 coupled nucleons. The p-pairs 
are coupled to resultant isospin Tp, where Tp is restricted to p, p -  2, p - 4 . . . . .  since 
the p-pair creation operators A + are commuting isospin 1 operators. The total iso- 

spin T is thus the result of the vector coupling T = t + Tp, and it would appear that 
the fourth label could be chosen as Tp. Although a labelling scheme based on Tp does 
give a complete specification of the states, it does not lead to an orthogonal set of 
basis states since the label Tp cannot be associated with the eigenvalue of a Hermitian 
operator (commuting with T 2, To and Nov). In an 1(o)1 co2)TpnTMT) scheme, states 
with the same n and T but different Tp are thus not orthogonal to each other. One way 
to overcome this difficulty is through the construction of a fourth operator with eigen- 
values that distinguish states of T-multiplicity > 1 for given n. Such an operator must 
be an isoscalar and conserve nucleon number. On physical grounds, Flowers and 

t To avoid confusion the labels {v, t} will always be enclosed by curly brackets, while the R(5) 
quantum numbers (~1c'92) -- ( j+½ ½v, t) will always be enclosed by round parentheses. 
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Szpikowski 19) have suggested the operator 

(A +" A+)(A • A) = ( Z (--1)I-MTA+(MT)A+(--MT))( Z ( - -1)  1 -M'TA(M'T)A(--M'T)" 
MT M'T 

Another possible candidate might be the operator 

T - J -  = Z (--1)'--MTTMTJ-_~,T, 
MT 

where 

~-"M T 

(4) 

(1M'rlM~I1MT) ( -  1)I-MT" [A +(M'T)A(- m~) + A ( -  M~)A +(M~)]. 
M'TM"T 4 2  

(5) 

Neither of the operators of  eqs. (4) or (5) is invariant under complex conjugation. 
Under conjugation (A + • A+)(A • A) ~ (A • A)(A + • A +) while T- J "  ~ - T .  J - .  
(See appendix 1. In the notation of appendix 1 (A + • A+)(A .A)  = 02o0_2 o. The 
commutator  [(A. A), (A + .  A+)] is, except for trivial additional factors, equal to 
4T.  3";  see table 8 of appendix 1.) I f  the fourth operator is made invariant under 
complex conjugation, its eigenfunctions can have simple symmetry properties under 
conjugation. Since conjugation takes states with Ha into states with - H1 (n ~ 4 j +  2 -  n) 
this is an important  requirement since the physical properties of particle and hole 
states are simply related. In place of  the operators ofeqs. (4) and (5), the fourth opera- 
tor might be chosen as 

a{(A +. A+)(A . A)+(A " A)(A +. A+)}+bHI(T" J'),  (6) 

which has the necessary symmetry property under conjugation provided a and b are 
arbitrary constants (including the possibilities b = 0 or a = 0) or functions even in 
H I  and T 0. No attempt has been made to find the best possible values for a and b for 
the general irreducible representation of R(5) since the algebraic structure of  the 
eigenvalues of  (6) is very complicated in the general case. In practice the problem of 
the fourth operator can essentially be avoided since the R(5) irreducible representa- 
tions of actual interest for shell-model calculations are relatively simple. 

The n, T structure of  the general irreducible representation (COx CO2) = ( j . . ~ _ ~ ] ) , -  1 1 t) 
has been studied by several methods iI '12,2°).  In the irreducible representation 

(COl t), the allowed values of  H 1 and T are given by the possible angular momentum 
couplings T = Tp+t where: 

(i) Tp has the possible values Tp = p', p ' - 2 ,  p ' - 4  . . . .  for H a = + [COt -P'], P' = O, 
1, 2 . . . .  (--<COl)- The allowed states are subject to the additional restrictions. 

(ii) T =< COl ; and, if the possible couplings of  Tp + t lead to a state of specific T 
more than once. 

(iii) A state with T = c o a - m  (m = 0, 1, 2 . . . .  ) occurs at most q-times where 
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q - min(m+ 1, c o , - t +  1). (See, for example, ref. 11, table 2.) The possible Hi  and 
T values for the simple representations (½ ½), (10), (11 ), (20), (22) are given in table 2). 

TABLE 2 

The  / /1,  T-structure o f  some  simple representa t ions  

(½ I) 
/41 T 

-,} ½ 

(20) 
Ht T 

2 0 
1 1 
0 O 2  
t 1 
2 0 

(lO) 
H~ T 

1 0 
0 1 

--1 0 

(22) 
H~I r 
2 ~ 2 
1 1 2  
0 0 1 2  

..... t 1 2  
--2 2 

(11) 
H, T 

1 ! 
0 0 1  

- 1  1 

The n, 7" structure is very simple for the irreducible representations (cot 0), (col, J) 
and (tt). In these representations the states are completely specified by the labels n, T 
and Mr  since a specific value of T for a given nucleon number n can occur at most 
once (T-multiplicity = 1). In addition, states of the irreducible representation (col 1) 
with col - Hi  - T = 2k or (n - v) = 4 k -  2 T have T-multiplicity = 1. Similarly the 
states of  the irreducible representations (co~ }) and (t + 1, t), as welt as the remaining 
states of the irreducible representations (co 11 ) (those with n -  v -- 4k + 2 -  2T) belong 
to a class with T-multiplicity = 2 at most. In all these cases, the two independent states 
with the same values of H1 and T can be distinguished by their symmetry property 
under conjugation. The two states lflH 1 TMT) labelled by different values of 3 can be 
built such that they have the symmetry property plus or minus, respectively, under the 
conjugation operation which transforms the state into a corresponding state [tic, - H l, 
T, - M r ) ,  so that the quantum number/3 can be replaced by a symmetry label in 
these simple cases. Although this symmetry property does not lead to a unique labelling 
of the double states of these representations,* it can be supplemented by a require° 
ment of simplicity to lead to an explicit and tractable construction of these states tt. 
It is thus possible to calculate general formulae for the needed Wigner coefficients 
involving the irreducible representations (col0), (col½), (col 1), (coi~), (tt), ( t+  1, t). 
This includes all possible {v, t} values for simple configurations with j < ~ or for mixed 

t In ref. ll), the  c la im was made  tha t  use o f  the  s y m m e t r y  label leads to a unique  specification o f  the  
states with T-multiplicity ~ 2. With  the exception of  the //1 = 0 states o f  the representa t ion (~ol 1), 
this is no t  true. In part icular ,  the  choice made  in ref. 11) for the  plus and  minus  states of  the represen- 
ta t ion (oh 1) is an  unnecessar i ly  c u m b e r s o m e  one and  wilt be replaced by a s impler  choice which  
makes  it possible  to give t ractable  algebraic express ions  for the R(5) Wigner  coefficients involving 
the  representa t ion (0~11). 

** Details for the states with T-multiplicity = 2 will be presented in a subsequent  paper  ~7). 
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configurations with f2 = y,(j+½)_<_ 5. For a mixed configuration with f2 = 6; 
j = ½, 3 and s, for example, only the single R(5) representation (col o92) = (42), 
corresponding to an overall seniority and reduced isospin {v, t} = {4, 2} falls outside 
the two simple classes included in the above list. Such exceptional cases can easily be 
treated numerically. With these rare exceptions therefore it is possible to give general 
algebraic expressions for the R(5) Wigner coefficients needed for a detailed applica- 
tion of the five-dimensional quasi-spin formalism to shell-model calculations. 

3. The R(5) irreducible tensor character of simple operators 

All physical operators can be classified as to their irreducible tensor character with 
respect to three-dimensional physical space, isospin space and in addition also as to 
their irreducible tensor character with respect to five-dimensional, quasi-spin space. 
An R(5) irreducible tensor operator can be denoted by "r( . . . .  ) Since the operators * pH~ TMT • 

of actual interest in shell-model calculations belong to the simple irreducible rep- 
resentations of table 2 for which the irreducible tensor components are completely 
specified without the label 13, this label will in general be omitted. The R(5) irreducible 
tensor operators T(o,,o,2) "pU,rMT can be defined through their commutation relations with 
the infinitesimal operators of the group 

[H 1 , T(~'~°'2) -1 _;_!~T(~,,o2) J~ulrUr_l = (½n a 2J*~UjTMT, 
[To, T('°1'°2) "1 T('o,~o2) 

"tflHITMTA ~ M T  *flH1TMT ' 

[-Eat,, T (c°1c02) "] "BHlr T  = E  2)fl'(Hi + a)V'(Mr + b)IEo J('Ol  2)BH1 TMT) 

X T(~O~o2) 
l~,(Ul+a)T,(MT_l_b)° (7) 

The matrix elements of a component of such an irreducible tensor operator are given 
through a generalized Wigner-Eckart theorem 

((ah o)2)Bn~ TMT[ T ~''~'°''~ I . . . . . .  p H IT M T k (D1 ('02)~ HI T M T )  

= ~, ((m'l ¢o'2)fl'H'i T 'MT; (ro'i'ooi')fl"H'i'T"M'T'l(ro, c02)flHITMT),, 
p 

x ((o)1 eoi)llT(°'"l~'"=)li(O)'l ~o~)),, (8) 

where the reduced or double-barred matrix elements are independent of quantum 
numbers of type fi, HI,  T and M r. The dependence on these quantum numbers is car- 
ried by the first factor, an R(5) Wigner coefficient. The R(5) Wigner coefficients are 
the elements of the matrix which reduces the Kronecker product of two irreducible 
representations of R(5). They are defined by 

]E((-O; (D2)((701'O)2')]((-01 (-02)/0; /~U 1 T M T )  

= Y, [(0£1 ~02)fl'H'l T'Mr)[(co'/co2')fl"tt ' l 'T"Mr) 
fl'H' l T 'M'T 

fl"(H"I)T"(M"T) 

x <(o9' I o'2)fl'H',T'MT; (ro~'2')fl "H', '7 '"M~ I(oJ~ o~2)flH , TMT>,,. (9) 
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Since the isospin group is a subgroup of R(5), the R(5) Wigner coefficients can be 
factored into an ordinary isospin angular momentum Wigner coefficient and a re- 
duced R(5)/R(3) coefficient or isoscalar factor, to be denoted by a double bar 

<(0)i 0)i)fl'H'l T'M'T; (0)i'0)i')fl"H;'T' rMT"I(O)I o.)2)flH1 TMT> o 

= <T 'M'~T"M'r ' ITM~><(0) ;  0);)/~'H'1T'; (0)i'0)i')/~"H'/r"N(0), 0)2)/~H1 r>o, (10) 

where the double-barred coefficient is completely independent of the quantum num- 
bers M r. The index p in eqs. (8)-(10) and the sum over p in eq. (8) are not needed for 
simply reducible products, such as (0) 10)2) x (½ ½) = (0) 1 + ½, 0)2 + ½) + (0) 1 + ½, 0)2 - ½) 
+ (0), -½,  0)2 +½)+ (0)1-½, 0)2-½), for example. They are needed only in those cases 
where a representation (0)10)2) can occur more than once in the Kronecker product 
(0)'10);) x (0)'~'0);'). In the cases where this multiplicity problem arises, the Wigner- 
Eckart theorem serves partly to define the new quantum numbers p, since the decom- 
position into reduced matrix elements and R(5) Wigner coefficients is determined by 
the choice of the quantum numbers p. The product (0)10)2) x (11), for example, con- 
tains the representation (0)10)2) itself with a multiplicity of 2 (with the exception of  
the special cases (0)10)2) = (0)10) or (tt) for which the multiplicity is 1). Since the 
infinitesimal generators of the group transform according to the ten-dimensional 
representation (11), the matrix elements of the infinitesimal generators can be used 
to define the label p in this special case. The matrix elements of the infinitesimal 
generators are chosen to be proportional to the R(5) Wigner coefficients with p = 1, 
that is 

((0)1 c02)fl'(H~ +a)T'(MT+ b)fE,,b[(0)t o)2)flH 1 TMT) 

= ( -  1)s((0)1 0)2)fiH1TMT; ( l l )albl(0),  0)2)fi'(H1 + a)r'(Mr+ b))p=, 

x ((0)10)2)11EI1(0), 0)2))o=,, 
with 

(11) 

<(0)1 0)2)11EI1(0)1 0)2)>p=2 = 0 (by definition), 

((0)10)2)11Ei1(0), 0)2))p =1 = [(0)~(0)1 + 3) + 0)2(0)2 + a)]~. (12) 

The phase factor ( -1 )~  has the values 

( -1 )~  = - 1  for b = - 1 ,  a = 4-1 
for b-= +1,  a = 0 ,  

( - 1 )  ~ = +1 for all other cases. (13) 

The phase relations between the E,b and standard R(5) irreducible tensor components, 
as defined through eqs. (7), follow from the commutation relations of the E, b. (See 

; | ~ S T ( 1  1) "~ t ab l e l  E,b = ( - - - j  ~,lb .J 
All operators of physical interest in a shell-model calculation involving the simple 

configuration j"  can be built from the single-nucleon creation and annihilation opera- 
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tots a+i . . . .  , ajmmt' (The generalization to mixed configurations is straightforward.) 
The R(5) irredubile tensor character of all operators is thus based on the tensor char- 
acter of the single-nucleon creation and annihilation operators. For fixed values of 
i and m, the four operators a+m+¢ and aj-m, +~ form a basis for the four-dimensional 
irreducible representation (55). The phase relations between these operators and 
standard R(5) irreducible tensor components follow from eqs. (7) and are given by 

a ; m m  t :__ T ( ½ ½ )  ; J ~ m t  , m 

(-- 1)J-m+~--mtaj, --m, --me = T~-~/~/;m' (14) 

where the tensors ~r(o,l,o2); j HIrMT; m are classified both as to their irreducible character under 
R(5), by the labels (co~ o22)H 1TMT and as to their spherical tensor character by the 
angular momentum quantum numbers j and m. More complicated operators can be 
built from these by successive application of a composition law. Operators built from 
two single-nucleon creation or annihilation operators can be classified under R(5) 
by the build-up process 

Tn(O~o2) ; J 
j T M T ; M  

= ~, ( j m  ljmz[JM)(½mt,5mt2lTMv)((½½)hl½; (½½)ha½ll(COltOa)H 1 T )  
n l l m t  h i  1 

( m 2 m t 2 h 2 )  

T~(~: J T ( ~  ; J (15) 
X h l ½ m t i ; m  1 ~ t h 2 ~ m t 2 ; m 2 ~  

where the needed R(5) Wigner coefficients are tabulated in table 3a. The Kronecker 
1 1  product (~:)  × (55) = (00) + (10) + (11) contains the ten-dimensional (regular) rep- 

resentation (11), the five-dimensional (vector) representation (10) and the one- 
dimensional (scalar) representation (00). Operators built from products of two single- 
nucleon operators thus transform according to these representations. These operators 
include the pair creation operators 

.sf+(j  2" JM; TMT) = ~_~ ( j m  I jm2IJM>(½mt ' + a + (16) , ~mt2[ TMT>aj . . . .  1 d . . . .  2 
m l m t  1 

and the pair annihilation operators 

d ( j 2 ;  JM; TMT) = [ ~ + ( j 2 ;  JM; TMT)] +. (17) 

In addition these include all one-body operators, which can be expressed in terms of 
the elementary multipole operators 

/ .2  U W ;JM;  T M T ) =  ~. < jml jm2 lJM > 
m l m r  I 

1 1 + " x <~mt,vmt2lTMr>aj_ . . . .  ~(-ly-m2+~-~2aJ --,2, - m~ 2 . (18) 
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TABLE 3 a  

R(5) Wigner coefficients ((½½)H'I T'; (~½)H", r "  I]((DI(o2)H 1 T> 

~ ((01692) (11)  (11) (11) (10) (10) (10) (ll) (00) 
H'IT ' ;  H '~T '"  H I T  11 --11 01 01 10 --10 00 00 

±~. ~1  1 1 2 2 ~  2 2  

_ l ~ .  ~ _ ±  1 - 1  2 2 ~  2 2  

1 1  • __ I _ !  1 1 1 1 
2 2 ,  2 2  ../--2 , / 2  , /~  . ,2  

__±!. I± 1 1 1 1 
2 2  ~ 2 2  , / 2  , / 2  , / 2  ,,/2 

TABLE 3b 
R(5) Wigner coefficients < (11)H'I T'; (l 1)H"I T'i[(coxco2)H1 T )  

~ (ohc%) (00) (11) (20) (22) (10) (11) (22) (20) (22) 
H'~T'; H"x T" /-/1T 00 00 00 00 01 01 01 02 02 

± 1 
`/3 ,/3 

0 

11; - 1 1  ~ / 3  ~ ~ ~ _ !  J_ ± ! 2_ 
, / 2  , / 3 0  , / 6  , / 3  4 3  , / 6  ` /3  , / 6  

• / 3 0  1 1 ~ i 1 ~ 1 1 
- 11 ,  11 x `/2 7/3~ `/6 ~3 7/3 `/6 `/3 ~-6 

oo; oo 1 o ± ,/ao 42 
o l .  o l  o * - ±  o o ' ~/30 `/6 

_!_1 ! 
00; 01 46 `/3 

! 0 ! 01 ; 00 `/6 43 

TABLE 3C 
R(5) Wigner coefficients ((10)H'I T'; (10)H"1T"]I(o91c%)H1 T) 

~ (o91co2) (00) (11 ) (20) 
H "x T" ; H"a T"  H1T O0 O0 O0 

10; - 1 0  SN - / ~  
1 1 x / ~  - -10;  10 ,/5 `/~ 

01; 01 /3 v ~ 0 - V'} 

Except for a trivial multiplicative factor, the elementary multipole operators are the 
unit tensor operators Jr ~ t M T  introduced by Racah 21) 

j~dJT U(j2; JM; TMr) 
M M T  = 

[ (2J  + 1)(2T + 1)] ~- 

= ~ (jm2JM[jml)(lmt2TMTl½mt') 
,.,,.t, / ( 2 j +  1)2] ~ 

( ?MZ'llt 2 ) 

a + (19) Jttllmt I aj t t l2mr2 • 
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The R(5) tensor character of the pair creation, annihilation and elementary multipole 
operators is given in table 4. Elementary multipole operators of odd rank ( J  odd) are 
R(5) scalars (00) and R(5) vectors (10) for isospin T = 0 and 1, respectively; while 
the elementary multipole operators of even rank ( J  even) transform according to the 
ten-dimensional representation (11) for both T = 0 and 1. 

