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Inhibition studies on the concanavalin A-dextran interaction have been extended
using as inhibitors the members of the maltose-, isomaltose-, and methyl a-isomal-
toside series, amino and N-acetyl amino sugars, and a number of oligosaccharides
containing more than one linkage type. The interaction of the plant protein at the
terminal chain ends of the a-linked glucans and mannans has been essentially con-
firmed, and the different characteristic inhibition activities of the linkage types is
discussed in terms of steric effects. A possible application of the inhibition technique
towards structural analysis of carbohydrate molecules is suggested by the authors.

A previous paper in this series (1) elabo-
rated in some detail the configurational
features of low molecular weight oligo-
saccharides which are essential for binding
to the reactive sites of the concanavalin A
protein molecule. On the basis of inhibition
studies it was suggested that the specificity
of the protein is directed primarily toward
the C-3, C-4, and C-6 hydroxyl groups of the
p-mannopyranosyl and D-glucopyranosyl
ring forms which possess the a-configuration
at C-1.

In attempting to account, on a molecular
level, for the capacity of concanavalin A to
interact to form a precipitate with a re-
stricted group of branched polysaccharides
[glycogens, dextrans, amylopectin, yeast
mannans, and more recently, bacterial levans
(2)], it was suggested that the protein com-

1 Present adress: Department of Biochemistry,
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2 This work was done during the tenure of an
Established Investigatorship of the American
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of Michigan.
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bines with the terminal nonreducing units of
the polysaecharide chains. In this communi-
cation further confirmation of this hypothesis
is provided by a more detailed examination
of the inhibition of the dextran-concanavalin
A interaction, using the members of several
homologous series, a number of oligosaccha-
rides containing more than one type of link-
age, and some amino sugars as inhibitors.

EXPERIMENTAL PROCEDURE

The preparation of concanavalin A and the
assay procedure used for inhibition studies have
already been described (1). Dextran NRRL
B-1355-8 was employed as the precipitating poly-
saccharide.

Many of the saccharides used in this study were
gifts (see acknowledgments). All were tested for
purity by paper chromatography. Impure prepara-
tions were purified by preparative chromatog-
raphy on Whatman 3MM or 8 and S Green Label
filter paper.

Sugar solutions of known conecentration were
prepared by weighing in the case of crystalline
compounds, the crystals having been previously
dried to constant weight. Noncrystalline sub-
stances were determined by the phenol-sulfuric
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acld procedure (3). The hetero-oligosaccharides
were also determined by thiz method using syn-
thetic standards containing a suitable ratio of the
component sugars.

Preparation of nigerosyl erythritol. To an aque-
ous solution of isolichenin (0.513 gm 25 ml)
was added a solution of sodium metaperiodate
{0.23 M, 10 ml) and the volume adjusted to 50 ml.
The oxidation was allowed to proceed at 25° in the
dark. After 3 days 0.35 mole of oxidant per glucosyl
residue had been consumed. Solid BaCOj; was
added to neutrality and the solids were centri-
fuged. The supernatant solution was poured into
10 m} of water containing sodinm borohydride (200
mg). After 24 hours at room temperature an addi-
tional portion of NaBH, (100 mg) was added. On
the following day the solution was made just acid
to litmus with acetic acid and poured with stirring
into 95% ethanol (400 ml). The precipitate was
centrifuged, washed several times with 959,
ethanol and successively with absolute ethanol,
diethyl ether, and light petroleum ether, and dried
in vacuo at 25°, Yield: 360 mg of white powder.

The periodate-oxidized and reduced isolichenin
(300 mg) was dissolved in 0.2 ~ sulfuric acid (50
ml) and placed in & water bath at 60° for 30 min-
utes. The solution was neuiralized (BaCOj),
filtered, and concentrated. Paper chromatogra-
phy, with ethyl acetate:pyridine:water (10:4:3,
v/v) as the development solvent and silver nitrate-
sodium hydroxide spray reagent, revealed that the
main components of the hydrolyzate were niger-
osyl erythritol (I) and gluecosyl erythritol, with
traces of glucose and erythritol. Nigerosyl erythri-
tol was isolated by preparative paper chromatog-
raphy as a syrup (99 mg) and had [«]} + 184° in
water (¢, 0.66), identical with an authentic speci-
men isolated by Goldstein and Whelan (4). A
recent communication (5) also reports the isola-
tion of nigerosy! erythritol from isolichenin.

