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Abstrad-An idealized model for dispersed phase mixing is used to find the relative rates of A+A, 
B+B and A+B reactions when the reaction A- -=--B is dominant, first order and reversible. A large 
possible effect of mixing on the A+A reaction is demonstrated, while the effect on B+B on A+B is 
never greater than a factor of two. 

The results are applicable to estimating the effect of mixing on second order by-product reactions 
which are imnortant when oresent to a small extent. In addition, this represents the first analytical 
solution to the mixing-reacion equation. 

THE DIRECTION and magnitude of the effect of 
dispersed phase mixing on the conversion in systems 
with reaction within the dispersed phase has now 
been calculated for zero and second order reactions 
(CURL [l]; SPIELMAN and LEVENSPIEL [2]), using an 
idealized mixing model. These and related works 
on segregation in chemical reactors are reviewed by 
RIETEMA [3]. 

The idealized mixing model assumes that all drops 
are the same size, that coalescence occurs at random, 
and that after coalescence the newly formed drop is 
completely mixed and breaks immediately into two 
drops of the same size. While admittedly unrealistic, 
this simple model is all we have until something is 
learned of the details of the coalescence and 
breaking processes in reactors. In the meantime 
the idealized model has probably provided semi- 
quantitative answers to several questions about the 
performance of dispersed phase reactors. 

The Monte Carlo calculation procedure of Spiel- 
man and Levenspiel is admirably suited for compu- 
tationally modelling more complex systems. There- 
fore there exists a relatively simple calculation 
procedure for obtaining numerical answers to as 
many more mixing-reaction Lystems as we can 
imagine. 

Nevertheless there still remain reasons for being 
interested in possible analytical solutions of the 
equations describing the system. These may not 
only clarify the interaction of the parameters in the 
mixing-reaction models but also provide a more 
direct or simpler calculation of numerical results. 

The general mixing-reaction equation (CURL [ 11) is : 

-$p,-p+z 2 mp(2c-a)p(cc)da-p 
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for the probability density distribution, p(c, t) of 
drop concentration. This has no known analytical 
solution. The difficulty associated with solving it is 
illustrated by converting it to the rth (integer) 
moments (m,) ofp, giving 
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(If r + n - 1 =0, m, must exclude the area under any 
singularity at the origin and need not equal 1.0.) 
For nf 1 there is no finite (closed) set of simul- 
taneous equations allowing the calculation of the 
individual m,. Either equations for always higher 
moments, or endless fractional moments, are 
required. HULBERT and KATZ [4] point out the 
possibility of closing or truncating the infiite set of 
equations by approximating the distribution p with 
a series of special functions. This has not yet been 
attempted for this mixing-reaction model. Here 
the interest is in eludicating an analytical solution 
to Eq. (2). In particular, we see that we may obtain 
all the moments if n = 1, although this is the one case 
where dispersed phase mixing does not affect the 
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reactant conversion (~ETEMA [3]). However, there 
is a practical situation in which we are interested in 
the higher moments of the distribution of concen- 
tration in the mixing-first order reaction situation. 
That this also yields analytical results is a benefit in 
further contemplation of related problems. 

Consider a reversible first order chemical reaction 
A+B taking place in the drops in a dispersed phase, 
backmix reactor. The mean concentration of A, 

c,, will depend only upon the dispersed phase 
residence time and the kinetic rate constants. How- 
ever, let us worry about the possibility of the second 
order reactions A + A, B + B or A + B going to some 
product which is undesirable in even trace quantities. 
The average rates of these reactions depend on the 

quantities z”, c and C,C, in the reactor, but these 
in turn depend on the rate of dispersed phase 
mixing. Hence, if we neglect the contribution of 
these reactions to the mass-balance in the reactor, 
we have a readily solvable problem, and can obtain 
analytical expressions for the extent to which dis- 
persed phase mixing affects the relative rate of these 
possible by-product reactions. 