TABLE 4 

R(5) irreducible tensor  character  o f  the pair-creation,  annihi la t ion operators  and  the e lementary 
one-body mult ipole  operators  

T e n s o r  cha rac t e r  ~') T(a)t¢o2);J --HjTMT;M 

(601 {02) 

,Z//+-(j2; JM; T -  1 MT) (l l)  l l MT even M 

a¢ + ( j : ;  JM; 00) (lO) 1 0 0 odd M 

--(--1)J-M+I-MT,~¢(j2;JM; T =  1 Mr)  (11) --1 1 - - M  T even - - M  

_ ( _ ) J - M  ,;/(j2; JM; 00) (10) --1 0 0 odd M 

N/2U(j2; JM; T = 1 M r )  (11) 0 1 M r  even M 

4 2  U(]2; JM; 00) (l 1) 0 0 0 even M 

-- x/2 U(j2; JM; T = 1 MT) (10) 0 1 MT odd M 

4 2  U(j2; aM; 00) (00) 0 0 0 odd M 

Opera tor  a) H1 T M T J M 

a) The operators are defined by eqs. (16)418). 
b) The R(5) tensors are constructed through the composition law, eq. (15). 

Of the more complicated operators, the two-body interaction 

V = ~ Vij (20) 
i<j 

is the most important in shell-model calculations. For a simple configuration based 
on a single j, it can be written in the form 

V = ½ Z Z Vat d + ( J  2; aM; TMr).~(j2; aM; TMr) , (21) 
JT MMT 

where Vjr is the two-particle matrix element 

Vsr = <j2jMTMr[ VI zf J2JmTmr>. (22) 

Pairs coupled to T = 1, (even J) ,  and T = 0 (odd J )  transform according to the 
representations (1 l) and (10), respectively. The full two-body interaction thus con- 
tains R(5) irreducible tensor operators which arise from the products 

(11 ) x (11 ) = [(22) + (20) + (10) + (00) ] + { (21 ) + (11 )}, (23 ) 

(10) x (10) = [(20) + (00)1 + {(11)}, (24) 



24 K . T .  HECI-[T 

which contain two 35-dimensional representations, (22) and (21), the 14-dimensional 
representation (20), the ten-dimensional representation (11), the five-dimensional 
representation (10) and the one-dimensional representation (00). The first terms in 
these Kronecker products (enclosed by square brackets) correspond to a symmetric 
coupling of the two identical representations, while the last terms (enclosed by curly 
brackets) correspond to the antisymmetric coupling of the two identical representa- 
tions. It is advantageous to split the two-body interaction into symmetrically and 
antisymmetrically coupled pairs 

V = V (~)+ V (~) 

= ¼Z Z Vsr[d+d+~g~/+]+¼Z Z V s r [ d + d - ~ ' ~ ' + ]  • (25) 
J T  M M T  J T  M M T  

The antisymmetrically coupled part reduces via the anticommutation properties of 
a + and a to an operator of one-body form with R(5) irreducible tensor character (11). 
For an isoscalar (charge-independent), two-body interaction it reduces to the trivial 
operator 

v ( a )  = E VsT(ZJ+I)(2T+I)HI = ~, Vsr(ZJ+l) (2T+l) (½n- j - l )  • (26) 
ST (2j+ 1) ,T (2j+ 1) 

The symmetrically coupled part contains only the representations (22), (20), (10) and 
(00). Since only the representations (22), (20) and (00) contain a T = 0 state among 
the nucleon-number conserving-components (see the H,  = 0 rows of the representa- 
tions in table 2), an isoscalar two-body interaction contains only R(5) irreducible 
tensors of type (22), (20) and (00). The interaction can be written in terms of the basic 
two-body tensors 

[ g ( j 2 ( c o ,  ,2 ,~(~ ' ,o , '2)  ; o a)2))Jooo;o = Z Z (JMJ--M[OO)(TMTT--MT[ 00) 
M M T  H I T  

x ((~01 o~2)H, T; (o~l c02)- H1TI I(co£ O,)2fl~J~,)/) . . . . . .  II~ITM T (  . . . .  );J; M "I"(, --HlY--MT);S ; --U, (27) 

with ((.01(O2) ---- (10)  and (11) for J = odd and J = even, respectively. The R(5) 
Wigner coefficients needed for eqs. (27) are given in tables 3b and c. In terms of these 
two-body tensors, the symmetrically coupled part of the general isoscalar, two-body 
interaction can then be written 

V{S)= -¼ ~ Var=l(2J+l) az 
J even 

- -  2 " 2 ( 2 2 )  • 0 2 2 2 ( 2 0 )  ; 0 2 2 2 ( 0 0 )  ; 01 x +3x/x[-T(J ( t l ) ) ]ooo ;o, (11))Jooo;'o +'~TVT(J (11))J0oo ;o 

--¼ Z Vsr=o(2J+ 1)~{~/~[T(j2(10)2)](o2°);; o +2x/irTta2qO'~2"*-l(°°);Yk v v j ,aooo;o,.°~ (28) 
J odd 

Besides the charge-independent, two-body, nuclear interactions of the above form, 
the Coulomb interaction is of particular importance in shell-model calculations. De- 
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composing it into isoscalar, isovector and isotensor parts it can be written 

Vcoul  =i~<j ~. {½(¼-~t i "tj)--½(t~,+tz)+½(3tz, t~j--t i "tj)}. (29) 

Since the Coulomb interaction acts only on pairs coupled to T = 1, it can be decom- 
posed into R(5) irreducible tensors of type [T(j2(1 la2~](~,,~,~); o with T = 0, 1 and 2 l )  ] .10T0; 0 

for the isoscalar, vector and tensor parts, respectively. The nucleon number conserving 
tensor components include the value T = 1 only for the representations (10) and (22) 
and the value T = 2 only for the representations (22) and (20) (see the H I = 0 rows 
of table 2). An isovector interaction can thus be built only from the representations 
(10) and (22), while an isotensor interaction can contain only the representations (22) 
and (20). The Coulomb interaction can be split into non-trivial and trivial terms as 
before 

Vcoul  l / (S )  ~_ 1.7(a) ~--- • CouI ~ • Coul • 

The trivial antisymmetrically coupled term now reduces to 

'Con, ~ vC°ul (2J + 1)3 a Vfl °ul ( 2 J +  1)3 
l/(~) = J ~ e ,  Jt ~ + 1 )  E H I - T ° ]  = evenZ ( 2 j + l )  [½n--j--½--Mr]. (30) 

The non-trivial symmetrically coupled term can be written in terms of the tensor 
operators [T(J z, tl  7 ~2~]( . . . .  ); o t l . j  JJoro; o to be abbreviated by 7-( . . . .  ) J 0 T 0  a s  

l ~ ½ f  r . / ~ T ( 2 2 )  ~ . / 2 , / - ( 2 0 )  -4- " ~ , / 2 T  (00)-I 
'Z (s ) '  Coul  = __l Z Vf?" ' (2JT. j  TLV'-~ooo T v ~ l o o o  --¢~T~ooo j 

J even 

where the two-particle matrix element vC~ '~l is defined by 

e 2 
vc~ u' = (j2J11 - - I j x j 1 ) .  

3 r 1 2  

(32) 

Insofar as the R(5) irreducible tensor character is concerned isovector and isotensor 
components of  a more general, charge-dependent interaction will have the same form 
as the T = 1 and T = 2 components of  the Coulomb interaction. 

4. The R(5) Wigner coefficients 

Since the R(5) irreducible tensor character of the operators of interest in shell- 
11 model calculations include the representations (00), (zz), (10), (11), (20) and (22), 

application of the Wigner-Eckart theorem requires knowledge of the R(5) Wigner 
coefficients for Kronecker products in which one of the representations is a member  
of  this set. Although this includes the 35-dimensional representation (22) and the 
14-dimensional representation (20), only Wigner coeffÉcients diagonal in both H 1 
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(nucleon number) and T are needed for these two representations, so that it is feasible 
to calculate the needed Wigner coefficients. 

The R(5) Wigner coefficients are defined through eqs. (9) and (10). Since the iso- 
spin angular momentum Wigner coefficients are well known, only the reduced R(5)/ 
R(3) Wigner coefficients which are denoted by a double bar, need be calculated. Their 
general properties will be discussed first. (From now on the term R(5) Wigner coeffi- 
cient will refer to these reduced (double-barred) coefficients unless otherwise stated.) 

4.1. O R T H O G O N A L I T Y  

Since both the full R(5) Wigner coefficients and the isospin R(3) Wigner coefficients 
form orthogonal matrices, the reduced Wigner coefficients are orthogonal also. In 
particular, for fixed values of H,  and T 

Z <(09t1 092)/3tH'1T'; (09','09'2')/3"H','T" 1[(091 092)flH1T)p 
[YH' I  T" 
f l "H" I  T"  

x <(09', 09;)/3'Hi T'; (09','09'2')/3"HI'T"I[(~ , ~2)]~H1T)~ = 6,~lz,6,~,~fi~gp?, (33) 

and, with T fixed, 

~'~ z [  t t N t ~ t O t  , t .  tv t t  t t  t t  t t  
E L~t091092)P ~ T , ( 0 9 , 0 9 z ) [ 1 H 1 T  ][(09,092)/3H, T)  o 

(o)~o2) ,ep 

X <(091 092)fl /4,  - - '  . . . . . . .  - - " - - "  ' '-- '  T ,  (09,092)/~ H ,  r [1(09, o~2)/3H~ T)  o 

= 6f l ,~ ,  (~fl , ,~,,6H,al-l ,  , 6B, , ,17 , ,  1 (~T, 'T ,C~T, ,T , , .  (34) 

For fixed values of (09'1 ¢o'2), (09'1' 09'2'), Hi  and T, therefore, the R(5) Wigner coefficients 
form orthogonal matrices. The rows of these matrices are labelled by the values of 
/3' Hi  T';/3" H',' T"  consistent with H 1 and T, whereas the columns are labelled by the 
possible values of (09,092), P and /3. The states of the uncoupled representation 
1(09'1 09'2)/3' Hi T' M~>[(09 ' , '  o9'2')fl" H '  1' T" M~') are completely specified by the eigen- 
values of 12 commuting operators, the quadratic and quartic Casimir invariants 
which specify the irreducible representation labels and the operators H, ,  T 2 and To, 
plus the "fourth operator" for both the single primed and double primed representa- 
tions. The states of the coupled representation [ [(09'1 09")(09','09z')](09i 092)P;/3H1TMT] 
should therefore in general require a set of 12 commuting operators for their complete 
specification. In the general case, the labels p are thus completely specified only by 
the eigenvalues of two operators. These operators must lie outside ~ the group R(5). 
Since only Wigner coefficients for very simple Kronecker products are needed in the 
applications to nuclear problems, no attempt has been made to find a general solution 
to this multiplicity problem. The products (09,(D2) X(11) and (09,092)×(10) are 
simply reducible, and the label p is not needed at all in these cases. For the product 
(09,092) × (11) only the product representation (091092) itself has a multiplicity of 2, 

t For  a general  discussion o f  this type o f  p rob lem see refs. 22, ~3). 
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and in this case the matrix elements of the infinitesimal operators of the group serve 
to distinguish the two states with different p (see eqs. (11) and (12)]. In the few other 
cases where the label p is needed, the several independent coupled states are chosen 
somewhat arbitrarily (see subsect. 4.4) and labelled p = 1, 2, 3 . . . . .  

4.2. P H A S E  C O N V E N T I O N  

The overall phase of the R(5) Wigner coefficients is fixed by a generalized Condon 
and Shortley phase convention. The coefficients can be chosen to be real, and the 
"leading" coefficient connecting the state of highest weight H~ = ~o'i, T '  = ~02 = t '  
to the state of highest weight H 1 = 0~1, T = 0~2 = t is chosen to be positive. Specifi- 
cally 

((~o'i ~ol)H'l = ,O'l, 71 '=  °4 ;  (~' i '~°2)fl"H'/T"fl(~l o)2)~/I = ~ol T =  ~o2) > 0. (35) 

I f  more than one value of T"  is possible, the leading coefficient (T"  = 7F"), is defined 
as that with the largest possible value of T"  consistent with T '  = o) 2 = t '  and T = 

1 i ~o 2 = t. For the simple representations (2~), (10), (l l), (20)and (22)no  furtller 
specification of the label fl" is required. 

4.3.  S Y M M E T R Y  P R O P E R T I E S  

The group R(5) is self-adjoint. I f  the set of matrices 2 for the elements of R(5) 
form an irreducible representation of R(5), the complex conjugates of  these matrices 
~ *  form an equivalent irreducible representation. The basis vectors of an irreducible 
representation and their conjugates are thus simply related. The conjugation operator 
K has the following simple properties (see table 1) 

KJij  K - 1  = - - J i j ,  i , j  = i . . . .  5, 

KEab K - I  = - - E _ , , _ b ,  KH,  K -~ = - H ~ ,  KTo K - I  = - 7 o .  (36) 

For states with T-multiplicity = 1 for which the quantum number fl is not needed it 
follows from the last two eqs. of (36) that 

Kl(co 1 t)Ha T M T )  = ( -  1) "('°'' 0+~+r-~t~/(col t ) - H i ,  T, - M r ) ,  (37) 

where the phase factor ( -1)" ( ' °"  o +~+ T-MT has been chosen such that the (T, MT)- 
dependent factor carries the usual angular momentum phase conventions associated 
with the isospin group. The (o9~, t)-dependent factor q could in principle be chosen 
arbitrarily but must in practice be chosen to be consistent with the phase convention 
of eq. (35). The factor v carries the intrinsic R(5) dependence of the phase. To estab- 
lish the phase factor the basis states and their conjugates are constructed explicitly in 
appendix 1 for the irreducible representations (~o 1 0), (091½) and (tt) and the states 
with n -  v = 4 k -  2T of (091 1). The latter t are denoted by the quantum number fl = 0. 

* These  a re  i d e n t i c a l  w i t h  the  K = 0 s ta tes  o f  ref.  ~ ) .  The  l abe l  x o f  ref.  ~ )  has  been  r e p l a c e d  by /3  
s ince  the  s ta tes  x = 1 a n d  2 o f  the  i r r e d u c i b l e  r e p r e s e n t a t i o n  (c911) c an  be  r ep l aced  by  s i m p l e r  s t a tes  
to  be d e n o t e d  by /3  = 1 a n d  fl - -  2. 
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The results (see appendix  1) can be summar ized  as follows: 

v = 0 for  all states of  (021 0)  and (021½), 

v = 0 for  the/3  = 0 states of  (021 1), 

v = t - T f o r  all states of  (tt). (38) 

For  states with T-multiplicity > 1, the four th  quan tum number  fl will always be 
chosen such that  

Kl(02~t)flHl T M T )  = ( -  1)~°"'t)+v+r-MT](02~ t)/3¢, - - H ~ ,  T, - - M r ) ,  (39) 

where either fie = fl (irreducible representat ions with integral t) or/3~ and /3  are in 
simple 1 : 1 correspondence (irreducible representat ions with ½-integral t). The phase 
factor  v is now dependent  on ft. For  irreducible representat ions with states of  T-multi-  
plicity > 1, the phase factor  v thus serves part ly to define the quan tum number  ft. 
[For a more  arbi t rary  choice of  the four th  quan tum number  fl, the complex conjugate  
of  a state with a specific value of/3 could in general be a linear combina t ion  of  states 
with all possible values of/3¢. This would have been the case if/3 were chosen as the 
eigenvalue of  the opera tor  defined by eq. (4) which is not  invariant  under  the con- 
jugat ion  opera tor  K. If/3 is associated with the eigenvalues of  an opera tor  of  the gener- 
al fo rm of  eq. (6), however,  the basis vectors will have the symmetry  proper ty  of  

eq. (39)]. 
Using the conjugat ion relations, eq. (37) or (39) and s tandard techniques [see for 

example  the discussion of  the symmetry  propert ies  of  SU 3 Wigner  coefficients given 
by de Swart z4)], symmetry  relations between the R(5)  Wigner  coefficients can be 
established. In part icular ,  the full R(5)  Wigner  coefficients satisfy the symmet ry  rela- 

t ion * ( interchange of  representat ions 1 and 3) 

((021t t l ) f l l (H1)l  "1"1Mr~ ; (02,~ tz)/32(H|)2 7"2 MT21(021 3 t3)f13(nl)3 7"3 Mr~)p,~,~ 

__ ~dim(0213t3)q~(_l)¢+v2+T2-Mr2 
t_dim (021  tO-I 

x ((02,3 t3)/33(H,)3 T3 JVlT3 "~ (0212 t2)[3~2 -- (H1)2 7"2 -- Mr21(02a i tt)/3a(Hl), 7"1 m r x ) p  . . . . .  