A portion of T (52.8 mg) was oxidized in 0.023
M sodium periodate (10 ml) at 25° in the dark. After
48 hours, 3.3 M proportions of periodate had been
consumed with the production of 0.9 mole of formic
acid and 1.1 moles of formaldehyde (theoretical
ratio: 3:1:1). The reaction mixture was neutral-
ized (BaCQ;) and centrifuged, and the super-
natant solution was treated with NaBH, (20 mg).
The reduced material was deionized by passing
the solution successively through Amberlite IR
120 H and IR 45 A exchange resins. Borate was
removed by several evaporations in the presence
of methanol and the product was recovered as a
syrup (1I).

A portion of syrup IT was dissolved in 0.2 x
sulfuric acid and allowed to stand at 20° for 16
hours. The solution was neutralized (BaCOj),
filtered, and concentrated to yield a syrup which

was shown by paper chromatography to contain
glucosyl glycerol (11I) and glycerol. Glycerol was
characterized as the tri-p-nitrobenzoate deriva-
tive (m.p. and mixed m.p. 188-191°); the glucosyl
glycerol (2-O-a-np-glucopyranosyl-glycerol) had
le] ¥ 4 125° in water (¢, 1.3); Charlson ef al. (6)
report [a] 4+ 121° in water,

RESULTS

As in the former study (1), we have arbi-
trarily classed as noninhibitors those sub-
stances of which 20 pmoles gave less than
10 % inhibition of the concanavalin A reae-
tion. Table I lists all the substances tested
in this study. Three homologous series have
been investigated: the maltodextrins (mal-
tose to maltodecaose inclusively), the iso-
maltodextrins (isomaltose, isomaltotriose,
-tetraose, and -heptaose), and the methyl
a-isomaltosides  (methyl isomaltoside to
methyl a-isomaltooctaoside inclusively).

Oun a molar basis, the members of the
maltodextrin series exhibited the same inhi-
bition activity and fell on a single inhibition
curve (Fig. la). Similarly, the inhibition
values for the isomaltodextrins, and the cor-
responding methy!l a-glycosides which were
tested, also can be fitted to a single curve
(Fig. 1b). The results of inhibition studies
on a number of oligosaccharides containing
more than one type of glycosidie linkage are
given in Iig. 2. Trisaccharide B (Panose),
tetrasaccharide C (7) (see I'ig. 3) and malto-
san (4-0-a¢-p-glucopyranosyl-1,6-anhydro-3-
p-glucopyranose) all exhibited an inhibition
activity equal to that of the isomaltose series
(1.1 umoles gave 50 % inhibition). The inhi-
bition activity observed for bhoth methvl
B-maltoside and trisaccharide E (Tsonanose)
(2.0 pmoles for 50 % inhibition) closely ap-
proached that of the maltose series. Tri-
saccharide I', which differs from E in that
the (1 — 6)-glucosidic linkage has the 8
rather than e-configuration, is an inhibitor
somewhat better than maltose, but trisac-
charide G, in which the (1 — 4) bond is alsa
in the g-configuration, is a noninhibitor.

The two branched trisaccharides? J (8) and
K also differ only in that I has a g8 (1 — 6)-
linkage; however, in this case, the presence

¢ Saccharides in which at least two sugar resi-
dues are glycosidically linked to a third sugar
residue.
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TABLE I
SuBsTANCEs TESTED FOR INHIBITION ACTIVITY
Inhibitors Noninhibitors

Methyl 8-p-mannopyranoside« 2-Amino-2-deoxy-b-glucose
Methyl 2-acetamido-2-deoxy-a-p-glucopyranoside  2-Amino-2-deoxy-p-mannose
Methyl 2-acetamido-2-deoxy-8-p-glucopyrano- Methyl 3-amino-3-deoxy-a-p-glucopyranoside

side? 6-Amino-6-deoxy-p-glucose
2-0-a-v-Glucopyranosyl-glycerol 6-0-Acetyl-n-glucose
Mannosyl-glycerol 6-Deoxy-6-fluoro-n-glucose
6-0-a-p-Mannopyranosyl-n-glucose 4-0-8-p-Mannopyranosyl-n-mannose
0-(2-Acetamido-2-deoxy-a-p-glucopyranosyl)- 4-0-3-p-Glucopyranosyl-p-mannose

(1 = 3 or 4)-p-galactitol 0-8-p-Glucopyranosyl-(1 — 4)-8-v-glucopyran-
0-(2-Acetamido-2-deoxy-a-p-glucopyranosyl)- osyl-(1 — 6)-p-glucose