For simplicity consider that only A is fed in the 
dispersed phase, at concentration C,,. Stoichi- 
ometry requires that, due to reaction alone, the 
concentrations of A and B are related by 

C,=CAo-CA (3) 
Now, dispersed phase mixing, with the simple model 
of CURL [l], produces drops having the average 
concentrations of the species in the mixing drops. 
Hence the drops resulting from mixing must also 
have C, and C, as given by Eq. (3). This is shown 
in Fig. 1, where it is apparent that mixing of two 
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FIG. 1. The locus of all possible drop concentra- 
tions in the present system. The coalescence of a 
drop from Pt A with one from Pt B simply produces 
two at Pt C. The arrow indicates the direction of 

drop “motion” due to reaction. 

drops from different locations on the line produces 
a concentration pair lying on the line. Therefore, 
even though we might have thought that the problem 
would have to be developed in terms of the joint 
probability density distribution p(C’,, C,), the 
dependence between C, and C, reduces the problem 
to one dimension. It is convenient to non-dimen- 
sionalize concentration by setting y =C,IC,,. In 
the one dimensional reaction (or “phase”) space of 
y, the reaction velocity is, using first order kinetics 
and Eq. (3), 

z=k,-(k,+k& (4) 

The conservation equation, analogous to Eq. (1) 
is, in the steady state: 

PO--P+1 
[S 

2 m P(2Y-@)P(Ma-P 
0 1 
--+-UG+~,)Y)P=~ (5) 

(The reaction term is conveniently obtained from the 
conservation, or “Liouville” equation, such as 
shown by HULBURT and KATZ [4]). The reaction 
moduli Kl and K,, equal to k&o, and k&o,, are 
for the forward and reverse reaction respectively. 

The associated moment equation is: 

-r[(KI+Kz)m,-Kzmr_l]=O (6) 

We immediately obtain (since m. = 1 and m,_ has 
been assumed to equal 1-O): 

l+Kz 

m’=l+K,+K, 
(7) 

m2 = 1 + 2(K1+ K,) + (I/2) 
(8) 

We seek the means z, z and G. In 
dimensionless form, using a joint moment notation, 
these are, respectively : 

mzo=~=mm, (9) 
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m,,=(l-y)Z=l-22m,+m, (10) Yzo = 

1-A+2A(1-E)(1-AE)+(1-A)(1-AE)Z(Z/2) 
m,,=y(l-y)=m,-m, ill) (1-AE)2(1+A+(1-A)(Z/2)) 

(22) 
while 

mlo=J=ml 

m,r=l-J=l-ml 

With Z-tco, the well mixed dispersed phase 
situation, the concentrations are uniform through- 
out and we would have 

n120=m102 (14) 

mo2=mO12 (15) 

m 11 =mlomol (16) 

The relative rates of the trace second order 
reactions, with respect to the well mixed case, are 
then 

(23) (12) 
2+(1-A)(Z/2) 

YoZ=2A+(1-A)[1+(f/2)] 

(13) yll_A(1-~)+(~-AE)[1+(1-A)(z/2)1 (24) 
(l-AE)[l+A+(l-&Z/2)] 

C”2 m20 
Y20=-7=2 

A ml0 

c,2 m02 
Yo2’7’7 

B mot 

(17) 

iW 

In place of the reaction moduli, the following 
variables are chosen to represent the reaction 
conditions : 

1. Possible equilibrium conversion (from 7 and 

13, &,2'cfJ) 

Kl E=mo,, =- 
KI +K2 

2. Fractional approach to equilibrium (from 7, 
13 and 20) 

A_mol _ K1+K2 
mole l+&+K, 

(21) 

The conversion itself is simply mol =AE (and 
ml0 = 1 - AE). With some algebraic manipulation 
of Eqs. (7)-(21), we obtain the relations for the 
effect of dispersed phase mixing: 
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Interestingly enough the mixing parameter for 
these associated second order reactions appears as 
Z/2, a definition preferred by SPIELMAN and LEVEN- 

SPIEL [2], as in the Monte Carlo procedure it 
represents the number of coalescences occurring in 
the reactor during the mean time between drop 
entries. However, Z/2 would not be the form if we 
wanted higher moment relations. The parameter Z 
is preferred here as it represents the volume fraction 
of the dispersed phase entering into coalescences 
per dispersed phase residence time. 