(4o) 

where dim(021 t) stands for  the dimension of  the irreducible representat ion (021 t) 

d im (o21 t) = 1(202 1 + 3)(2t + 1)(021 + t +  2)(021 - t +  1). 

The phase factor  ( - 1 )  c is a funct ion of  the irreducible representat ion labels (02x,.t~) 
and can be determined f rom the phase convention,  eq. (35), by applying eq. (40) to 

* In principle the symmetry relation (40) implies a "proper" choice for the label p. This problem 
is not met for the Wigner coefficients needed in this investigation, since the label p is actually needed 
only in the special cases where (o91~ h) -- (~o~ 3 G) so that no distinction need be made between labels 
of type P12,3 and p~2,1. 
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the leading Wigner coefficient connecting the states of highest weight. In particular, 
by setting both (H1) ~ = 091,, TI = Mr,  = t~, and (H1)  3 = 0913, T3 = Mr~ = t3, 
and T2 = ~2, (where ~2 is the largest possible value of T2 consistent with /7 2 = 
0913-091,, TI~ = tl, and T 3 = t3) , the phase factor ( can be determined to be 

(--1); = (--1) '~-'*-v2-~2. (41) 

[The phase factor ~z is that for the state with (/~1)2, T2 = ~2, f12 = f12. For the simple 
representations needed for shell-model calculations, the phase factor V2 is either equal 
to zero or is determined by the value ~2, see eq. (38)]. Combining the symmetry rela- 
tion (40) with the analogous one for the ordinary isospin Wigner coefficient, the cor- 
responding symmetry relation for the double-barred R(5) Wigner coefficients becomes 

((09, ~ t,)fl,(Hl)l 7"1 ; (0912 t2)f12(H1)2 T211(091 a ta)fla(H1)3 T3)p 

= (_l)'3-t*-r~+r,+r=-~2+~2-~ Fdim ( 0 9 , 3 t 3 ) ( 2 T l + l ) q  ½ 

kdim (091, t 1)(2T3 + 1)d 

X <(0913 t3) f13(nl)3 T3 ; (0912 t2)flc2 - (H1)2  r2 l  [(091, t~)flx(H~)l 7"1)p. (42 )  

In the special case (091~ t2) = (1½) the phase factor of eq. (42) reduces to the simple 
value ( - 1 )  '3- ' ' - r~+r '  in agreement with eq. (63) of ref. ~2). 

A further symmetry relation for the full Wigner coefficients again follows from the 
conjugation relations 

((091~ tl)fll(H1)l T1MT~ ; (091~ t2)fl2(H x)2 T2 Mr~l(mx3 t3)fla(H a)3 T3 Mr~)p 
= (--1)~+vI+v2-va+TI+T2-T3 

x ((091, t,)fl~ - (H1)  1 T 1 - M r ,  ;(0912 t2)fl~2 -(H1)2 T2 -Mr21(09, 3 ta)fl~3 - (H1)3 T3 

- M r 3 ) p ,  (43) 

where the phase factor ~ can again be a function only of the irreducible representation 
quantum numbers (09~, t~). The phase factor ~ has not been evaluated for the most 
general product (091, t~) × (09~2 t2) ~ (09~3 t3) where the whole phase problem may be 
complicated by the multiplicity problem and the choice of p. For Wigner coefficients 
which involve only irreducible representations of type (09~0), (091½), (tt) and the 
fl = 0 states of (09~ 1), the phase factor ~ has the simple value 

( --  1) :  = ( --  1) O1 I--t* + 0)12 --t2- tZ~* 3 +t3. (44) 

If  the Wigner coefficients include the representations (091 3), (t + l, t) and the remaining 
states of(09 1 1 ), the phase factor ~ can be made to have the same value by a proper choice 
of the fourth quantum number fl since the phase factor v can in these cases serve partly 
to define the label ft. The phase factor (44) thus serves in all cases of actual interest 
in this investigation. Combining the symmetry relation (43) with the analogous one 
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for the ordinary isospin Wigner coefficients, the corresponding symmetry relation 
for the double-barred R(5) Wigner coefficients becomes 

<(03,, t,)flx(H1)l 7"1; (03ht2)fi2(H,)2 T2]l(03,at3)f13(H1)3 T3> o 

= ( _  l y , , - , ,  +~,~-,~--,~+,~+~, +,.~-~ 

x <(031, t~)fi~ - (H1)  x 7"1 ; (031~ t2)fi~ - (H1)2 T21](031~ ta)fl~3 -(H1)3 Ta>p. (45) 

The phase factor for this relation differs from that given by Ginocchio 12), eq. (58). 

4.4. CALCULATION OF THE R(5) WIGNER COEFFICIENTS 

The calculation of the R(5) Wigner coefficients begins with the calculation of the 
matrix elements of the infinitesimal operators of the group. For the irreducible 
representations (03~ 0), (031½) and (031 1) these have been calculated through the use 
of transformation coefficients to the separate neutron-proton quasi-spin scheme (.,;ee 
ref. 1~), tables 3-5); the elements actually tabulated are the reduced R(5) Wigner co- 
efficients with p = 1. For the representations (coj 0) and (03~½) they have also been 
calculated by a different technique by Szpikowski 20). They can also be calculated 
most directly from the explicit construction of the states with Mr = T given in appen- 
dix 1 by operating on these states with the infinitesimal operators E+ ~ 1, E+ 1 0, E+ ~._ 1 
in turn. For the irreducible representation (tt), the matrix elements of the infinitesimal 
operators have been calculated by this technique. They are expressed in terms of 
reduced R(5) Wigner coefficients and tabulated in appendix 2 (table l le). Results 
for the irreducible representations (031 ~), (t + 1, t) and the fl = 1 and 2 states of (031 1) 
will be tabulated in a subsequent publication. 

With these tabulations of the matrix elements of the infinitesimal operators, the 
simpler R(5) Wigner coefficients can be calculated by standard recursion techniques. 
By operating with an operator Eab = E,b(1)+E~b(2) on a state of a coupled system 
built from systems 1 and 2, the single primed and double primed systems of eq. (9), 
a recursion relation for the full R(5) Wigner coefficients is obtained 

Z (/~(H~ + a)T(Mr + b)lE,b[flH1 TMr> 

<fl'Hi T'M'r ; fl"Hi'T"Mr']fi(H ~ + a)T(MT + b)) 

= Z <fl'U'l T'M'T[E,b]fl'(H'I -a)T'(M'r- b)) 

x <fi'(H'~ - a)T'(M T -  b); fl"H'~'T"M~ ]flH1TMT) 

+ ~ <fl"H'I'T"MTIE.bIfi"(H'[- a)T"(MT -- b)> 
fl" T" 

x <fl'H'l T'M'T; ~ " ( H ' I ' - a ) T " ( M T -  b)]flH1TMT). (46) 

In this relation the irreducible representation labels (03'1032), (03'1' 032') and (031032) 
have been omitted for brevity. Although this recusion relation may contain a formi- 
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dable number of terms for the most general coupling (0)i 0)~)x (c0"0)2') ~ (co 10)2), 
it becomes manageable if one of the representations is a simple one such as (0)'1' 0);') = 

1 1  Q~-). The R(5) Wigner coefficients for the product (col0)2)x(½1) can therefore 
be calculated by recursion techniques. The R(5) Wigner coefficients involving more 
complicated representations are then calculated from these by means of a build-up 
process. For example, Wigner coefficients for the products (0)1C02)×(10) and 
(0)10)2) x (11) can be expressed in terms of the simpler coefficients for the product 

1 1  (cot 0)2) x (zz). Such a build-up process can be based on a recoupling transformation 
for a coupled system built from the states of three irreducible representations. Two 
possible ways of coupling the three representations (0)lt)i with i -- 1,2, 3, to a resul- 
tant state of the representation (0)1 t) are illustrated in fig. 1 by diagrams of the type 

(~,t) Pl2,3 ~'~HITMT 

~(w, t )  3 

(co, t/ (w, t)23 p23"p2~~~ 

( ~, t ) Pl,z3 i 13 HjTM r 
Fig. 1. Coupling and recoupling of three R(5) irreducible representations. 

introduced by French 25), adapted to R(5). The two coupled systems illustrated by 
fig. 1 are connected by a unitary transformation whose matrix elements are the gen- 
eralized R(5) Racah coefficients or U-coefficients 

I[{[(0), t),(oh t)d(0), t)i2 p12}(0), 03](0), t)p12.3; fil l, TMr> 

: Z Z l[(0)It)1{[(0)lt)2(0)it)3](Oklt)23P23}](0)it)pl.23'flHiTMT> 
(6t)lt)23 P23,  P l ,  23 

X U ( (0)1t)1(0)1 l)2; (601 /)I2PI2PI2.31 
(0)i th(0)1 t); t)= p= 1 '  

(47) 

where the R(5) U-coefficients are the generalization of the recoupling coefficients of 
ordinary angular momentum theory in their unitary form, although the notation is 
based on a generalization of the notation for the 6-j symbol. The U-coefficients are 
independent of flH 1 TMT and are real. They satisfy the orthogonality relations 

(:: (48) 

where ~ is a shorthand notation for (0)1 t)12, P12, P12,3 and # is a shorthand notation 
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for (0)1 t)23,  P23, Pl,23- They can be related to the R(5) Wigner coefficients by 

v ((0)' 0,(0), 0=; (0), Q 
\ (0), 03(0), t); (0), t)23P23P,,2a ] 

- Z <(0), t), ~, ; (0), th~=ll(0)l t ) ,2e,  2>m=<(0), t ) ,2e ,2  ; (0)1 t)3 ~311(0), t)e>o,2,, 
~1~283 
£12g23 

× <(0), thee  ; (0), t)3 e311(0), t)=3 e23>,=~<(~ol t), S 1 ; (0)1 t)23 e2311(0)1 t)e>O,, 2, 

x U(Ti T2TT3; T12 T23). (49) 

The shorthand notation e~ = fliH1, T i has been used in eq. (49). The sums o v e r  MT, 
have been performed and expressed in terms of an ordinary isospin angular momen- 
tum U-coefficient (unitary or Jahn form of the Racah coefficient). Another very useful 
relationship between the R(5) U-coefficients and the R(5) Wigner coefficients follows 
from eq. (47) and the orthogonality of the Wigner coefficients 

. . . . . . . .  [(0), t)1(0), t)2; (0), t),2P,2P12 3'~ 
<(0) i  t ) l  ~i ; (0)1 t)23e23[lt,0), Ue)m, z3tYl ( , ,~ t" , ,4. ( , ,~ ~ ~ ' 

Pt, 23 \ kt'U'l ~ J 3 \ ~ ' l  ~) ,  kt'U'l ~ ) 2 3 / / 2 3  h ' l ,  23 / 

~-" Z <(0)1 t ) l  gl ; (0)1 t)ze211(0)l t),ze~2>o,=<(0)~ t),2e,2 ; (0), t )3~3l[(0),  t)e>p,2, 3 
g2~3E12 

X <(0)1 t)2e2; (0)1 t)3e31[(0), t)23 e23>p23 U(T, T2 TT3; T12 T23). (50) 

This is the relation to be used as the basis for the building-up process in the calcula- 
tion of the Wigner coefficients. Eq. (50) is valid only if the quantum numbers p have 
been chosen such that coupled states with different values of p are orthogonal to each 
other. In particular, 

< [ { [ ( m ,  t ) i (0 ) ,  t)21(0)i 0 ,2  P ,2 } (m l  033 

x (0)~ t)p,~, ~;/~H~ TMTI[{[(0), t),(0), th](0)i  t'),2 P12} (~ ,  033 

× ( ~ ' , t ) p , ~ , ~ "  ' ' ' ' ,flH, T'MT> 

: (~(tOlt)12(to ' l t ' ) ,2(~(gOlt) , (Cu' l t ' ) (~Pl2P'12t~p . . . .  P ' 1 2 , 3 ( ~ f l f l ' ( ~ H I H ' I ~ T T ' ( ~ M T M ' T  " ( 5 1 )  

For the representations of interest in shell-model calculations, most of the indices p 
are not needed. For example, if the representations (0)1 t)2 and (0) 1/)3 a r e  both identi- 

3_I fled with the representation (2~), the labels PiE, P23 and P12,3 are not needed. In this 
case (0)1 t)23 = (00) ,  (10), o r  (11) ;  and the fourth label Pl, 23 is needed only in the one 
special case, i.e. (0)1 t)23 = ( l  1) and (0)1 t) = (0)1 t)l, Except for this case, therefore, 
the sums over Pl, 23 disappear from the left-hand side of eq. (50), and this relation 
can be used to calculate the R(5) Wigner coefficients for the products (0)1 t) × (10) 
and (0)l t)x (11). Eq. (50) gives the R(5) Wigner coefficients to within a common 
factor, the U-coefficient of the left-hand side of the equation. This U-coefficient can 
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be considered as a normalization factor and can be determined from the normalization 
condition and the phase conventions for the R(5) Wigner coefficients, eqs. (33) and 
(35); or alternately, in cases where not all values of fill1T are of interest, it can be 
determined by calculating the R(5) Wigner coefficients through recursion techniques 
for some special values of flH 1 T such as those for the highest-weight state. In the 
special case (09i t ) x  (1 1) ~ (09x t), for which the label Pl, 23 is needed, one set of the 
R(5) Wigner coefficients (those with p = 1) are known through the matrix elements 
of the infinitesimal operators, so that eq. (50) can be used to calculate the R(5) Wigner 
coefficients with p = 2. 

The R(5) Wigner coefficients for the products (091 t) x (20) and (091 t) x (22) can be 
calculated through eq. (50) by setting (09t t)2 = (°)1 t)3 = (1 l); or for the products 
(091 t) x (20) by setting (091 t)2 = (091 t)3 --- (10). In these cases some of the labels p 
are needed. For example the product (091 t) x (22) in general contains the representa- 
tion (091t) with a multiplicity of 3 (although in the special cases (091 t) -- (~o10) or 
(tt) the multiplicity is only 1, whereas for (091 t) = (09~ ½) the multiplicity is 2). In 
cases where the label p is needed it has been defined rather arbitrarily, by assigning 
special values to some of the U-coefficients in eq. (50). This is best illustrated by a 
specific example. There are three independent sets of Wigner coefficients ((09~ l)e'; 
(22)e"1[(09 1 l)e) o corresponding to the possible values p = 1, 2, 3. These have been 
calculated for e" = H~'T" = 00, 01 and 02 through the system of three equations 

((09i 1)(11); (Jx t ' ) -  - Zp ((091 1)81 ; (22)823[1(091 1)e)p U \ (11)(o91 1); ( 2 2 ) - p  ] 

= ~ ((09~ l)8i ; (11)821i(09'1t')812)((09'1 t')812 ;(11)8311(091 1)8) 
e2g3812 

× ((11)82; (11)831[(22)823) U(T~ T2TT3; T12 T23), (52) 

with (09'i t ')  = (0910), (091 + 1,0), and (co 1 - 1, 0). In this case the three intermediate cou- 
plings (091 1) × (11) ~ (09'1 0); (09'i0) × (1 1) ~(0911) and (11) × (1 1)~(22) ;  with 09'1 =091, 
091 --- 1; needed for the right-hand side of eqs. (52), all have multiplicity 1. Labels Pl2, 
/912, 3 and P23 are thus not needed for these intermediate couplings. In all similar cases 
where the label Pl, 23 has actually been needed for the final coupling it has been pos- 
sible to find a sufficient number of intermediate couplings with a multiplicity of 1. 
They furnish a sufficient number of equations to solve for the independent sets of 
R(5) Wigner coefficients with different values of Px, 23 for the final coupling t. In the 
above example, the three equations obtained from (52) by setting (09' 1 t ') = (0910), 
(091 + I, 0), and (091-1, 0) form a system of  three independent equations in the three 
unknowns ((091 1)81; (22)8231[(091 1)8)p with p -- 1, 2, 3. In this specific case the 
labels p have been defined such that the two U-coefficients with (09'1 t ') = (~Ol 0) and 

t In this investigation the labels p have been needed only in relatively simple cases. It is interesting 
to speculate whether it is possible to find a sufficient number of intermediate couplings with a multi- 
plicity of l in the general ease. 
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p = 2 and 3 are equal ~o zero, and the single U-coefficient with (to', t ') = (to1 - 1, 0) 
and p = 3 is also equal to zero. This choice for the three independent states facilitates 
the calculation of the R(5) Wigner coefficients (especially since the values of the U- 
coefficients are not known initially). Eq. (52) with (to', t ') = (to, 0) now gives the R(5) 
Wigner coefficients with p = 1 at once. The single, non-zero U-coefficient with 
(to'l t ') -~ (0910) follows from the normalization of the p = 1 Wigner coefficients. 
Next, eq. (52) with (to', t ') = ( t o ! - 1 , 0 )  can be used to calculate the R(5) Wigner 
coefficients with p = 2. The two, non-zero U-coefficients with (to'l t ') = ( t o , -  1, 0) 
now follow from the normalization of the p = 2 Wigner coefficients and the ortho- 
gonality of the Wigner coefficients with p = 1 and 2 and so forth. 