(1 — 6)-2-acetamido-2-deoxy-D-glucose 0-(2-Acetamido-2-deoxy-8-p-glucopyranosyl)-
2-0-a-Nigerosyl-p-erythritol (1 — 4)-2-acetamido-2-deoxy-p-glucose
Methyl g-maltoside a-Schardinger dextrin
4-0-a-p-Glucopyranosyl-1,6-anhydro-3-p-gluco- B-Schardinger dextrin

pyranose Trehalosamine
Maltose to maltodecaose, inclusively Galactinol
Isomaltose N-Acetyl neuraminic acid
Isomaltotriose
Isomaltotetraose
Isomaltoheptaose

Methyl a-isomaltoside to methyl
a-Isomaltooctaoside, inclusively
Isopanose

Panose

Additional oligosaccharides in Fig. 3

« Relatively poor inhibitor.
¥ Very poor inhibitor.
100 —
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Fic. 1. (a) Inhibition of precipitation by the maltose series of oligosaccharides. O,
Maltose; @©, maltotriose; A, maltotetraose; A, maltopentaose; O, maltohexaose; W, malto-
heptaose; @, malto-octaose; A, maltononaose; M, maltodecaose. (b) Inhibition of pre-
cipitation reaction by the isomaltose series of oligosaccharides. M, Isomaltose; W, iso-
maltotriose; W, isomaltotetraose; O, isomaltoheptaose; (D, methyl-a-isomaltoside; S,
methyl a-isomaltotrioside; O, methyl a-isomaltotetraoside; O-, methyl a-isomaltopentao-
side; O, methyl a-isomaltohexaoside; Q, methyl-a-isomaltoheptaoside; O-, methyl a-iso-
malto-octaose.
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Fia. 2. Inhibition of precipitation by sac-
charides. M, Isomaltose (A); @, panose (B); @,
tetrasaccharide (C); O, maltose (D); +, isopanose
(E); <@, trisaccharide (F); ©, tetrasaccharide
(H); < trisaccharide (J); ¢~ trisaccharide (K);
P, tetrasaccharide (L); <>, pentasaccharide (M);
X, methyl g-maltoside; O, maltosan.

of the B-linkage resulted in K being a less
effective inhibitor (9.0 moles for 50 % inhibi-
tion) than trisaccharide J (2.3 umoles for
50% inhibition). The branched pentasac-
charide M (9) has a similar inhibiting activ-
ity to that of maltose.

The «- and 8-Schardinger dextrins showed
a eomplete lack of inhibition of the dextran-
concanavalin A interaction. These molecules
do not possess terminal nonreducing ends
because they consist of a-p-(1 — 4)-linked

{5 .

A

(isomaltose)  (panose)
B
o
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D E F G H
(maltose)  (isopanose}

O—g O—g g o—g—e gj—@
J K L M
o Schardinger Dextrin
{oll linkoges < -{(->4}

Fia. 3. Structure of some oligosaccharides
tested for inhibition activity. O, Nonreducing
glucose units; &, reducing glucose units; (—),
1— 4 linkages; |, 1 — 6 linkages; all a-linkages
except where indicated.

glucosidie units in the form of six- or seven-
membered rings, respectively.

The inhibition activity of nigerosyl eryth-
ritol (compound I, Fig. 4) is shown in Fig. 5
(5.0 umoles for 50 % inhibition). The product
of periodate oxidation followed by reduction,
compound II, failed to inhibit the dextran-
concanavalin A interaction, whereas glucosyl
glycerol (2-0 -« - D - glucopyranosyl - glye-
erol (IIT), formed from II by mild acid hy-
drolysis (I'ig. 4), exhibited an inhibition (1.2
wmoles for 50 % inhibition) comparable to
that of the isomaltose series. Two n-glucose
derivatives (6-O-acetyl-n-glucose and 6-de-
oxy-6-fluoro-p-glucose) were found, as ex-
pected, to be noninhibitors, further confirm-
ing the requirement for an unmodified
hydroxyl group at C-6.