Equations (22)--(24) are shown in Figs. 2-4. 
Equation (7) for yo2 does not depend on E. We see 

A-FRACTIONAL APPROACH TO EQUILIBRIUM 

FIG. 2. Rate of reaction B+B relative to rate at 
Z=co vs. fractional approach to equilibrium. 
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FIG. 3. Rate of reaction A+B relative to rate at Z= 03. Contours are for constant yir. Values at high conversion 
are included by plotting parametrically vs. 1-A and 1-E. 

that dispersed phase mixing can produce a two- 
fold difference in the relative rate of the second 
order reaction B+B, increasing I decreasing the 
importance of this reaction (the “usual” direction 
for the effect of mixing in a second order reaction). 
This dependence is also found for the reaction 
A+ A, although here y2,, may become very large at 
high conversions (similar to the irreversible second 
order reaction results of SPIELMAN and LEVENSPIEL 
[2]). However the relative rate of reaction A+B 
is increased by dispersed phase mixing, as shown by 
yrr increasing, within the limits of O-5 to 1.0, with 
increasing I. This is qualitatively similar to an A+ 
B reaction (A+B separated in the feed) analyzed by 
SPIELMAN and LEVENSPIEL [7]. 

As might be expected yz,,-r, with E=l-0, 
becomes asymptotic to the “performance ratio” of 
Spielman and Levenspiel for a second order reac- 
tion, at low conversions. Incidentally, with I=O, 
the present yzo is nearly identical to the “perform- 
ance ratio” for a reactor with an irreversible zero- 
order reaction. There may be an intuitive argument 
for this, but it is not known to the author. 

We see that it would be advisable to increase 
dispersed phase mixing if the reactions A+ A or 
B + B are the undesired side reactions, although the 

effect on the latter is small; while we would wish to 
maintain a segregated dispersed phase if A + B were 
the undesired reaction. We also see that in all cases 
extremely large mixing rates are necessary to app- 
roach the “completely mixed” situation, especially 
at high conversions. 

To what extent a particular rate can be obtained 
depends on the fluid phases, reactor geometry and 
mixing rate, as shown by MILLER et al. [5], MADDEN 
and DAMERELL [6], and GRCJOTHUIS and ZUIDERWEG 

[71. 
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NOTATION 
fractional approach to equilibrium, C,/C,, 
concentration of reactant in drop 
mean concentration of reactant over all drops 
equilibrium conversion for first order reaction 
dispersed phase mixing modulus, WJO, 
reaction rate constant, time-’ 
reaction modulus, k/w, 
rth movement of p(y), 7 
r, r’ joint moment, f( 1 -y>” 
order of reaction 
probability density distribution of c, y or 

other variates 
order of moment 
time 
dimensionless concentration, CJC,, 
dummy variable 
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FIG. 4. Rate of reaction A+B rrelative to rate at Z= co. Contours are for constant ~20. 

higher order reaction rates relative to corn- Subscripts . . . . 
plete mixing, 1, 2 forward and reverse reaction, respectively 

mrrs A, B refers to reactants A and B -- 
r’ (1-Y)” e equilibrium condition 

(0) feed condition 
0, residence frequency for dispersed phase, 

time-’ Operation 
oi dispersed phase mixing rate, time-’ ( mean value. 
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R&m&-L’auteur a employ6 un modMe id&lid pour ttudier les &Tects du dBgr& de melange sur la 
vitesse r6lative des rkactions simultanb du type A+A, B+B, et A+B, dam le cas oh la r6action 
A$B, du suppo& du prkmier ordre et rkversible, est la plus rapide. L’on dkmontre ainsi la possi- 
bilit6 d’un 6ffet de mklange pronon& sur la vitesse de la Reaction A+A, tandis que l%ffet sur les 
&actions B+B et A+B peut s’exprimer par un facteur qui m’est jamais plus grand que deux. 

Les r6sultats de cet etude pourraient s’employer pour estimer IWet du d&r6 de melange sur les 
rbctions du deuxikme ordre des sous-produits, dont des traces ont un Bffet important. En outre, ils 
repn%ents la premibe solution analytique des equations de mklange-reaction. 

Zusammenfassung-Ein idealisiertes Model1 fiir das M&hen disperser Phasen dient zur Auffindung 
der Relativgeschwindigkeiten der Reaktionen A+A, B+B und A+B, wenn die Reaktion A+B 
vorherrschend, erster Ordnung und umkehrbar ist. Ein mijglichst grosser Mischeffekt auf die Reak- 
tion A+A wird dargestellt, wlhrend der Effekt auf B+B oder A+Bnie griisser als ein Faktor zwei ist. 

Die Ergebnisse sind zur Abschltzung des Mischeffekts auf Nebenproduktreaktionen zweiter 
Ordnung anwendbar, welchewenn zu einem geringen Mass vorhanden-bedeutend sind. Dari.iber- 
hinaus stellt die erste analytische Liisung der Mischreaktionsgleichung dar. 
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