In the relatively small number of cases where the label p is needed in this investiga- 
tion, it has been defined in a similar way. This is of course a very arbitrary choice• 
In an actual application of the Wigner-Eckart theorem, however, the R(5) Wigner 
coefficients with different values of p may not be needed• Instead it will be sufficient 
to know the p sums such as 

• ! t 

((to, 1)fl'H', T" (22)H','T"ll(to, 1)fill, T) .  U ((to' 1)(11), (to, t ) -  - ]  
, ' \ (11)(o9, 1); (22)--p ] (53) 

for different values of (to', t'). If  the three reduced matrix elements ( (to, 1)ll T(22)1] (to, 1 )) o 
of a tensor operator T (22) a r e  expressed in terms of a new set of three reduced matrix 

elements ((to11)]lT(EE)ll(to, 1)). defined by the system of three equations 

((to, 1)llT(22)ll(to , 1))p = U {(to' 1)(11); (o91 t ' )=-  \ (ll)(to, 1); (22)-p ] ((to, 1)llT(=2~ll(to' 1))=, (54) 

with (to', t')~ = (to10), (091 + 1, 0), (to, - 1, 0) for ~ = 1, 2, 3, respectively, the Wigner- 

Eckart theorem can be expressed in terms of the ((to1 1)l[T(22)ll(to, 1))~ 

((o911)fill 1 tEE) . . . .  TMT[Th",T"M'T[(tot 1)fl n~ T M r )  

= ~, ((to, 1)fl'H', T'M'r; (22)H','T"MrI(to, 1)fill, TMT)p((to, 1)llTCZ2~li(to, 1))p 
P 

= ~ { ~  ((to, 1)fl'H', T'M'T;(22)H','T"M~'[(to,1)flH, TMT)p 

{(~, 1)(11); (to', t'),-- - ~ t  
× U \ ( l l )( to,  l);  ( 2 2 ) - p  1) ((to'  1)ilTt22)li(to' 1))~. (55) 

The last is a convenient form• The flH 1 TMT dependence of the matrix elements now 
appears only in the p sums, (enclosed by the curly bracket), and these are the fill, TMT 
dependent factors which are most easily calculated through the build-up process. In 
all those cases where a high multiplicity appears it is therefore more convenient to 
tabulate the p sums [such as those of eqs. (53)] rather than the R(5) Wigner coeffi- 
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cients for specific values of  p. I f  needed, the latter can be calculated from the tabulated 
U-coefficients for the specific choices of  p which have been made. 

4.5. TABULATIONS OF R(5) WIGNER COEFFICIENT 

The R(5) Wigner coefficients to be tabulated are those for the couplings 
¢t I t  1 1 (~o] t ' )  × (col' t " )  ~ ( tol t) ,  where (i) (col t ) = ( : z ) ,  (10), (11), (20) and (22) and (ii) 

(to] t ' )  and (tos t) include the representations (col0), (col ½), (tt) and the fl = 0 states 
of  ((2) 11). 

The coefficients ((tos t);(11)[](to 1 t)p= 1 with t = 0, ½ and 1 are tabulated in ref. l i) 
(tables 3-5); [the fl = 0 states are identical with the ~ = 0 states of  ref. s~)]. The remain- 
ing coefficients f rom the above list are tabulated in appendix 2. In particular, the co- 
efficients for  the couplings ((2)1½) x (½½) ~ (to1 + ½0) ; (tot0) x (½1) ~ (cos 4-- ½½); 
(cos ½)x (½k) ~ (tos +½ 1)fl = 0 states; ((2)11)fl = 0 states x (k½) -~ ((2)!_+½½), and 
(tt) x (k½) ~ (t 4-k, t +_ ½) are given in tables 9a-e. Some of  these have previously been 
calculated by Ginocchio 12). Since some of  Ginocchio 's  coefficients differ f rom the 
present ones not  only in overall phase but  also in relative phase, they are tabulated 
again in appendix 2. The coefficients for the product  (tol 0) × (I0) are given in table 8 
of  ref. 11). Unfor tunately  these coefficients also differ in phase from the present 
conventions,  but  only overall phase factors are involved. To be in agreement with the 
present cases all coefficients of  table 8, ref. 11), in the second row (labelled by H;  T ' ;  
H " T " =  H I + I T ;  - 1 0 )  and in the second column (labelled by (coxco2)= ( j - ½ 0 ) )  
must be multiplied by - 1 .  (They are also given again in table 10a of  appendix 2.) 
The coefficients for  the couplings ((2)1½)x (10) ~ (to'l ½); (cot 1 )x  (I0) ~ (col 1)fl = 0 
states; and ( t t ) x  (10) ~ (tt) are tabulated in tables 10b-& Finally, the coefficients 
for  the couplings (col ½) x (11) -~ (col ½)P = 2; (cot ½) x (11) ~ (co 1 + k 1)fl = 0 states; 
((,0 s 0) x (11 ) ~ ((,011)fl = 0 states; ((2) s 1 ) x (11 ) ~ ((2) 11 )p = 2, fl = 0 states are given 
in tables l la-e .  

In the case of  the products (cos t) x (20) and (cox t) x (22), only R(5) Wigner coeffi- 
cients diagonal in H 1 and T a r e  needed in the applications to shell-model calculations. 
These are tabulated for the couplings 

(cot O) x (20) ~ (cot 0); (co 1 O) x (22) ~ (col 0); (cot ½) x (20) ~ ((,01½); 

((.01½) X (22) --* (to1½)P : 1, 2; (gO 1 l )  X (20)  "-} ((A) 11 )p  = 1, 2, fl = 0 states; 

(cox 1) x (22) --* ((,0| 1)p sums, fl = 0 states only; and (tt) x (20) --* (tt); 

(tt) x (22) ~ (tt); in tables 12-15. Finally some of  the U-coefficients which are a by- 
product  of  the method of  calculation are given in tables 16. 

5. Applications 

5.1. COEFFICIENTS OF FRACTIONAL PARENTAGE 

Reduct ion formulae for  one- and two-nucleon fractional parentage coefficients call 
be obtained through their simple relationship to the matrix elements of  the single- 
nucleon and nucleon-pair  creat ion operators.  The precise relationship between the 
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c.f.p, and the reduced matrix elements of the single-nucleon and nucleon-pair creation 
operators are 26) 

(jn-l{v'l '}fl 'T' ,  ~'J'I}jn{v, t}flZ, o~J> 

__ (j"{v, t}flT, ~J[la +llj"-~{v't'}fl'T ', £ J ' )  

[-n(2J + 1)(2T + 1)3 ~ ' (56) 

( j " -  z{v't'}fl'T', ogJ'; jZT"J"I}j"{v, t}flT, ~J} 

= (j"{v, t}flT, cd[ld+(J"T")[Ijn-Z{v't '}fl 'T ', ~'J') (57) 
[n(n - 1)(2J + 1)(2T + 1)] -~ 

The pair creation operators d + are defined by eqs. (16). The quantum numbers c~ 
and J refer to the decomposition of the symplectic group through the chain Sp(2j + 1) 

R(3) just as fl, T and n refer to the decomposition of R(5). By using a generalized 
Wigner-Eckart-theorem in both spaces c.f.p, can be written in terms of generalized 
Wigner coefficients for both R(5) and Sp(2j+ 1) 

<j"-'{v't '}fl 'T', cd.l'l}j"{vt}flT , ~J} 
1 

- ~ - - -  , t t v 1 t l l  1 1  1 " 1 t ¢ t t . .  x/n 4̀ (cOL t )fl (H 1 - 7 ) T  ; (~-~-)~11(o) 1 Off(Hi = ~n - j - g ) T ) ( { v  t }c~ d ,j][{v, t}~J), 

(58) 
<j"- Z{v't'}fl'T', c(J'; jZT"J"l}j"{vt}flT, ~J) 

1 
- -  - - - -  (((-Dtl t ' )f l ' (H 1 -- 1)T'; (o2'1't")1 T"l](co, t ) f l (H 1 = ½n - j - ½ ) T )  

~ / . ( n -  1) 

x {(v't ')e'J'; J"ll{v, t}~J}. (59) 

The first factor in these relations is the reduced R(5) Wigner coefficient as defined in 
this work. In eq. (59), (oYl't") = (10) and (11) for T" = 0 and 1, respectively, (see 
table 4), so that ((o'1' t") = (IT").  The second factor is completely independent of the 
quantum numbers fl, T and n and is made to carry all of the dependence on the quan- 
tum numbers ~ and J. 

Particle-hole relationships for the c.f.p, follow from the symmetry relations, eqs. 
(42) and (45) for the R(5) Wigner coefficients and the corresponding symmetry rela- 
tions for the coefficients of the Sp(2j+ 1) ~ R(3) chain. It will be assumed that the 
phases of the latter have been chosen such that the c.f.p, satisfy the particle-hole 
relation ship 2 1 , 2  5 , 2  6 )  

( j , -1{  ,/,}fl,~,, ~'J'[}j"{vt}fiTc~J} 
(j4j+ z- ,{vt}f lr  ' ~jl}j4j+2_,+ l{v,t,}fl,T, ' , j , )  

= ( - 1 )  s-s ' - j+T-r '-½ ~ (4 j+2-n+l ) (2J '+ l ) (ZT '+ l )~  -~. (60) 
A 
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This leads to the further particle-hole relation 

(j"-2{v't'}fl'T' ' a'J'; j2T"J"l} j"{vt}flT , ~J) 
(j4j+ 2-n(vt}flT, ~J; j2T"J"[}j4j+4-n{v't'}fl'T', ~'j ') 

= ( -  1)J-"+ T- r' LF(4j+4-n)(4j+3n(n--1)(2J+~ 1 ) - n ) ( 2 J '  + I)(2T' + 1)3 -I-. (61) 

Through the use of the R(5) Wigner coefficients it is now possible to give reduction 
formulae whereby the c.f.p, for arbitrary n can be expressed in terms of those contain- 
ing the smallest possible number of particles (such as n = v). For one-nucleon c.f.p. 
two reduction formulae can be written 12). 

Case 1. v' = v - 1  

(j"-l{l)--  1, t'}fl'T',~'J'[}j"{vt}fiT,~d> = (_  1)r,_r_e +t_ ~ 
( j v - I {V_  I, t'}t', o~'d'[} jV{vt}t, ~d) 

x Fv(2T'+l)(2t,+l)-~ *= 
Ln-(2T + 1)(2t' + 1)J ((co, t)flH, T; (½ ½) - ½½l [(eh + ½t')fl'(H1 - ½)T'), (62) 

where H 1 = ½ n - j - k ;  col = j+½-½v in the R(5) Wigner coefficient. The phase ~p 
is that of eq. (45) with v 2 = 0, while vi and v 3 refer to the highest weight states. For 
the simple representations (co 10), (co 1½), (tt), and (o~ 1 1 ) / / =  0 states, the R(5) Wigner 
coefficients for eq. (62) are given in appendix 2. In all these cases the phase factor has 
the simple value ( - 1 )  r ' - r - ' ' + t -~ '  = ( - 1 )  r'-r-=*. Eq. (62) follows from eq. (58) 
and the symmetry relations, eq. (42) and (45), together with the special value 
( (~° , t )ah t ;  ,7~,-~7/'11~..L 1 1 [(e% +½t')o~, +½t '  ) = +1.  

Case 2. v' = v + l  

< j " - 1 { v +  1, t'}fi'T', ~'J']}j"{vt}flT, ~J> = ( _  i ) , _ , , _ j + , _ , ,  ~ 
(jv{vt}t, ~al}j  v+ I{V "A7 1, t'}l t, 0~ta'> 

× 1)(2J '+ 1)(2t '+ 1)7 ~- 
L n - ~ l ~ t + l )  J ((°~I -½t')fl'(H,--½)T'; (½k)½kll(eol t)/~H1T), (63) 

with H 1 x • 1 " 1 l = z n - j - ~  and co I = j + z - ~ v .  Eq. (63) follows from eq. (60), and the 
special value ((e% - ½ t,)¢ol - - 2 t l  t., k 2 2 J g ~  { 11 ~ 11 [ ((.01 t)(.01 t )  = -[- 1. These two relations have 
been given by Ginocchio 12). They are reproduced here since the present phase 
properties of the R(5) Wigner coefficients differ from those of ref. 12). 

For  two-nucleon c.f.p., similar reduction formulae can be written in terms of the 
R(5) Wigner coefficients. Several cases must be considered. With H1 = ~nl _ j . _  ~1 and 
o ,  = j + ½ - - I v ;  
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Case 1. v' = v - 2 ,  

( j " -  2(v-- 2, t'}fi'T', a'J' ; j2T"J"]} j"{vt}fiT, aJ) 
( f - 2 { v - 2 ,  t')t', ~'J'; j2T"J"]}jO{vt)t, ~J') 

= ( _  1)T'-~-,'+,-~ 

f v(v-1)(2T'  + l)(2t+ ~ l ~  
× ((col t)flH1 T; ( I T " ) -  1T"]l(co~ + at')/3'(H~ - I ) T ' ) .  

Ln(n - 1 ) (2T+  1)(2t' + 
(64) 

The phase factor  q~ is again that  of  eq. (45) with v 2 = 0, while v~ and v a refer to the 
highest weight values for  the representations (col t) and (co~ + 1 t'), respectively. In the 
derivation of  eq. (64), the symmetry relations, eqs. (42) and (45), have been used; 
also the special value 

((co~ t)co~ t; (1T")lT"]](co~ + lt ')col + l t ' ) )  = + 1. 

Case 2. v ' = v + 2 ,  

(Jn-2{v+Z,t'}fl'T';°;'J';JZT"J"]}Jn{vt)flT, °¢d) = (-- 1) J - J ' + t - t '  

(jr{v, t}t, ~j  ; j2T"J"]} jv+ z(v + 2, t'}t', ~'J'} 

x L n(n---~-J~) ( ( c o t - l t ' ) f l ' ( H ~ - t ) T ' ; ( 1 T " ) l r " l i ( c o ~ t ) f l H ,  T), 

(65) 

where eq. (61) has been used; also the special value 

((col - lt')co~ - I t ' ;  (lT")lT"l[(col t)co~ t)  = + 1. 