Five amino sugars were tested (after
neutralizing their solutions to pH 7.0) for
their inhibition of the dextran-coneanavalin
A interaction. As expected, G-amino-6-deoxy-
p-glucose and methyl 3-amino-3-deoxy-a-n-

CH,OH . CH, OH
H H HOCH

H 00— (IZH
CH, OH




92 SMITH AND GOLDSTEIN

100
r V4
80 v
A
c
8 60 3
£ A <
c v :
: |/
340F
] v
) /
14
20+ /
0 \ | | | L 11 gt | [ A E W |
0l 02 03 05 1.0 20 30 50 10 20 30 50 100

Micromoles Saccharide added

Fia. 5. Inhibition of precipitation by saccharides. W, Methyl 2-acetamido-2-deoxy-a-
D- glucopyranoside; <, methyl 2-acetamido-2-deoxy-B-n-glucopyranoside; V, O-(2-aceta-

mido 2-deoxy-a-p-glucopyranosyl)-(1 — 6)-2-acetamido-2-deoxy-p-glucose;

D, nigerosyl

erythritol; <, 2-0-a-p-glucopyranosyl-glycerol; A, 6-0-a-p-mannopyranosyl-p-glucose; vy,

methyl B-p-mannopyranoside;

7, methyl a-p-glucopyranoside;

7, methyl B-p-gluco-

pyranoside; L, p-glucose; ©, 0-(2-acetamido-2-deoxy-a-p-glucopyranosyl)-(1 — 3 or 4)-

p-galactitol.

glucopyranoside failed to inhibit, but sur-
prisingly, 2 - amino - 2 - deoxy - » - glucose,
2-amino-2-deoxy-p-mannose, and trehalosa-
mine (@ - D - glucopyranosyl - 3 - amino - 3 -
deoxy-a-D-glucopyranoside) also failed to
inhibit the interaction.

On a molar basis, the inhibition activities
of the a- and B-methyl glycosides of 2-
acetamido-2-deoxy-p-glucose were approxi-
mately 50% of the corresponding parent
methyl «- and @B-p-glucopyranosides. The
disaccharide  O-(2-acetamido-2-deoxy-a-D-
glucopyranosyl) - (1 — 6) - 2 - acetamido - 2-
deoxy-p-glucose is somewhat less effective as
an inhibitor (1.9 wmoles for 50 % inhibition)
than isomaltose (1.1 ymoles for 50 % inhibi-
tion, whereas N ,N’-diacetylchitobiose is a
noninhibitor. A sample of O-(2-acetamido-2-
deoxy-a-D-glucopyranosyl) (1 — 3 or 4)-p-
galactitol showed an inhibition of 35% for
3.2 umoles, demonstrating the importance of
the a-glycosidic linkage.

Of the mannose-containing sugars tested,
it was again observed that the presence of the
B-configuration at C-1 of the nonreducing
sugar residue greatly reduced or completely
abolished inhibition activity. Thus, methyl
g-p-mannopyranoside, although more effec-

tive than the corresponding glucoside, is a
relatively poor inhibitor and corresponds
closely to the inhibition activity of glucose
(11 umoles for 50 % inhibition), whereas two
B-linked disaccharides, 4-O-8-p-mannopy-
ranosyl-p-mannose (mannobiose) and 4-0-3-
p-glucopyranosyl-p-mannose, can be classed
as noninhibitors. On the other hand the
a-linked disaccharide, 6-O-a-p-mannopy-
ranosyl-p-glucose, was one of the most
potent inhibitors tested (0.22 umole for 50 %
inhibition).

Galactinol and N-acetyl neuraminic acid
were both found to be noninhibitors.

DISCUSSION

From earlier inhibition (1) studies it was
anticipated that the p-glucose derivatives
modified at C-3 and C-6 (6-O-acetyl-p-
glucose, 6-deoxy-6-fluoro-n-glucose, methyl
3-amino-3-deoxy a-D-glucopyranoside, and
6-amino-6-deoxy-n-glucose) would not be in-
hibitory, but the finding that 2-amino-2-
deoxy-p-glucose and trehalosamine also were
inactive was unexpected inasmuch as
2 - acetamido - 2 - deoxy - p - glucose previ-
ously had been shown to be an inhibitor
equivalent in activity to p-glucose (1). The



STEREOCHEMICAL REQUIREMENTS OF CONCANAVALIN A 93

oceurrence of a positive charge on the free
amino group (pK 7.8) (10) at pH 7.0 may
aceount for the apparent failure of these
sugars to interact with the concanavalin A
protein. In this regard, 2-amino-2-deoxy-n-
mannose was also a noninhibitor. N-Acetyla-
tion precludes the possibility of such a
charge effect in the case of 2-amino-2-deoxy-
p-glueose, and it was noted that the anomerie
methyl glveosides of 2-acetamido-2-deoxy-
p-glucose inhibited dextran-concanavalin A
interaction, the a-anomer showing 50 % in-
hibition for 2.3 wmoles and the g-anomer
giving 50 % inhibition for 60 wmoles; these
values are approximately one half those
found for the parent methyl «- and g-gluco-
gides. Previously it had been shown that
2-acetamido-2-deoxy-D-mannose was a non-
inhibitor (1). These results indicate that
although modification at the C-2 position of
n-glucose is tolerated, a 50 % reduction in
inhibiting potenecy 1s noted when the hy-
droxyl group at C-2 of methyl - and g-glu-
copyvranoside is transformed into a 2-
acetamido-2-deoxy group.