Case 3. v' = v; arbi t rary t '  for  T "  = 0, but  t '  ~ t for  T "  = 1, 

(.j"- 2{vt'}fl'T', ~'d'; j2T"J"]}j"{vt}flT, ~d) 
(jv{vt}t, o~J ; jZT"j"I}  jv+ 2{vt'}t' + b, ~'J") 

= (_ l )S_s ,+ t_ t ,_  b [(v+2)(v+l)(ZJ '+ 1)(2t' + 2 b + l ) l +  

L n(n- 1)(2~ 1)~0 
x ((col t')fi'(Hl - 1)T' ;  (1T")IT"IKCOl t)flH~ T ) ,  (66) 

((col t')col - i t '  + b; ( 1 T " ) I  T"i](CO~ t)col t) 

where b can have the values 0, + 1 since the v + 2  nucleon state of  seniority v and 
reduced isospin t' can have total isospin T' = t' or t '+ 1. Since each of  these states is 
single, the label fl' is not  needed. In this case, the R(5) Wigner coefficient with H t  T = 
col t does not  have the simple value + 1 and, like the coefficient for  arbi trary H~ 
and T, must  be read off f rom tables such as those of  appendix 2. 
Case 4. v' = v, T "  = 1, t' = t. For  general v, t, J",  this case is complicated by the 
multiplicity problem. The product  (col t) × (11) in general contains the representation 
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( o  1 t) twice, and the reduct ion formulae will depend on the two independent  R(5) 
Wigner coefficients with p = 1 and 2. The exceptions are the representation (col0) 
and (tt) for  which the products  are simply reducible. In these two cases, eq. (66) holds 
also for the case v' = v, T "  = 1, t '  = t. Finally with J "  = 0 the pair-creation opera- 
tor  belongs to the family of  infinitesimal operators of  the group, so that  in this case 
the reduced matr ix elements with p = 2 are equal to zero. In this case the reduction 
formula is again given by eq. (66) where the R(5) Wigner coefficients are those with 
p = 1. For  this special case numerical values of  the R(5) Wigner coefficients have 
been tabulated by Ichimura 13). In the general case, v' = v, T "  = 1, t '  = t, the c.f.p. 
can be written 

< j . -  2 {v t } f l ,T ,  ' . . . .  2 . . . .  i J "  a ;d I = # Ol} j"{v t} f iT ,  cO> 

1 
-- "x/n(n -- 1) <((D1 t)fl'H1 - 1 T ' ;  (11)11 I[(co I t)13Ht T>p = 1  Fl(v, t, ~CjJ 'J"J)  

+ 
~/n(n - 1 ) 

_ _  < (coit)fl'H i -- 1T' ;( l l ) l l l l (~o~ t)flH1T>p=2F2(v, t, o:a'jJ'J"J), (67) 

where the coefficients F 1 and F 2 a r e  independent  of  fl, Hi(n) and T. 
One possible reduction formula in this case could be given by 

<j"-2{vt}fl 'T',  a'J'; j 2 T "  = 1d" # OI}j"{vt}flT, ctJ> 

V(v + 2)(v + 1)(2S' + 1)_ 1 i 
= ( - 1 ) s - a '  [_ n ~ - l ) ( 2 f ~  

x {<(oo 1 t)fl'(H, - 1)T' ;  ( l l) l . l[ l( tn,  t)flH, T>p=, 

x [V2(0)< jV{vt}t, cd; j21a"I} j  v+ 2{vt}t+ 1, a'd'> 

+ r 2 ( 1 ) < j " { v t } t ,  ~J; j Z l J " l } f +  2{vt}t, c~'d'>] 

- <(co, t)fl'(H, - 1)T'; (11)1 l[l(coI t)flH, T)p=2 

x [rl(o)<j~{vt}t, ~d; jqa" l } j~+i{v t } t+  1, Ca'> 

+ Fi(1)fj~{vt}t,  ad; j21j"I}jv+ 2{vt}t, a 'd '}]},  

where the short-hand notat ion Fp(b) has been used; 

(68) 

Fp(b) = <((O, t ) ~ l -  1, t +  b; (11)11[](¢01 t)¢.O I t>o 
(69) 

<(091 t)(D 1 -- l l ;  (11)11[1(0.) 1 t)CO 1 t>a=l 

((CO t t )60~-  l t ;  (11)11[[(031 t)601 0 0 = 2  
((COl t)COl- 1, t + 1; (1 1)lll](C~I t)co t t>a= ~ 

<(tO 1 t)o) 1 -- l ,  t "4- | ,  ( l  1)1 lli(CO , t)m 1 t> .=  2 
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5.2• ONE-BODY OPERATORS 

One-body operators of definite rank (spherical tensor character K in physical three- 
dimensional space and isospin character r) can be expressed in terms of the elementary 
multipole operators of eq. (18). 

The operator Fqr;;~ = ~ =  • K;~ 1 f(t)q; ~ can be written 

- K ; z  f q;.~ = <j½llfK;~[Ij½> U(j2; K q ,  zy) (70) 
[(2K + l)(2z + 1)3 &' 

where the double-barred matrix element is the conventional angular momentum re- 
duced matrix element of the one-particle operator in the single-particle state with 
angular momentum j and isospin 3. The R(5) tensor character of the elementary 
multipole operators is given in table 4. Operators with K odd and z = 0 are R(5) 
scalars. Their matrix elements are therefore diagonal in v and t and independent of 
nucleon number and isospin. One-body operators with K odd and z = 1 have R(5) 
tensor character (10), while those with K even z = 0 or 1 have R(5) tensor character 
(11 ). Their matrix elements can thus be off-diagonal in v and t and have a complicated 
n, T dependence. The diagonal matrix elements of the one-body operators in states 
with v = 1 (t = 3) are perhaps of greatest interest. The R(5) Wigner coefficients 
needed to calculate these are tabulated in appendix 2, (tables 10b and 11 a) and table 4 
of ref. 11). Although the states of the irreducible representation (031 3) are completely 
specified by n and T; the R(5) Wigner coefficients do depend on a fourth quantum 
number, e (or o) for 0 3 1 + ½ - H 1 - T  = even (or odd) integer, or ½ ( n + v - 1 ) + T  = 
even (or odd), respectively. This dependence makes itself felt only through phase 
factors of the form ( -  1) ½"-r. Since the product (031 3) x (1 l) contains the representa- 
tion (031 3)twice, matrix elements of one-body operators with Keven are governed by 
two R(5) reduced matrix elements, eq. (8). They can be determined from the matrix 
elements of the one-particle and one-hole states. Results for the full matrix elements 
are shown in table 5. Operators with K even, in particular, lead to a complicated n, T 
dependence. By using the proper combinations of the z = 0 and 1 operators, Parikh 
[ref. 1o)] has used such matrix elements to find the n, T dependence of the magnetic 
dipole and electric quadrupole moments for the seniority 1 states of the configuration 

j". (For the magnetic dipole moment, see also de-Shalit and Talmi 5), pp. 449 and 536.) 

5.3. THE TWO-BODY INTERACTION 

The n, T dependence of the general two-body interaction can in principle be deter- 
mined for any matrix element, diagonal or off-diagonal in v and t, by the techniques 
outlined in this investigation. Since the two-body interaction includes the relatively 
complicated R(5) irreducible tensors of type (20) and (22), the calculations are simple 
only for states involving the simpler irreducible representations of R(5). In particular, 
since the needed R(5) Wigner coefficients for the representations (0310), (031 1) and 
the fl = 0 states of (031 l) are known,(appendix 2), it is possible to extract the n, T 
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dependence for  the diagonal  matr ix  elements in states of  low seniority. The calcula- 
t ions are simple for  states with v = 0, v = 1, and with v = 2, t = 0, as well as for  the 
(n = 4k, T odd)  and (n = 4 k + 2 ,  T even) states with v = 2, t = 1; the latter, the 
fl = 0 states of  ( j  1, 1). Al though this does not  include all v = 2 states, it includes 
the mos t  interesting ones, since the major  components  for the low-lying states of  
doubly odd nuclei may  be expected to be given by the above types. 

The general, charge-independent ,  scalar, two-body  interaction has been classified 
in terms of  the basic R(5)  irreducible tensors [T(d2(1T)2](o°oto°~2o); o by eqs. (27) and 
(28) of  sect. 3. The reduced matr ix  elements of  the interaction can be defined in terms 
of  the reduced matr ix  elements of  these basic tensors. In part icular,  if the reduced 
matr ix  elements are defined by 

t)c~dll 3¢r . . . .  I I ( J + ½ - ½ v ,  t)cd)a ( ( j + ½ - ½ v ,  (~o2) 

= _¼ ~, Vs,r=,[2d,+l]~((j+½_½v, t)~Jll[T(j,2(ll)Z]( . . . .  ) ,Ol l (J+½_½v,  t)~j)o ' 
even  J '  

(( j  + ½--½v, t)~Jll~/'(o~d~°~)ll(J + ½-½v, t)~S)p 

= 1 E V j ' T = O [ 2 J ' + I ] ½ ( ( J  - t - 1 - 1  ~v, t)o~J[l[T(J'2(lO)2]) (~2)  ; oll(j + a~ _ l~v, t)~J)p, 
odd J '  

(71) 

the diagonal  matr ix  elements of  a charge independent  two-body  interaction can be 
writ ten 

(j"{vt}flTMT, ~JMj[ ~ Viklff{vt}fiTMr, ~JMj)  
i<k 

= t)eJll~ e~ . . . .  I1(O~, t)~J)p((~ot t)flH, T; (22)0011(co, t)flH, r )p  
P 

+4 E , (20) t)~JIt~ ¢/" . . . .  11(o~, t)oU)o((o9, t)flH1 T; (20)0011(o9, t)flH1 T)  o 
P 

+34 (( Ol (oo) 3F/  E vjl(2J+l) t)C~Jll~ . . . .  I1(~ol t)~J)" 1 + (2j + 1) . . . .  s 

+ ~/~ ~ ( ( ~  t)~J[ V//'~o~°)ll(cot t)~J),((o91 t)[3g~ T; (20)0011(~o~ t)flg 1 Z)o 
P 

7 (oo) . _H_, . E Vjo(2J+l). + 2~/-~<(co1 t)~JllY/'oaa I1(~o~ t)~J>" 1 + (2j + 1) oaa s (72) 

The reduced matr ix  elements can be calculated f rom the matr ix  elements of  the inter- 
act ion in states with n = v and n = v + 2. The number  of  such matr ix  elements needed 
is equal to the largest number  of  terms in the p sums of  eq. (72) which is at mos t  equal 
to three in the general case. For  the simple configurations j " ,  the reduced matr ix  ele- 
ments  have been calculated for  states with v = 0, v = 1, t = 0, and v = 2, t = 1. The  
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TABLE 6a 

Reduced matrix elements for the two-body interaction 

((j+$-Bu. t)lI~li~‘02)jl(j+B~BU, t)) 

for states with u = O(t = 0) 

<(i+i, 0)lI~{$‘““)il(j+B9 0)) 

(00) ) even J 1 
@/+I) - 
41/10 @JV,,,+ Vd 

3(j+&)(j+S)o’+l)(j+3) 

10 1 odd 

(00) odd J 
(j+1)(2j+l) p 

2d5 odd 

owe, and (vodd) are the average two-particle interaction energies for even (and odd) J states, respec- 

tively, see eqs. (74) and (75). 

TABLE 6b 

Reduced matrix elements for the two-body interaction 

((j+&-tu, t)/I~~~‘02)1j(j+~-3~, f)) 

for states with u = 1 (t = 6) 

(22)p=li evenJ 1 
[ 

(2j+V(.i2+3j+) *(2jr7 -- 
8(2j-1) 1 we* - Vd 

(22)p=21 even J 1 

I 1 

(20) even J 

(00) I ~ even J 

(20) odd J 

0 

(j+2)(2j-1) (2,i+7) 1 + 

lo(j+l) 
(j rev,, + Vo) 

$E [4(3j+l)jre,,,,+(2j-l)V,l 

3(j+l)(j+2)(2j-1)(2j+7) +B 

10 1 Odd 
(00) j odd J 1 

(10) “) / even J 1 - 

“) Needed only for an isovector interaction. 
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T A B L E  6C 

Reduced matrix elements for the two-body interaction 

(&(J+½-½v, t)l] ~'{~' ~)!l(J÷½-½o, t),&) 
for states with v = 2, t = 0 

R(5) Rank 
(r) <J2, (J-½, oi[~{,%~'~)ll(J-½, 0), J2~, 

(22) even J 

(20) 

(oo) 

even J 

even J 

r ( j - { ) ( j+[ ) ( j+{)q{  .- 
½L 2 ( ~  j (2jr .... -vo) 

1 ( J + ~ ) ( J + 2 )  ½ '~[ lO(j--~j ] [(2j--3)jV . . . .  +(2j--3)Vo÷6j(Vever~USz'l 

1 

4~/16 
- -  [2 (6j + 1 )j ff . . . .  + (2j-- 3) Vo -- 4j( Vevea UJ2 ) 1 

(20) odd J 

1 
(00) odd Y /~ [Vs2-b(j+~)(j+l)~oad+¼(j+l)(Voa a US2)] 

[ 6(j--½)(jq-~2)j(j+2) 7 ~ 1 
--J j(2j--1) [Vs2+(J--1)(j+l)V°a¢--½(j+l)(V°ad Us2)I 

The average two-particle interaction energies ffeven, gods, (VevenUa2) and (Voa,~ Us z) are defined in eqs. (74), 
(75), (78) and (79). 

results are collected in tables 6a-d. For  states with v = 0 and v = 1, eq. (72) merely 
leads to a wel l -known result, (see de-Shalit  and Talmi  s), p. 456). In  those two cases, 
the interact ion energy has the fo rm 

n ( n -  1) / (6 j  + 5) jVeve. -  (2 j + 3)Vo + ( 2 j -  1)(j + 1) Foadl 

2 [ 4 ( 2 j -  l ) ( j  + 1) J 
t(2j + 3)jvovo.- Vo(Zj + 1 ) -  (2j-  1)0 + 1)Vo~dt 

+ { T ( T  + 1 ) - ¼ n )  
t 2 ( 2 j -  1 ) ( j +  1) J 

+ [ 2 1  2j (Vo - Veven). (73) (2U- ;) 
In  eq. (73) the funct ion [½n] is equal to ½n for  n even (v = 0) and ½ ( n -  1) for  n odd 
(v = 1). The interact ion energy has been expressed in terms of  the two-part icle energy 
V o in the state with J = 0 and the average two-part icle  energies in states with even 
and odd J defined by 

E Vj(2J + 1) E Vj(2J + 1) 
Veve. = eve. S = . . . .  S , (74) 

Z ( 2 J +  1) ( 2 j +  1)j 
ev en  J 

~, Vj(2J + 1) Z Vs(2J + 1) 
road -- oad S _ oaa s (75) 

Z ( 2 3 + 1 )  ( 2 j +  1 ) ( j +  1) 
o d d  d 
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Eq. (73) has been derived by de-Shalit and Talmi from the expression for the average 
interaction energy for levels with the same v, t, n and T. Since states with v = 0, (and 
1), have only a single possible value of J, the interaction energies in these two special 
cases follow directly from the expression for the average interaction energy. The deri- 
vation of this result by means of the quasi-spin formalism is somewhat more general, 
however. I t  shows that the n, T dependence of the interaction energy in any state with 
t = 0 (arbitrary v, ~ and J )  has the same general form as that given by eq. (73). A 
similar result is obtained for the n, T dependence of the interaction energies in ahnost 
all states of the R(5) irreducible representations with T-multiplicities = 1 (see tables 
12-15 of appendix 2). This result can be summarized as follows. For states with 

(i) t = 0 ,  v = 0 , 2 , 4  . . . . .  

(ii) t = i , v =  1, 
(iii) t = l v  = 2 ,4  . . . .  ; ( n - v )  = 4 k - 2 T ( k  = i n t e g e r ) ; t h e f l  = 0 states of (~ol l), 

(iv) v = 2 j+  l - 2 t ;  (R(5) representations (tt)), 

the general charge-independent interaction energy (diagonal matrix element), has 
the form 

<j"{vt} T M T ,  ceJMjI ~ V~glj"{vt) T M T ,  ~JMj> 
i < k  

= A¼(n - 2j - 1) 2 + B T ( T  + 1) + C +D½(n - 2j - 1), (76) 

where the coefficients A, B and C are functions of  v, t, ~ and J. The coefficient D 

h as the value 

1 
D -  {3 Z Vs(2J + 1) + Z Vs( 2J + 1)). 

(2 j+  1) . . . .  J o d d J  

For states with t = ½, v > 3, an n -  T dependent term of the form 

E ( -  1)~"- T(n - 2 j -  1) (2T+ 1) (77) 

may have to be added to the simple terms of eq. (76). This additional term arises 
through the R(5) Wigner coefficient for the coupling (~o1½)× (22)--* (o91½) with 
p = 2 (see table 13). It  is absent in states with v = 1 for which the corresponding 
reduced matrix element with p = 2 has the value zero (see table 6b). For states with 
v = 2, n = 4k, Todd;  n = 4 k + 2 ,  Teven;  the coefficients A, B and C of eq. (76) can 
be evaluated from the reduced matrix elements of tables 6c and d. The results can be 
expressed in terms of the two particle energies in states with J = 0 and J = J2 (with 
J2 = 2 , 4 , . . . 2 j - 1  for t =  1, and J2 = 1 , 3 , . . . 2 j  for t - - 0 ) ,  the average two- 
particle energies defined by eqs. (74) and (75), and additional weighted two-particle 

energy averages defined by 
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1 
(Veve" UJ2) -- Z Vj(2J + 1)U(JjJJ2;JJ), (78) 

(2j + 1)j  . . . .  s 

1 
(Vodd Us2) -- (2j + 1)(j + 1) oddZS Vj(2J + 1) U(J j j J  2 ; j  j) .  (79) 

The results are collected in table 7. (For  the states with v = 2, t = 1 the coefficients 
have the factors ( 2 j - 3 ) ,  ( 2 j - 5 )  in the denominator .  For  j = ~, however, the only 
states with n - 2  = 4 k - 2 T a r e  those with H 1 = ½ ( n - 2 j - 1 )  = 0, T = 1. F o r j  = z 5 
the only states with n - 2  = 4 k - 2 T  are those with H 1 = _+1, T = 1, and H I = 0, 
T = 2. In  these special cases the factors ( 2 j - 3 )  or ( 2 j - 5 )  are cancelled by compen-  
sating factors in the numerators  of  eq. (76) so that  the interaction energies are finite 
f o r j  = 3 o r j  = 3.) 

Eq. (76) is valid not  only for simple configurations j "  but  gives the n, T dependence 
of  the interaction energies (diagonal matrix elements) also for mixed configurations, 
if the seniorities and reduced isospins listed are replaced by over-all or multi-level 
seniorities and reduced isospins, and the factors ( n - 2 j - 1 )  are replaced by (n-2~2) .  
In a mixed configuration based on single-particle levels j , ,  Jb • • • with corresponding 
single-level seniorities and reduced isospins va, vb . . . . .  ta, tb, . . . ,  the over-all or multi- 

level seniorities v and reduced isospins t are given by the possible R(5) representations 
in the Kronecker  product  

( j ,  + ½--½v, , t~) x (jb + ½--½Vb, tb) × . . . .  2 ((J--½V, '). 
v , t  

Eq. (76) predicts a very simple T-dependence for the interaction energies of  the 
form T ( T +  1). Since this seems to account  for the observed energy systematics o f  iso- 
baric analogue states [J~inecke 15)], it may be possible that  these energy systematics 

are governed mainly by the low-seniority (v < 2) components  o f  the wave functions• 
Since seniority is in general not  a good  quan tum number  in nuclei where both neutrons 
and protons  are filling the same shell, admixtures o f  higher seniorities may be rela- 
tively un impor tan t  as far as the T-dependence o f  the energies is concerned• For  the 
v = 0 states, it is possible to investigate this point. The Kronecker  products of  

• 1 1 (¢010) = (J+z--z•, 0) with (20) and (22) are given by 

(~ ,  0) x (20) = (co~ + 2, 0) + (o h - 2, 0) + (cox + 1, 1) + (o h - 1, 1) + (~ol 0) + (~o~ 2), (80) 

(o~10) x (22) = (o~ 1 + 2 , 2 )  + (~o~ - 2 , 2 )  + (o~t + 1,2) + (co 1 + 1,1) + (o~ a - 1, 2) 

+ ( o ~ 1 - 1 , 1 ) + ( o ~ 1 2 ) + ( ~ o 1 1 ) + ( o ~ 1 0  ). (81) 

Thus R(5) tensors o f  rank (20) connect  v = 0 states only to states with v = 4, t = 0 and 
v = 2, t = I, while R(5) tensors of  rank (22) connect  the v = 0 states only to states 
with v = 4, t = 2 and v = 2, t = 1. For  simple configurations j "  with j < 7, only the 
v = 4, t = 0 states include a state with J = 0. The coupling (~o~0) × (20) ~ (oJ~ - 2 , 0 )  
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may thus be the most important in determining the effects of higher-seniority ad- 
mixtures. The R(5) Wigner coefficient for this coupling has the form 

< (~ ,  0 )H 1 T;(20)0011(Ol -- 2, 0)H,  T )  

[5(~°I-HI-T)(°)I+HI-T)(°)I+I-HI+T)(°)I+I+HI+T)] ~ (82) 

= 6(~Ol + 1)(~1--+2)(2~Ol + 1)(2~o 1 + 3) 

The energy difference between the states with v = 4, t = 0 and v = 0, t = 0 is of the 
form ~¢(n) + ~T(T+ 1) given by eq. (76). I f  admixtures of v = 4 states can be treated 
in perturbation theory, these will lead to correction terms to the v = 0 states of the 
following n, T dependent form: 

• 1 2 2 ' 3 2 g)A- H1]  -4- T 2 ( T +  1)2}, c ~ { [ ( J + z )  - H I ] [ ( J + ~ )  -HZ]-2T(T+I)[(j+½)(j+ 3 2 
(83) 

d(n) + .~T(T + l) 

with H 1 = ½(n-2j-  1). This does include a term of the form T2(T+ l) 2. The general 
T-dependence of the energies of isobaric analogue states may well be given by a series 
in powers of  T(T+ l)  dominated by the first term. In the case of mixed configurations, 
the state of overall v = 0 may be connected also to states with v = 2, t = 1. I f  ad- 
mixtures of this type can be treated by perturbation theory, they will lead to n, T 
dependent contributions to the interaction energy of the same form as those given by 
eqs. (32) and (33) of  ref. 11). It  was seen there that effectively these differ little from 
the simple T(T+ 1) dependent form. 

Since the Coulomb energy of nuclei shows interesting systematic n, T dependent 
effects 16,17), the study of the n, T-dependence of the two-body interaction has been 
extended to include the isovector and isotensor parts of the Coulomb interaction 
(diagonal matrix elements). Since the needed R(5) Wigner coefficients are available 
only for the simpler R(5) representations, only states with seniority v = 0, v = l, and 
the (n = 4k, T odd), (n = 4k + 2, T even) states of v = 2 will be studied. Since the 
seniority scheme may be poor  for nuclei where both neutrons and protons are filling 
the same shell, Coulomb energy formulae based on simple configurationsj n and states 
of lowest possible seniority may be only a guide to the true n, T dependence of the 
Coulomb energy. Nevertheless, the observed n, T dependent effects in light and inter- 
mediate weight nuclei seem to be explained at least qualitatively by the diagonal matrix 
elements of the Coulomb interaction in states with v < 2. The observed effects have 
been summarized by J~necke 16,17) t 

The isovector coefficient of  the Coulomb energy shows a simple linear dependence 
on n for even nuclei. For odd nuclei the same linear dependence on n is observed but 
now with a superimposed oscillation which distinguishes nuclei with A = 4k + 3 and 
A = 4k + I. The amplitude of these oscillations is large enough to be clearly observ- 
able for states with T = ½ but decreases with increasing T. The isotensor coefficient 
of  the Coulomb energy on the other hand seems to show no marked dependence on 

t See ref. le) for a review of this subject and for additional references. 
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nucleon number n but shows an observable pairing effect which distinguishes nuclei 
with A = 4k and 4k + 2. 

The Coulomb interaction has been decomposed into its R(5) irreducible tensor 
components in eq. (31). The R(5) reduced matrix elements for the Coulomb inter- 
action can be read off from tables 6, if the two-particle interaction energies are inter- 
preted as 

1 e 2 
_ _  [ j Z a )  (84)  Vj = (j2d[ ~ 
r 1 2  

and restricted to states with J even. The R(5) Wigner coefficients for the isovector and 
tensor components are given in tables 12-15 and 10. With these the diagonal matrix 
elements of the Coulomb interaction 

(j~{vt} TMT,  d2l ~ ViC°"'lj'{vt} TMT,  J2) (85) 
i<k  

can be evaluated for states with v < 2 through a generalization of eq. (72). The iso- 
scalar part of the interaction has the form of eqs. (73) and (76). The isovector and 
tensor parts of the interaction give the following contributions to the diagonal matrix 
elements (85) of the Coulomb energy: 

(i) For v = 0, (t = 0; J =  0) 

-- MT{3a + 3b(n - 2j - 1)} + [3M 2 - T(T + 1)] .{b + c - c -'[_/(n - ( ~  - ~ ( 2  T ~  3 ) 2 J  - 1) 2 - (2j + 4)z/"-]},. 

(86) 

(ii) for v =  1 ( t - - 1 ; j = j )  

3c 3c(2T + 1)(2j_+ 3)t 
- M r  {3a+ [3b+  2T(T-+I) ]  (n--2j--1)--(--1)~"-T 2 T ( T + I )  J 

+ [ 3 M 2 - ' F ( T + I ) ] { b + c  ~ ( n - 2 j - 1 ) z - ( 2 j + 3 ) z l } ;  (87) 
-c k ~ J 

( i i i )  f o r  v = 2, t = O, , l  2 = o d d  

- Mr(3a + 3 b(n - 2j - 1)} + [3M~ - T( T + 1)] {, - e -'l_|(n -(_2 T ~  3 ) 2 J  - 1) 2 - ( 2 j  + 2)2/"-]1" ~ " (88) 

(iv) for v = 2, t = 1, J2 = even; states with n = 4k, Todd;  or n = 4k+2,  T even 

f 

+ [ 3 M ~ -  T(T  + I)] {d' +g 

+h !~ -2 j - 17  + 
4 T ( T + I )  

( n - 2 j -  1) 2 

(2T- 1)(2T + 3) 

k + . 
( 2 T -  1)(2T+3) 4 r ( r + l  

(89) 
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The  coefficients  in eqs. ( 8 6 ) - ( 8 9 )  are  given by  

a = j V . v e . + c o r e  contributions, 

b - 2 jVe*e"-  V° 
2 (2 j - -  1) 

j 
c = 4 ( j +  1 ) ( 2 j -  1) ( V o -  Ve~e.), 

d = (4j-1)jP~v¢"-(J+I)V°+2j(V¢*e~Us2) 
4 j ( 2 j -  1) 

e = 
( j -1)Vo- jVeven + 2j(Veven Uj 2) 

4 j ( 2 j -  1) 

b' = 412V° - -4jVeven+(2J--  1)(Vd2--2j(Veven O J 2 ) ) ]  

(2j - 1)(2j + 1)(2j - 3 ) ( 2 j -  5) 

f = (2 j -9 ) [Vo-2 jVe . eJ  - (2 j+3)[Vj2-2 j (V¢w n U&)] 

(2j-3)(2j- 5) 
4 

4 - -  
(2j-1) 

d' = [(2j-1)(V°+JVe~e")+ 2Vj2+ 2j(l/~ve~ vJ2)] 

aej(zj + 1) 

+ 

[3j  Ve~e. -- Vo +j(Ve~e. Uj~)],  

[(20j  3 - 60j 2 _ 11 j + 24)(2j  ~ven - -  Vo) + 4(4j 2 + 2j + 3)(Vs= - 2j(Veve. Us:))]  

g = 

12j(2j + 1)(2j - 3)(2j - 5) 

[(2j  - I ) (V 0 +jVeven) +2Vs2 + 2j(Veve. U&)] 
4j(2j  + 1) 

[(4j  3 - 12j 2 - 7j + 12)(2j Veve. - Vo) + 2(4j 2 - 4j + 3)(Vj: - 2j(Vev¢. Us=))] 

4j(2j + 1)(2j - 3 ) ( 2 j -  5) 

h = - [(2j--1)(Vo+jVeve")+2Vs2+2j(Veve" Us2)] 
3j(2j  + 1) 

+ [2(2j  - 1) ( j  - 3)(2j geve. - Vo) + (2j + 3)(V,2 - 2j( P;v~. Us~))] 

6j (Z j -  3)(2j -  5) 
k = - ( 2 j + 2 ) 2 g ,  

l = [(4j2 + 4j -- 1)(V o + j  Veveo ) + 2 k)2 + 2j( Veven Ojz)] 

3j 

- - ( 2 j +  1)(2j + 3) [2(2 j2- -  7J + 1)(2jVe~e~ -- V°) + (6J + 1 ) (Vj~-  2j(V~,.¢. Us~)] 
6 j (2 j -  3) (2 j -  5) (90) 
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The two-particle energy averages are given by eqs. (74) and (78) with V s given by eq. 
(84). The Coulomb interaction between nucleons in partly filled shells and the nu- 
cleons in the closed shells of the core can make a contribution only to the coefficient a. 

In states with v = 0 and v = 2, t = 0 the isovector coefficient of the Coulomb ener- 
gy (coefficient of the - M r term) has a simple linear n-dependence given by the co- 
efficient b. In states with v = 1 and v = 2, t = 1 additional small n, T dependent 
terms are predicted. However, their coefficients (c, b' and f )  are small compared with b. 
The largest of these is the oscillatory term for states with v = 1 which, through its 
dependence on the factor ( - 1 ) ~ " - T ,  gives a contribution of opposite sign to states 
with n = 4k + 3 and n = 4 k +  1, respectively. The magnitude of this term decreases 
with increasing T. Several small n, T dependent terms are predicted for the isotensor 
coefficients of the Coulomb energy (coefficient of  the [3M 2 -  T ( T +  1)] term). How- 
ever, the coefficients of these terms (c, e, 9, h, k and l) are small compared with b, d 
and d'. The major contribution to the isotensor coefficient of  the Coulomb energy 
should thus be expected to be independent of n and T. The large coefficients are dif- 
ferent in states with v = 2 and v = 0 so that pairing effects can be expected for the 
isotensor part  of the Coulomb energy. All these effects are in essential agreement with 
the experimentally observed facts 16). Although Coulomb energy formulae based on 
states of good seniority with v < 2 cannot be expected to give good quantitative 
results in nuclei where both neutrons and protons are filling the same shells, all of  the 
observed n, T dependent effects in light and intermediate weight nuclei are explained 

at least qualitatively by the above formulae. 

6. Concluding remarks 

Although the applications discussed in this work are somewhat limited, it is hoped 
that they can be considerably extended when algebraic expressions for the R(5) 
Wigner coefficients involving the representations (co x 2~), ( t+  1, t) and the remaining 
states of (cox 1) are added to the coefficients tabulated in appendix 2. Even when large 
seniority admixtures are important,  shell-model calculations can be facilitated if the 
n, T dependent factors can be given for all matrix elements of interest in the seniority 
scheme. 

It  is a pleasure to acknowledge many stimulating discussions with J. J~inecke and 
to thank R. Hemenger for checking some of the algebraic results and for a careful 

reading of the manuscript. 

Appendix A 

A . I .  E X P L I C I T  C O N S T R U C T I O N  O F  S T A T E S  W I T H  T - M U L T I P L I C I T Y  = 1 

In order to study the behaviour of the states [(cox t ) H 1 T M T )  under conjugation, it 
is convenient to give explicit constructions for these states in terms of lowering and 
raising operators acting on the state of highest weight or some state of maximal weight. 
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Since states with M r < T can be constructed through well-known three-dimensional 
angular momentum techniques, it is sufficient to construct states with M r  = T and to 
define lowering or raising operators Oab acting on states with M r  = T through the 
relation 

O.bl(e) 1 t)H 1 T T )  = f (a, b)l(COl t)(Hi + a)( T + b)( T + b)), 

where f (a,  b) is a normalization factor. Operators O,b are constructed as functions 
of the infinitesimal operators Eab (standard R 5 notation, see table 1). The following 
have been found most useful: 

0 _ 1 , + 1  = 

O - - i , - - I  = 

0 + 1 , _  1 = 

O _ l ,  0 = 

0 + 1 , 0  = 

0 _ 2 ,  0 = 

E - 1 1 ,  O + 1 , + 1  = E l l  , 

E2_IE_II-Eo_IE_,o(2To+I)-E_I_ 1 To(2To + l), 

E2-,E,I-Eo-iElo(2To+l)-Ei-i To(2To + l), 

E-,o(To+ l)-Eo-iE-i,, 

Eio(To+ l)-Eo-, Eli, 

E 2 - I o + 2 E - I - 1 E - I I ,  020 2 E l  1 = E l o + 2 E I _  1 . (A.1) 

TABLE 8 

Commuta tors  [X, Y] o f  some lowering and raising operators  acting in the subspace of  states with 
M T = T 

X •  E- . I  E12 O-2,-1 O+2,_2 0-2,0 02,0 

E_ll  0 0 0-2,  o(2To + I ) P 0 - - E n ( 2 H 2 - - 2 T o - -  1) 

E21 0 Q O2o(2To+ 1) E _ 2 2 ( 2 H 2 + 2 T o + I )  0 

0-2,  -1 0 0 0 --0+2, _l(2Hx + 2 T o +  1) 

0+2, -1 0 O-1. - l (2H2--2To--  1) 0 

0_2,0 0 R 

02, o 0 

where 

p = - - 2 Y . T + ½ C s ( 2 T o + I ) - - ½ ( H 1 2 + 3 T o 2 + 3 T o ) ( 2 T o + l ) + H l ( 2 T o 2 + 2 T o - + - ~ ) ,  

Q = + 2 ~ ' -  T + ½ C s ( 2 T o + l ) - - ½ ( H 1 2 + 3 T o 2 + 3 T o ) ( 2 T o + l ) - - H I ( 2 T o 2 + 2 T o + ~ ) ,  

R = + 4 ~ " .  T - - 2 H 1 C s + 2 H I ( H l Z + T o 2 ) + H I ( 2 T o - - 3 ) ,  

with Ca = o91(o)t+3)+092(w2+1) 

and where the components  o f  the isovector 3 r are given by eq. (5) 

l 
J-~ --  %/2 J-+ = + ( E l o E _ a t - - E  loE1~), 

1 
.7_1 - -  M'2 .5/~_ = + ( E l o E _ ~ _ I - - E _ l o E I _ I )  , 

~"~o = (EllE_I 1 E,_ IE-11 - -To ) .  
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Note  in particular that  Ozo = O_+2o and that  0 2 0  is the operator  which creates an 
c~-like four  particle cluster with T = 0 built f rom two J = 0-coupled pairs (02 o = 

+ + 
--~/3~MT < 1Myl--MrlOO>A(MT)A(-MT)). Some useful commuta tors  involving 
the lowering and raising operators are listed in table 8. 

In  the representations with small values o f  t, (t = 0, ½, 1), it is most  convenient to 

generate the full set o f  states through lowering and raising operations acting on the 
maximal state ](021 t )H1TMy> = ](co t t)t02 1 o21), whereas for states with larger t, such 

as (tt), it is more convenient  to use the highest-weight state ](021t)HtTMT> = 
](colt)02 1 tt> as starting point. The explicit constructions for states with T-multi- 

plicity = 1 are listed below. 