Two disaccharides and a disaccharide alco-
hol, all containing 2-acetamido-2-deoxy-n-
ghicose residues in the nonreducing positions,
were examined. As expected, by virtue of its
B-glveosidic linkage, N,N’-diacetyl chito-
biose [0-(2-acetamido-2-deoxy-3-p-glucopy-
ranosyl) - (1 — 4) - 2 - acetamido - 2 - deoxy-
p-glucose] was a noninhibitor. On the other
hand, O-(2-acetamido-2-deoxy-e-p-glucopy-
ranosyl) - (1 — 6) - 2 - acetamido - 2 - deoxy-
p-glucose, which containg an «-glycosidie
bond, is a good inhibitor, being 60 % that of
isomaltose.  Similarly  O0-(2-acetamido-2-
deoxy-a-n-glucopyranosyl)-(1 — 3 or 4)-n-
galaetitol proved to inhibit dextran-con-
canavalin A interaction. These observations
suggest that glycoproteins which contain
nonreducing terminal 2-acetamido-2-deoxy-
a-p-ghicopyranosyl units may also interact
with concanavalin A.

The specific requirement for the a-con-
figuration at C-1 of the interacting sugar
residue is further confirmed by the observed
lack of inhibitionof thedextran-concanavalin
A reaction by mannobiose (4-O-8-p man-
nopyranosyl-b-mannose) and trisaccharide
G (Fig. 3), and by the rather low inhibi-

tion activity of methyl g-p-mannopyrano-
side. In contrast are the very high activities
of the a-linked compounds (IYig. 5), methyl
a-p-mannopyranoside (1) and the disaccha-
ride 6 - O - & - p - mannopyranosyl - o - glu-
cose. These data prompt the suggestion that
glveoproteins  containing  terminal  a-p-
mannopyranosyl units should interact with
concanavalin A,

The hypothesis that it is predominantly
the terminal nonreducing a-p-glycopyrano-
sv] residues of simple and complex a-glueans
and «-mannans with which concanavalin A
interacts (1, 11) received additional support
from the fact that higher members of the
three homologous series of saccharides tested
have the same inhibition activities for the
concanavalin - A interaction as the corre-
sponding disaccharide members, The identi-
cal inhibition values of panose and tetra-
saccharide C (Fig. 2) with that of the iso-
maltose and methyl «-isomaltose series
(1.1 gmoles for 50% inhibition) can be re-
lated to the observation that both of these
oligosaccharides possess an isomaltose unit
(6-0-a-p-glucopyranosyl-n-glucose) at their
nonreducing ends. Similarly,; the possession
of a maltose residue (4-O-a-p-glucopyrano-
svl-p-glucose) at the terminal end of methyl
g-maltoside and isopanose (trisaccharide E,
Fig. 3) confers on these oligosaccharides an
inhibition activity (2.0 ymoles for 50 % inhi-
bition) very close to that of the maltose
series (1.9 umoles for 50 % inhibition). Al-
though trisaccharide I (Iig. 3) and maltosan
also contain a maltose-like structure, they
exhibited inhibition activities (1.3 and 1.1
umoles, respectively, for 50% inhibition)
more characteristic of the isomaltose series.
No explanation can be offered for the high
inhibition of trisaccharide I', but 1t may be
significant that in maltosan the C-6 hydroxyl
group of the “reducing” glucosyl residue is
involved in anhydro ring formation. It has
been previously reported (1) that isomaltose,
in which the C-6 hydroxyl of the reducing
glucose residue is engaged in the glucosidice
linkage, has a higher inhibition activity than
any of the other a-linked glucose disaccha-
rides tested. On the basis of these observa-
tions and of the similarity of the isomaltose
inhibition activity to that of methyl a-n-
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glucoside, it was suggested that the different
apparent affinities of the disaccharides for
the concanavalin A receptor sites could be
explained by steric considerations, rather
than by any real specificity difference for the
linkage types. It is possible that the unex-
pectedly high inhibition activity observed
for maltosan may also be explained by steric
factors.