A. 1.1. The representation ( 0 2 1 0 )  

] (02 t0)Ht  ---- c¢- f l ,  T = M T = ( 0 2 t - @ - f l ) >  = J~T(0¢, f l ) O £ , ,  _ t  O ~ _ I , - I  

x I(to,0)0oJ~ 021>, (A.2a) 

where * 

fl) 

F22"+ 2a[(021-~-fl)!]z(2021 + 1 - 2u) !(202~ + l - 2fl)!(202t + 1 -  2 ~ -  2fl)~-] ~ 

L I 
! fi !(02, - !(021 - D ![ (202,  + 1 ) ! ]  3 J 

= N(fi, e). (A.2b) 

A.1.2. The representation (02i 3)- 

(i) Type e states ( c o l + } - H 1 - T  = even integer) 

l(021½)eH, = ~-- f l+½,  T = M r  = ( 0 2 , - a - f l ) >  

= N (~ ,  f l )O  ~ - I, - I  O~_ I, - 11(021 ½)½021021>, (a .3a )  
where * 

fl) 
2~t+2fl--  2 1 1 l -] [ 2  (02, + ~ -  0¢-- f l) !(02, - ~ -  c¢- f l ) .  ] i x(202,+I-2 ),(202, + 3-2fl)!(2021+ l -  2~-2f l ) !  

= ( - 1 )  =+a | . . . .  
B 

L M fl!(02, +½--~)!(col  + ~ - - f l ) ! ( 2 0 t  +2)!(202t + 1)!(201)! 
(A.3b) 

(ii) Type o states (021 + ½ -  H i  - T = odd integer) 

1(o2, ½)oH 1 = a - - f i - ½ ,  T = M T = ( 0 2 , - a - f l ) >  

=JV'(c¢, fl)O~_,, _,  O~_, , - , I (02,½)-½021021>,  (A.4a) 

where JU(a,  fl) = N(fl, ~), (A.4b) 

[see eq. (A.3b) for N(fl, a)]. 

* The phases of the normalization factors are somewhat arbitrary. They have been chosen here to 
be consistent with ref. 10. 



FIVE-DIMENSIONAL QUASI-SPIN 55 

A.1.3. The representation (o~ x 1). The ~ = 0 states only (states with o h - H 1 - T  

= even integer) 

1(0)1 1)K = 0, H 1 ---- ~ - - f l ,  T = Mr = ( ~ o t - c ~ - f i ) )  

= N(o~, fl)Ofl__ 1, - 1 0 ~  1, -11((2)1 1)K = 0, 0 ~ i  cox) ,  

where 

(A.5a) 

N(a, fl) = N(fl, ~) 

- ~ 1 2  :~+ ~ ( ~ 1  + 1 - ~ -  ~ ) ! ( ~ l  - 1 - ~ -  ~ ) ! ( 2 ~ 1  + 1 - 2 ~ ) !  7 + 

(2(Ol + 1 -2f l ) ! (2co,  + 1 - 2 ~ -  2 f i ) ! [  

= (-- 1)~+P ( ~  + 1)c~ ! ~  ~ 0 ) 1 _  fi) !E(2coi + 1) !] ~ _l 
(A.5b) 

A.  1.4. The representation (tt). 

( i )  States with (H 1 - T )  = even integer. 

](tt)H 1 = t - x - Z y ,  T = M r  = t - x )  = N(x,  y)OV_2oOX_l,_li(tt)ttt}, (A.6a) 

where 

• [-2 2x + 2Y(2t + 1 - x)!(2t + 1 - 2x)!(2t-  2x - 2y)17 ~. 
N ( x , y ) =  k x (  ) (  ) L [ 2 t + l ) ! J  , _] (A.6b) 

(ii) States with (H a - T )  = odd integer. 

[(tt)H 1 = t -  1 - x -  2y, T = M r  = t -  x )  = JU(x,  y)O~ 20 Ox- 1, - 1  O-- 1, o[(tt)ttt), 
(A.Va) 

where 

JU(x, y) = 122x+zy+'(2t+ 1 - x ) ! ( 2 t +  1 - 2 x ) l ( 2 t - l - 2 x - 2 y ) ! l ~ "  (A.7b) 
x !(2y + 1)!(2t)l[(2t + 1)!32(t + 1) 2 

By operating on these states with the infinitesimal operators E,b, matrix elements of 
the infinitesimal operators can be calculated at once. 

A.2. C O N J U G A T I O N  PROPERTIES 

The group R(5) is self-adjoint. The irreducible representations and their conjugates 
are equivalent and the basis vectors of an irreducible representation and their conju- 
gates are simply related. To establish the phases of this relationship the conjugates of 
the above states are constructed by operating on them with the conjugation operator 
K. The conjugation operator K has the following properties (see table 1): 

K d l j  K -  1 = _ _ d i j ,  i, j = 1 . . . . .  5, 

KE.b K - 1  = - - E - . , - b ,  K H I  K - I  = - - H I ,  KTo K - 1  = - T o .  (A.8) 
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For states with T-multiplicity = 1 for which the quantum numbers H 1, T and M r  
are sufficient to completely specify the states, it follows from the last two equations 
of (A.8) that 

Kl(o91 t)H1 T M T )  = cl(o91 t ) -  H 1 T - M r ) .  (A.9) 

The phase factor c will be denoted by ( -  1) "+~+T-MT [eq. (37)]. The (TMT) depend- 
ent factor has been chosen to be in agreement with the usual angular momentum 
phase conventions. The following relations are particularly useful in the construction 
of the states (A.9) 

KO_2o K-a  = 0 2 0  , (A.10) 

(KO+t ,_ ,K-1) l (ool t )H1T,  T )  (KO+I -~ T2-r - -  = - 1  K ) - -  1(6o I t)H 1 T T )  
' ( 2 T ) !  

T 2 _ ( T - 1 )  

- -  O _ , ,  _ ,  i(o91 t)H l TT) ,  
[2(T- 1)]! 

(A.11) 

(KO_, ,  _~ K-1)i(o9 , t ) H  1 T,  - -  T )  - 
T 2 (  T - i ) 

O+I ,_ , [ (o l t )H ,  T T ) .  (A.12) 
[ 2 ( T -  1)]! 

With these relations the conjugates of the basis vectors for the simple irreducible 
representations with T-multiplicity -- 1 can be constructed. 

A.2.1. The representations (O)10) ,  (O}11) and the x = 0 states of  (091 1). In these 
three cases, the phase factor under conjugation follows from the relation 

Kl(o91 t)H 1 T T )  = K(N(~, fl)O a_ 1, --1 0 ~  1, --11(0-)1 t)H1 ¢o, O, ))  

TZ_(,ol -~-#) = ( -  1)n(°1,0 
[2(co 1 - ~ -  fl)] ! 

N(fl, ~)O~_ a, -10B+,, -ll(eol t ) - n l  o}1 co,) 

= + ( -- 1) "(c°t't)l(co , t) -- H D T, -- T ),  (A.13) 

where eqs. (A.1 1) and (A.12) have been used. (Note the interchange of e and ft.) The 
values of Hi  for the maximal-weight states have been denoted by H1, where H1 = 0 
for the representations (o10) and the ~: = 0 states of (091 1) and H 1 = ½ for the 
representation (~olk). The overall-phase factor in the three cases has been fixed 
through the conventions 

Kl(o,  0)0COa {L} 1 ) = (--1)r/(~l)l((-O 1 0)0(2}1, - - (1} l ) ,  

Kl(~ol½)½o, o l )  = ( -  lY('o"~)l((ol½)-½, o~1, - ~ , ) ,  

Kl(eo, 1)0a}, {ol) = ( -  1) "('~'' ')l({Ol 1)0{o~, - {o l ) .  (A.14) 



FIVE-DIMENSIONAL QUASI-SPIN 57 

(Note  that  the over-all choice of  phase is always arbi t rary to within an (o) x, Q-depend- 
ent factor.)  For  the representat ions (co10), (~o1½) and the • = 0 states of  (~ol 1), 
therefore,  the phase  factor  ( -  1) ~ of  eq. (37) has the value + 1, (v = 0), for  all states. 
Note  that  the conjugat ion opera t ion exchanges states of  type e and type o in the 
representat ion (a h ½). 

A.2.2. The representat ion (t t) .  The two cases t = integer and t = half  integer must  
be t reated separately. 

(a) t = integer; H ~ - T  = even integer. 

Through  the use of  eqs. (A.10) and (A.12) and the over-all phase convent ion 
K l ( t t ) t t t )  = ( -  1)"(t) l( t t)-  t, t, - t ) ,  the conjugat ion operat ion gives 

KJ(t t)H~ T T )  = K ( N ( x ,  y)OY_2o 0 5  1,--ll(tt)ttt)) 

T 2_ (t - ~) 2 t 

= ( - 1)nN(x' Y) [ 2 ( t -  x)]!  O% 1, - 1 0 ~ 0 0 t -  20 (~t),T I ( t t ) t t t ) .  (A.15) 

Through  the fur ther  use of  the commuta t ion  relations of  table 8 

K l ( t t ) H ,  T T )  = ( -  1)"N(x, y) T2( t -  ~) 2 t -  2y(2y) ! jOt)tit> 
[ 2 ( t - x ) ]  ! 0~_,, _,  OU2Yo ( 2 t - 2 y ) !  

= ( - - 1 ) " ( - - ] ) X N ( x ,  t - x - y )  
T2(t-~)  

[2 ( t - -x ) ]  ! 
t - y - x  ~ - l l ( t t ) t t t )  0 - 2 o  O_ 1, 

= ( - - l ) n ( O ( - - 1 ) t - T ] ( t t ) - - H l ,  T, -- T ) .  (A.16) 

(b) t = integer; H 1 - T  = odd integer. 

Using similar techniques 

K [ ( t t ) H ,  TT) = K ( W ( x ,  y)O~_2o OXl, -1 O_ 1, o [ ( t t ) t t t ) )  

= ( -  0 " ( -  0 x . C ( x ,  
T2_(t-x) 

[2( t - -  x)] ! 
o t - -  1 -- x -  y[ ')x --20 V - - l , - l O - l , o l ( t t )  ttt) 

= ( -  0"")( - 1 ) ' - T I 0 t ) - / - / , ,  T, - Y) .  (A.17) 

(c) t = ½ integer. 

For  H 1 - T  = even integer, using eqs. (A.10) and (A.12) 

K[( t t )H  1 T T )  = K ( N ( x ,  y)OX_i, - 10Y-2o i ( t t ) t t t ) )  

T2(t -x)  2 t 
x f'JY F ' l t -½  t ' l  

= ( -- 1)"N(x, y) [_2(t- x)] ! O + 1, - ,  '-'2 o ,1 _ 20 '-"- ,, o (2t)!(t + 1) I ( t t ) t t t ) .  

(A.18) 
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Through  the further use of  the commuta t ion  relations of  table 8 

K l ( t t )H  1 T T ' )  
T2(t-x)  

= ( - l ) ' ( - 1 ) x J U ( x ,  t - ½ - x - y )  0 x - ' -  - -~, -a OU Zo y x O - l , o l ( t t ) t t t )  
[ 2 ( t -  x)] ! 

= ( -  1)"( ')(-  1 ) ' -T l (n ) - -Ha ,  7", -- T ) .  (A. 19) 

For  (H  a - T)  = odd integer, an identical result is obtained. For  all values of  t, there- 
fore, the conjugation properties of  the states of  the irreducible representation (t t)  are 
given by 

K[( t t )H 1 T T )  = ( -  1)"(°( - 1) t -T] ( t t ) - -Ha ,  T, - T ) ,  

so that  the phase factor ( -  1)~ of  eq. (37) has the value ( -  1)*- T 

Appendix B 

T A B L E S  O F  R ( 5 )  W I G N E R  A N D  R A C A H  C O E F F I C I E N T S  

The R(5) Wigner coefficients are tabulated for the couplings (o '  1 t ' ) ×  (o '  1' t " )  
(colt) with ( o ' ( t " )  = (½1): tables 9, (co'( t")  = (10): tables 10, ( o ' ( t " )  = ( l l )  
tables 11 ; (0 '  1' t " )  = (20) and (22), Wigner coefficients diagonal in H 1 T, tables 12-15. 
The representations (co I t ' )  and (co 1 t) are restricted to the special cases (c0~ 0), (co 1½), 
(t t)  and the fl -- 0 states of  (co 11). 
The following notat ion is used: 

• 1 1 ~o 1 = j + ~ - ~ v  = ~ 2 - ½ v ,  

HI 1 " 1 : ½ g l - - ~ - ~ .  -=  ~ t ' l - - J - - ~  

The states of  the representations (co~ 1) are completely specified by Ha and T. How- 
ever, the R(5) Wigner coefficients involving the representation (con ½) do depend on 
the four th  quantum numbers fl, where 

fl = e for C O l + ½ - H 1 - T  = even integer, or ½ ( n + v - 1 ) + T  = even, 

fl = o for c o l + ½ - H 1 - T  = odd integer, or ½ ( n + v - 1 ) + T  = odd. 



TABLE 9a 

The R(5) Wigner coefficients 

<(oh0)H'  1T'; ;(1½)H'a T"II(~I t)/3/41 T> 

H'IT'; H"IT'" /3 (o')iI) = ((01271, ½) fl ((~11) = (O)1--½' t) 

Ha--½ T--b; 1 t  e [-~°l+2+H'+r'] ~ 
• L ~ 3  J 

H1+1 T~L½; i l  e _ pOl+l--H1--T Iq 
~.z L 20)1 -F 3 ...1 

701-{-1 + H1-- T 1 ½ 
H1-- I  T+½; ½1 o -- L 2-oJ~3~3 -J 

Fob -F 1 - -Ha --  r] 
o -- L 2o~--3 J 

p,+2+/41+r 1 
O -- L 2~ol +~3 J 

[ , , , i + 2 - - H l + T 1  ~ 
e L ~ J 

F(])I--tL" 2 Hi+T1 ½ [0)i ~ 1 + H1-- T]  ~ 
HI+~- T- - I ;  aa 0 2e91+3 --~.z L 2o91+3 J e 

TABLE 9b 

( (oh t)/3' H'l T'; (11)H", T"[I(~lO)H1T> 

H ' i T ' ;  H " I T "  f l '  (~10) = (~o,+½, O) fl" (~,0) = ((,91--!, 0) 

F(r+~20,)i ~ ,  + - I  - v ! l  Hl--I  , 1 . 1 1  T--~, e o 
~ L (2T+ 1)(2co1+ 1 ) J 

H1--½ T-- I ;  ~-'Tia 0 

i i HI~z T+I; --~aa o 

I T(col + ~ + Hi + T) 1 ~- 
(2T+ 1)(2e~1-- 1 ) J 

-- L (2 T +  ~ 1 ) -  

[T(coa + ?2--Ha + T) 3 
HI-L1 T--½; --~,z'' e -- ~ l ) ( 2 o h  ~ 1 )  o 

I (T-F 1 )(o)1 + 5 _ H i  + T) 1 i 
(2 T~)-(2col + 5) j 

F.T(o), + ~-- HI ~T)]  
e L (2T+l)(26oa+5) i 

FT+ ~)p, ~ +-,+ T! 1 
e L (2T+ 1)(2o)1+5 ) 

[r(,~,l+:~ + n , -  r)7 
~ + 5 )  J 

The coefficients of tables 9a and b have previously been calculated by Ginocchio 12). They are tabu- 
lated here since Ginocchio's coefficients differ from the present ones in relative phase. 