The branched trisaccharide J (Fig. 3), al-
though possessing two terminal nonreducing
a-D-glucopyranosyl residues, has an inhibit-
ing activity surprisingly rather less than that
of maltose. It seems probable that the
greater part of the inhibition is a function of
the constituent isomaltose unit, because in
trisaccharide K, in which the 1 — 6 bond is
in the g-configuration, the inhibition is less
by nearly four times. It is again possible to
rationalize this relatively low inhibition ac-
tivity of J in terms of a steric effect if one
regards this trisaccharide either as an iso-
maltose derivative with a large substituent
radical at C-4 of the reducing glucose unit,
or as a maltose molecule carrying a large
radical at C-6 of the reducing glucosyl resi-
due. In pentasaccharide M (Fig. 3) one of
the nonreducing ends may also be regarded
as a maltose residue substituted in the re-
ducing glucosyl moiety; the second non-
reducing end may be considered as an un-
substituted maltose residue. Only the latter
possibility would be expected to contribute
significantly to the inhibition activity of the
molecule as a whole, and this would seem to
be borne out by the similarity of the ob-
served inhibition (2.3 pmoles gave 50 % inhi-
bition) to that of maltose.

The failure of the a- and g-Schardinger
dextrins to inhibit is consistent with the
absence of any terminal glucose residues in
their ring-like molecules. Possibly the best
direct evidence for the interaction of con-
canavalin A with the saccharide chain-ends
is provided by the inhibition studies carried
out on nigerosyl erythritol and its oxidation
and acid hydrolysis products. Nigerosyl
erythritol (compound I, Fig. 3), having an
unsubstituted terminal a-p-glucosidic resi-
due, inhibited (50% for 5.0 wmoles) the
dextran-concanavalin A precipitation reac-
tion, whereas compound II, carrying a sub-

stituent residue at C-3 of the remaining
intact a-p-glucosidic residue, failed com-
pletely to inhibit. Removal of this C-3
substituent, by mild acid hydrolysis, again
presented an unsubstituted terminal a-n-
glucosidic residue for interaction with con-
canavalin A, with the results that the
product, 2-0-a-p-glucopyranosyl-glycerol
(compound IIT), exhibited a high inhibition
activity.

Although the possibility still exists that
the interaction of the protein may extend in
certain cases beyond the terminal chain end
of a carbohydrate molecule (indeed this is
indicated by the high inhibition activities
observed for  3-O-a-p-glucopyranosyl-n-
arabinose and for melezitose) (1), the data
presented in this and the previous paper pro-
vide a fairly consistent conception of the
stereochemical requirements of the interac-
tion between concanavalin A and the termi-
nal nonreducing chain-ends of the o-linked
glucose- and mannose-polysaccharides. At
this point, therefore, it was felt that these
data could be employed as a tool in the strue-
tural analysis of oligosaccharides, in which
certain structural features are left in doubt
by more orthodox methods. Two such studies
will be described briefly.

The first involved a mannosyl-glycerol,
obtained by alkaline hydrolysis from M.
lysodeikticus (12, 13). This compound was
found to inhibit the dextran-concanavalin A
precipitation reaction to the same extent as
methyl a-pD-mannopyranoside (cf. the equal
inhibition activities of 2-O-a-p-glucopyrano-
syl-p-glycerol and methyl «-p-glucopyrano-
side). The «-configuration was therefore
assigned to the mannosyl-glycerol linkage.
Subsequent investigations have supported
this assignment (13).

Second, two tetrasaccharides, which on
the basis of their mode of preparation from
panose (14) could be assigned either struc-
ture H or L (Fig. 3), were tested as inhibitors
in the dextran-concanavalin A system. One
of the tetrasaccharides inhibited the reaction
(1.6 umoles for 50 % inhibition; Fig. 2) close
to the value found for maltose and was there-
fore tentatively assigned structure H,
whereas the second tetrasaccharide was as-
signed structure L because it displayed an
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inhibition (3 wpmoles for 50% inhibition,
T'ig. 3) similar to the inhibition of trisaccha-
ride J.

It is suggested that, with the examination
of a greater number of model compounds,
this method may find a general application
in the structural analysis of saccharides con-
taining Dp-glucose, p-mannose, 2-acetamido-
2-deoxy-p-glucose, and certain of their
derivatives.
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