TABLE 9c 

< (co'l 1)/3'/4'1T'; (tI)/4"1T"II (~ol 1)/3 = 0, H1 r> 

H't T'; H"IT" fl' (co'1½) = (col--½, ½) 13' (o9"1½) = (oh+½, ½) 

H1 ½ T--½; ½ ½ 

Hi--½ T+½; ½ ½ 

H1-F½ T--½; --½ ½ 

Hi-r-½ T+½; --~ ½ 

F (T+  1)(o)x + 1 +-HI+T)I i 
o t_ ~ ~ 1 ;  • e - 

-F r(~,+-i T~-]~ 
e L2(o~l+ 1)(2T+ 1)J o 

F ( T +  1)(o9i-- 1 - - / / 1 +  T) 1 
e C ~ ( ~ ~  J o 

F T(c~I--HI--T) l ~ 
o -- L 2 ~ ) J  e -- 

F(T+ 1)(o)1+2 H1--T)l l  
L ~ ( 2  T +  1 ) J 

I T(co~-L 3--Ht-}-T) 1 
~ + l T . J  

[-(T+ 1)(o~, + 2 +/4 , - r ) - ]  
L ~ 2 T ~ l )  J 

[ T(oo1+ 3-}- Hl + T)l -~ 
~ + 5 J  



TABLE 9d 

( ({Q1 1 )fit = 0 H i1T ' ;  (½½)H"x r ' l l (o, l  ½)13H1T ) 

f l '=OH'IT ' ;H"IT ' "  t3 (76~½) = Q~I--½,½) t 3 (~t½) = (o91+½,½) 

F(2T- l)(,o1+ 1 --H1 -- T) (co1+ 2)~ 4 
0 H 1 - - ½ r - ½ ; ~ ½ o  L ~ 2 ~ ( ~ 3 )  Z 

F(2T÷ 3) (oh + Z--Hl + T)(m1+ 2) 7 -~ 
0 Hi--½ T-F½; ½ ½ e k 3 ( 2 ~ e ) 1 + ~  -J 

F(2T--1)(co1--1-F H1-- T)(o~I + 2)]-k 
0 Ht+½T--½; - -½ ½ e L 3 ( 2 r ~ ' A ) ( m ~  - 

F(2T + 3)(~l + 2 + Hl + T)(% + 2)'] ~: 
0 Hi+½ T-L½; --½ ½0 L 3(2T---L--1-)(~H-3)(2091+3) J 

[-(2T-- 1)(¢Ol-F2+H1-FT)(c% -L 1) 1 
e L - 3 ~  1 ) ~  -J 

F(2 T+_3) @91 _L 1 -F H1 - -  T)(¢o] _L l )] ½ 
O l 3(2T+ l)ml(2e)t +3  ) 

F (2 T-- l )(~ol + 2--Hl + T)(~ol + l ) 1 ½ 

F(2 T+ 3)(~ol + l --nl--T)(O)l+ 1)] ½ 
e -- L ~ ) ~ o 1 ( 2 ~  J 

TABLE 9e 
( (tt)H'l T' ; (½½)H'I T"II (tt)H1 T)  

H'x T'; H"x T"  (it) = (t--½, t--½) ([t) = (t , ~, td-~) 

H1 ½ T--½; ½ ½ 

H1--½ T+½; ½ ½ 

Hi+½ T--½; --½ ½ 

H i + ½  T+½; --½ ½ 

F(t-- T+½)(HI + T)q ½ 
- - L - ~ J  

[ ( t + r + ~ ) ( v - - H l + l ) ]  
j 

(t-- T+½)(T--H1) ½ 

F(t+ T+~)(T+ H1 + 1)] ½ 

I (t+ T+]) (T+ H1) 1 ½ 
" ~ j  

[ ( t - r + ½ ) ( r - & + l ) ]  ½ 
-- L ( 2 t + l ) ( 2 T + l )  _l 

I ( t+T+~)(T--HO 1 

½ 

J 

The coefficients in table 9e have previously been calculated by Ginocchio 13). The present ones agree in 
both phase and magnitude with those of ref. is). 

TABLE lOa 

< (to10)H' 1T'; (10)H"I T"[ I(~i 0)H1 T> 

n ' l  T'; H" I  T"  (~10) : (6o1+1, 0) (~10) : (~o1--1, 0) 

H~-- I T; 1 0 I (ml+ 1 + H1-- T)(Wl + 2-- Hx-F T) 1 ½ 

[! ~O1-~ 1 -- Ha-- T)(ml l- 2-- HI + T) 7 ½ 
/ /1+1 T; --1 0 ~ -.j 

//1 T- - l ;  0 1 

H1 T + I ;  0 1 

I T(to1@ 2 + H1+ T)(oo1@ 2-- H1+ T) 1 ½ 
J 

V(T-[ 1)(ml÷ 1 + H 1 - - T ) ( o h +  1 --H1--T) 1 ½ 
-- L ( 2 ~  ~ q -  3) J 

I (~Ol + I-- H1-- T)(tol + 2-- HI + T)]  ½ 

[ (c91 + 1 +H1--T)(tOld--2-~-Hld-T)l k 
2(m~1+ 2 ) ~ 7  3)- J 

I T(to1 + 1 + HI -- T)(¢Ol + 1 --//1 -- T) 1 ½ 
J 

E (T+I)(tOl+2+-HI+T)(tOl+2--HI+T)] ½ 

These coefficients agree with those given in table 8, ref. 11); provided the coefficients in row 2 and column 2 of 
table 8, ref. 11) are multiplied by an overall phase factor of -- 1. 
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TABLE lob 

<(o,&)P’H’1 T’; (IO)H”,T”11(G,$)/9H, T> 

eH,-IT, 1 Oe 
(o,+~--H,-T)(cr,,+~~~,f~) + 

2(~~,+1)(2~+5) 1 ((0 ,;B+H,-T)(o,+~lH,ST) + 
e 

2(tu,-t2)(2co,+l) 1 
e HI T+l; 0 1 e 

o HI T; 
o 1 e_ (0,+B+H,-T)(w,+~-H,+T) + --I (t0,+8+H,+T)(~,+g-HI-TT) f 

4T(T+l)(w,+l)(2~,+5) 
e 

4T(T+1)(~),+2)(2w,+l) 1 
e HI T-l; 0 1 e- 

(2T-l)b,+*+H,-T)Co,+3--H,-T) 1 [ t e (2T-1)(0J,+$+H,+T)(o,+$-H,+T) + 

4T(o~,+l)(2o~,+5) 4T(~,+2)(2~,+1) 1 
(w+~+H~-T)(w,+~+H~+T) 

e HI+1 T, -1 0 1 3 (~,++H,+T)(w,+*-HI-TT) t 

e 2(~+1)(2w,t5) 
e 

2(WI f2)(2w,+l) 1 
Coefficients with B = o can be obtained from the above through the symmetry relation: 

<(~uI:)~H’~T’;(IO)H”~T”~~(~~:)OH~T) = (-) ~~+~-~~<(oI~)~-H’,T’;(lO)-H”,T”~[(~~,~)e-H,T~. 

TABLE lob (continued) 

<(w, :)B’H’, T’;(lO)H”, T”Ij(G$)BH, T) 

B’ H’, T’; H”,T” 

o Hz-l T; I 0 

o HI T+l; 0 1 

e HIT ; 01 

o HI T-l; 0 1 

o HI+1 T; -1 0 

B G&6) = (%&I 

(~,+~+H,+T)(~,+%-H,+T) * 

e - 6(w1+1)(~,+2) 1 
e 3 [ (~T-I~)(~I+&-H~-T)(w,+~-H~+T) + 

3(T+l)(~,+1)(~,+2) 1 

{fC+W+l)(~,+%)) e 
2[3T(T+l)(~,+l)(o,+2)1+ 

(2T-l)(~,+~+H,+T)(w,S~+H,-T) f 
e 

d 3T(co,+l)(co,+2) 1 
(cu~+%+H,-T)(U),+:-H,-T) t 

e 
6(%+1)(0,+2) 1 

Coefficients with /3 = o can be obtained from the above through symmetry relation: 

<(q$);H’lT’; (lO)H”,T”/((i&3)oH,T) 

= (-l)~1fl-~~((~13)~-H’1T’;(lO)-H”1T”[j(W1~)e-H~T,,. 
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TABLE 10d 
((tt)n'a T'; (10)n"~ T"[l(tt)H1 T) 

63 

H'I T" ; H"I  T" (~E) = (tt) 

H t - - I T  ; 1 0  

//1 T + l ;  0 1 

H1 T ; 0 1  

//1 T - - l ;  0 1 

F(T+HI)(T--H~ + 1)3 ~ 

F(t--T)(t+ T--2)(T+Ht ÷I ) (T - -Ht  +I)'] ½ 
- L  ~ ~  • 

H~(t+l )  
[t(t+2) T(T+l)]k  

I (t-- T+ I )(t4- T+ I )(T-r HI)(T-- H1) 1 
~ r ~  J 

F(T-- Ha) ( T-}-H1 q-l) 1½ 
/ /1+1 T ; - - 1 0  L 2t( t+2) A 
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TABLE l l a  (continued) 

{ (cox ½)/3' H ' i  T';  (11 )H"a T"[I (~1½)3H1 r)fl 

65 

fl' H ' i  T '  ; H " a T "  fl ( ~ ½ )  : (co 1½);p : 2  

e H~ 1 T + I ;  1 1 

o H l - - l T  ; l l  

e H i - - I  T - - l ;  1 1 

o //1 T + I ;  0 1 

e Hi  T ; 0 1  

o H1 T - - l ;  0 1 e 

e H ~  T ; 0 0  e 

e H ~ + I  T + I ;  - - 1  1 

o / / 1 + 1  T ; - - 1  1 

e / /1+1  T - - l ;  --1 1 

F ( ~ + l ) ( 2 T + 3 ) ( t o ~ + ~ - - H ~ +  T)(tOl--½+Hx--T) ] ~z 
e (2 ~ t  + 9) L3 - ~ ~ ) d  

{ T(4og~t +12eol + 3) +(2~l-- 3)(~l + 2)}[(oh +~--Hx + T)(~ot +~+ H~ + T)]~ 
e 

[3 • 8T(T+l)(ogi+l)(col+2)(2ogi--1)(2~1+7)(cozl+3~x+~)]~ 

F(ogl +2) (2  T--  1 )(~o~ + ~ --H~ -- T) (ogx + ~ + H i +  T)q 
e (2o~i-- 3) . . . . . . .  ~ ~ 1  ~_J L 3.8T(o~l+l)(2wl--l)(2~o~+7)(o9 1+3~o~+~:) 

F(2T+3)(~l+~--Hl+T)(~ol+½ H1--T)(~ozl+3~ox+~)]J: 
e - -  t_ 3 ( T + l ) ( ~ + l ) ( ~ - - ~ ~ t n  t + 7 )  " 

{ (o9"1 + 3 o9~ + ~ )  [(2~o~ + 3) +2H1(2 T +  1)]--5(2co1+3)T ( T +  1)} 
e 

2[3 T( T +  1)(~o~ + 1 ) ( ~  +2)(2~ol -- 1)(2mr +7)(~oz~ +3  ~o~ +¼)]J- 

[ L -(2 3 - ~ ~ ~ ( ~ ,  + 7) 
T--I)(~o,+.~+HI--T)(~o~+~+H,+T)(oJ? + 3 cox + ~ ) ]  $ 

{2(c@1+3 o.~1 +~)(2  T +  1 ) - -  5H~(2oJ, +3)}  

2 [3(col+ 1)(to1+2)(2 COl -- 1)(2o91+7)(o9z1+3 ~Ox+¼)]$ 

F (~Ol+2)(2T+3)(~ox+½--H1--T)(O~l+~+Hi+T) 7 
e - - (2coi - -3)L3 - ~ )  + ~ ~ ) J  

{ (2mI-- 3)(o91+ 2)--(T+ I )(4ma1+12~ol + 3)}[(oh. +½-- H1-- T)(~oI +~ + H~-- T)]~ 
e 

[3 • 8T(T+l)(o&+l)(~ol+2)(2~o~--l)(2col+7)(og~1+3~oa+])]½ 

F(~ot + l)(2 T--1)(~l +½--Hl + T)(~Ol+~+ Ht--T)] 
e --  (2co1+9) L 3 • 8 T ~ l ~ ~ ~ )  A 

Coefficients with fl = o can be obtained f rom the above by the symmetry relation: 

((o91½)° H ' I  T ' ; (I  1)H"IT"II(~1½)oH1T>p 

= ( - - ) O l - ~ i + v "  {(oh½)~ --H'iT'; (11 ) - -H"~T ' [ I (w i½)e - -H~T> a 

with v" = 1 for H " l  T"  = 00 and v" = 0 for all o ther  values o f  H ' I  T ' .  
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TABLE l l b  

((¢D10)H' 1T';  (1 I )H"~ T ' [ [ ( ~ t  1)fl = OH, T> 

H ' i  T '  ; H " I  T "  (~ l  1) = (o-h--l ,  1) (~ l  1) = ( u h + l ,  1) 

H~--IT ; 1 1 

//1 T + I ;  0 1 

Hi  T - - l ;  0 1 

(¢M ~-2 - - H  1 ~- T)(o91 + 1 --H~ -- T ) ]  ~r 

~ 7 4 ~  -J 

I T(oh  + 2 - - H i  + T) (~01 + 2  +H1  + T ) ]  
J 

( T +  1)(col + 1 --H1--T)(w~+ 1 + / / 1  - - T ) ]  
] 

I _(a),-+-1 + HI-- T)(oo,+ 2 + HI + T)] 

]-T(o21+ 1 - -H1--  T)(o~i-F- 1 + H ~ - -  T ) ]  ~r 
-L- ~ 2 ~  J 

_ [ ( T + l ) ( m x + 2  H~+T)(Wl+2+H~+T)]* 
~ + ~ ~  • 

/ / 1 + 1  T ; --1 1 [(c°x+2+HI+T)(~,_I+H1--T)] ~ ~  - LF(¢oI+I--H1--T)(~°i+2--Ht+T)]½~ A 

H ' l  T '  ; H " I  T "  ( o i l )  = (~oll) 

H i - - 1  T + I ;  1 1 

/ - /1-1  T - - l ;  1 1 

F T(o~a+ Hi-- T)(oJt + 3--HI + T)] 

[(r+1)(~,+! +H~+ T)(~,+2--H~-- r)] ½ 
- 2 ~ Y ÷ ~  J 

-- Hi 
//1 T ; 0 1  

[(~ol-k 1)(co i + 2)]½ 

//1 T ; O 0  

/ / 1 + 1  T + I ;  --1 1 

H ~ + I  T - - l ;  --1 1 

F T ( T + I )  -]~ 

- L ( ~ f ~ ) ~ T + 2 i ]  

I T( ~o~-- H~-- T)(o~ + 3 + H~ + T)] 
J 



FIVE-DIMENSIONAL QUASI-SPIN 

TAnLE 1 IC 
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0 Ha T - - l ;  

0 / / 1+1  T --1 1 _ r q / _ ( ( o a + l + H a - - T ) ( m a + 2 ÷ H a + T ) / ~  
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1 1 --E(c°I+I--Ha--T)(c°a+2--Ha+T)] F(°oa+2+Ha+T)(~I+I+Ha--T)] ~ 
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F(,o,+2-ua+r)(~a+1-Ha-r)] 

fl" H'x T '  ; H " t  T"  (~a0) = (Oa O) 

0 H~--I  T ÷ I ;  1 1 

0 H~--I  T - - l ;  1 1 

r(T+2)(og,+3--Ha+T) (~oa + H , - -  T ) I  ~r 

L- 6 2 ~ ~ + ~  J 

I ( T-- 1 )(oh +2--H1-- T)(oga+ 1 + H i +  T) 1 
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~L ~ ( ~  _~ 

{ 3 T( T +  1 ) -- ((.ol + 1)(~o1 + 2)} 
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0 0  3Ht 
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0 / /1+1  T - - l ;  --1 1 
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0Hi--1T ; 11 - - ~  L T ~ T + l ~ ~ 1 ~ 3 ) ( ~ l + 3 )  2 
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0 I711T:~1 ; O1 0 0 
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TABLE 12 

((~ot 0)Hz T;(20)OT"[I(~xO)H1 T> 

H"z T" Coefficient 

0 0 

0 2 

{ogx(coI + 3) + 5Ha2-- 5T(T+ I )} 
3 [~ol(cot 4- 3) (209t + 1) (2o91-F 5)]{ 

F 5T(T+l)(2T--1)(2T+3) q 12Ht2--2T(T+l)--(2~o~a+6~ol÷3)t 
-- L ~ ~ ~ ) J  t ~ 2 ~ 3 ~  ! 

( (~  O)H1 T; (22)0 T"[I (~010)Ht T > 

H" I  T" Coefficient 

0 0 

0 1 

0 2 

{4H12+2T(Tq-1) --o.q (~o1-~ 3) ) 
3 [o91(~ot-- 1)(~ot + 3)(~ol-k-4) ]{ 

F 6T(T+I )  q{- 

E 2T(T+I)(2T--I)(2T+3)I-~ tHI~q-5T(T+I) --(~o21 +3oJt-F6) t 
~ i ~ J  ~ 3(~T---- 1)(2 T=-3) } 
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TABLE 15 

( (tt)H1 T; (20)0 T"[[ (tt)H~ T 

H " I  T'" Coefficient 

0 0 

0 2 

{ 5T(Tq-1)-- 5Hx ~ - - 2 t ( t + 2 ) }  

[6t(t+2)(2t--l)(2t+5)]~ 

x / ~ {  HI~[T(T+ I )-- 3(t-t-1) ~] + T(T-F-1)[(t+ I )~-- T ( T +  I ) +½]} 

[3t(t + 2 )(2t--1)(2t + 5)T( T + l )(2T--1)(2T + 3 ) ]$ 

( (tt)Hx T; (22)OT"ll(tt)H ~ T )  

H " I  T "  Coefficient 

0 0 

0 1 

{ 2Hx ~ -}- T ( T +  1) -- t(t 4-2)} 

[3t(t+2)(2t-- 1 ) (2t-+- 5)15 

HI{3T(T+I ) - - ( t+ I )  2} 

[2T(T- r  1)t(t+2)(2t-- 1)(2tq-5)]½ 

{ HI~[T(T+ I ) -- 3(t + I )2]+ T ( T +  I )[(t q-1)2 + 5T( T+ I )--4]} 
0 2 

[ 6 T ( T +  1)(2 T--  1 ) ( 2 T +  3)t(t+2)(2t-- 1 ) ( 2 t +  5)]~ 
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